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Elementary definitions

Let A be a Banach algebra

Let X be a complex vector space. We denote by L(X ) the algebra of
linear endomorphisms of the vector X .
We say that X is an A-module or left A-module, if there exists a
non-trivial algebra homomorphism T : A→ L(X ).
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If X is equipped with a norm ‖‖X then we say that the A-module (T ,X )
is bounded, if there exists a constant C > 0 such that

‖a · x‖X ≤ C‖a‖A‖x‖X , a ∈ A, x ∈ X .

We say that the bounded A-module (T ,X ) is a Banach module, if X is a
Banach space.
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We say that the A-module (T ,X ) is simple, if X 6= {0} and if the only
A-invariant subspaces of X are the two trivial ones, namely X and {0}.

We say that the Banach A-module (T ,X ) is irreducible, if the only
A-invariant closed subspaces of X are the two trivial ones, namely X and
{0}.
Let (T ,X ) be an A-module. Let 0 6= x ∈ X . The annihilator Ax of x in
A is the left ideal

Ax := {a ∈ A; a · x = 0}.
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A left ideal I of the algebra A is called modular, if there exists u ∈ A,
such that

a · u − a ∈ I , a ∈ A.

The element u ∈ A is called a (right) modular unit (for I ) .

Proposition

1. Let (T ,X ) be an A-module. Let x 6= 0 be a cyclic vector of X ,
which means that the subspace A · x is equal to X itself. Then the A
modules (T ,X ) and A/Ax are equivalent.

2. Let (T ,X ) be an A-module. Then T is simple if and only if every
x 6= 0 in X is a cyclic vector.

3. If (T ,X ) is a simple A-module, then for every x 6= 0 in X the
annihilator Ax of x is a maximal modular left ideal of A.

4. If I is a maximal modular left ideal of A, then the left A-module A/I
is simple.
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Remark
Two simple A-modules (T ,X ) and (T ′,X ′) are equivalent, if and only
if there exists x ∈ X and x ′ ∈ X ′ such that the annihilator ideals Ax

and Ax′ coincide.



A fundamental property of simple modules

Theorem
Let A be a Banach algebra and let I be a proper maximal modular left
ideal of A. Then I is closed in A.

Corollary
Let (T ,X ) be a simple A-module. Then there exists a norm ‖‖X on X ,
such that (T (X , ‖‖X ) is Banach A-module.



A fundamental property of simple modules

Theorem
Let A be a Banach algebra and let I be a proper maximal modular left
ideal of A. Then I is closed in A.

Corollary
Let (T ,X ) be a simple A-module. Then there exists a norm ‖‖X on X ,
such that (T (X , ‖‖X ) is Banach A-module.



A fundamental property of simple modules

Theorem
Let A be a Banach algebra and let I be a proper maximal modular left
ideal of A. Then I is closed in A.

Corollary
Let (T ,X ) be a simple A-module. Then there exists a norm ‖‖X on X ,
such that (T (X , ‖‖X ) is Banach A-module.



Simple modules and the spectrum

Theorem
Let A be a Banach algebra and a ∈ A. Take any 0 6= λ ∈ C. Then
λ ∈ σ(a) if and only there exists a simple module (T ,X ) of A and an
element x 6= 0 in X such that

a · x = λx .

Definition
Let A be an involutive Banach algebra. We say that A is symmetric
or hermitian if the spectrum σA(a) ⊂ R for any a = a∗.
It is wellknown that A is symmetric if and only if every simple module
(T ,X ) of A is unitarizable, which means that (T ,X ) is equivalent to a
submodule of an irreducible representation.

Example
Let G be a locally compact nilpotent or compactly generated group of
polynomial growth. Then L1(G ) is symmetric.
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Construction of simple modules

Definition
Let A be a Banach algebra and let (T ,X ) be a Banach module. We
denote by I fin

T the ideal of A defined by

I fin
T := {a ∈ A; the operator T (a) ∈ B(X ) has finite rank}.

Let also X fin be the (A)-invariant subspace of X given by

X fin := {span(T (a)(X )); a ∈ I fin
T }.

We have the following method to obtain simple modules

Theorem
Let A be a Banach algebra and let (T ,X ) be an irreducible Banach
module. Suppose that the finite rank subspace X fin is different from {0}.
Then X fin is the unique simple submodule of (T ,X ).
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An example: The Heisenberg group

Let Hn = R2n × R with the multiplication

(x , y , t)(x ′, y ′, t ′) = (x + x ′, y + y ′, t + t ′ +
1

2
(x · y ′ − x ′ · y)),

where x · y = x1y1 + · · ·+ xnyn denotes the Euclidean scalar product on
Rn.
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For every λ ∈ R∗, there exists an irreducible unitary representation πλ of
Hn on the Hilbert space Hλ = L2(Rn), which is given by the formula

πλ(x , y , t)ξ(s) := e−2πiλt−2πi λ
2 x·y+2πiλs·yξ(s − x),

s ∈ Rn, ξ ∈ L2(Rn), (x , y , t) ∈ Hn.

For F ∈ L1(Hn) the operator πλ(F ) is a kernel operator with kernel
function Fλ given by

Fλ(s, t) = F̂ 2,3(s − t,−λ
2

(s + t), λ), s, t ∈ Rn.
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Take any ξ, η ∈ L2(R) and let Pξ,η be the rank one operator

Pξ,η(ϕ) := 〈ϕ, η〉 · ξ, ϕ ∈ L2(Hn).

If now πλ(F ) = Pξ,η for some F ∈ L1(Hn), then

F̂ 2,3(s − t,−λ
2

(s + t), λ) = ξ(s)η(t), s, t ∈ R2n.

Hence

F̂ 3(s, u, λ) = e
iλ
4 u·s |λ|n

4
(χs · ξ̂) ∗ η̂∗(λ

2
u), s, u ∈ Rn.

Hence πλ admits finite rank operator and fixing a Schwartz function η we
have that

Hfin
λ = {ξ ∈ L2(Rn);

∫
R2n

|(χs · ξ̂) ∗ η̂∗(u)|duds <∞.
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The use of idempotent multipliers

Proposition
Let A be a Banach algebra and take a multiplier p of A, such that
p2 = p. Let (T ,X ) be a simple A-module such that Xp := T (p)X 6= {0}.

a) Then (T |Xp ,Xp) is a simple (pAp)-module.

b) Take 0 6= y ∈ Xp. The ideal Ay ⊂ A is then given by

Ay = {a ∈ A | T (pAap)y = {0}}.

c) Let (T ,X ) and (T ′,X ′) be two simple A-modules. Let’s assume
that there is a (pAp)-linear isomorphism

Φ : Xp −→ X ′p,

i.e. such that
Φ(T (pap)pv) = T ′(pap)Φ(pv).

Then there is a unique extension of Φ to an A-linear isomorphism
between X and X ′.
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Proposition

a) Assume that (S ,Y ) is a simple (pAp)-module. Then A/Ay is a
simple A-module, where

Ay = {a ∈ A | S(pAap)y = 0}.

b) The simple (pAp)-module (S ,Y ) is equivalent to
(L|(p·A/Ay ), p · A/Ay ).
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Semi-simple Lie groups

Suppose that G is a connected non compact semi-simple Lie group with
finite center, and let K be a maximal compact subgroup of G .

Definition
Let χρ = χ be the character of K corresponding to a fixed irreducible

representation ρ of K of dimension dρ, i.e. χ(k) = χρ(k) = dρ tr ρ(k),
k ∈ K . Normalize the Haar measure dk of K so that

∫
K
dk = 1. The

operator π(χ) in B(X ) is a projection, since χ ∗ χ = χ. Hence its range
Xχ is a closed L1(K )-invariant subspace of X .
We say that the representation (π,X ) is admissible (for K ) if for every
character χ of K the subspace Xχ is finite dimensional.
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Let Ξ(K ) be the set of all the irreducible characters of K . Notice that
the sum

∑
χ∈Ξ Xχ is direct and that the Banach space X is the closure

of
∑
χ Xχ.

Definition
For every character χ of K , let L1

χ = L1(G )χ be the closed involutive

subalgebra of L1(G ) defined by

L1(G )χ := χ ∗ L1(G ) ∗ χ.
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Proposition
Let (π,X ) be a bounded Banach irreducible representation of the non
compact linear semi-simple Lie group G.

1. If π is admissible, then the dense submodule Xfin of π is the unique
simple submodule of π.

2. If π admits a simple submodule X0, then π is admissible with
dim(Xχ) ≤ d2

χ for all χ ∈ Ξ(K ).

Proposition
Let G be a connected linear semi-simple Lie group and let (π,X ) be an
irreducible bounded admissible Banach representation of G. Then, for
every element D in the center of the enveloping algebra U(g) of G, the
operator dπ(D) on X∞ is a multiple of the identity.
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Remark
Let (π,X ) be a simple L1(G ) module such that π(χ) 6= 0 for some
character χ of K. Let x ∈ Xχ and choose a vector ξ in the anti-dual
space X ′ of X such that 〈ξ, x〉 = 1 and 〈ξ, ker(π(χ))〉 = {0} . Then we
obtain a coefficient

cπx,ξ(g) := 〈ξ, π(g)x〉, g ∈ G ,

which has the following property.

Proposition

1. For every central element D ∈ U(g), we have that D ∗ cπx,ξ = λcπx,ξ
for some λ ∈ C.

2. Two simple L1(G )-modules (π,X , ) and (π′,X ′) are equivalent if
and only if there exists a coefficient cπx,ξ 6= 0 of π and a coefficient

cπ
′

x′,ξ′ of π such that cπ
′

x′,ξ′ = cπx,ξ.
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Induced representation
Definition
Let H be a closed subgroup of a locally compact group G . Let
E(G/H) be defined by

E(G/H) = {ξ : G → C; ξ(gh) = ∆H,G (h)ξ(g), ∀g ∈ G , h ∈ H,

ξ is continuous with compact support modulo H}

Proposition
Let H be a closed subgroup of a locally compact group G. There exists a
unique (up to multiplication by a positive constant) G-invariant positive
linear functional, denoted by

k 7→ µG ,H (k) =

∮
G/H

k(x)dµG ,H (x) =

∮
G/H

k(x)dẋ ,

on the space E(G/H). We have that

(0.1)

∫
G

k(t)dt =

∮
G/H

(

∫
H

k(th)∆G ,H (h)dh)dṫ, ∀k ∈ Cc (G ).

where

∆H,G (h) := ∆H (h)∆G (h)−1, h ∈ H
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Definition
Let H be a closed subgroup of a locally compact group G . Let (T ,X )
be an isometric Banach space representation of H. Let p ∈ [1,∞[.

Define the space of mappings

Ep(G/H,T )

by

Ep(G/H,T ) := {ξ : G → X ; ξ(gh) = ∆
1/p
H,G (h)T (h−1)(ξ(g)),

g ∈ G , h ∈ H,

ξ is continuous with compact support modulo H}.
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We remark that the space Ep(G/H,T ) is left translation invariant and
that for ξ ∈ Ep(G/H,T ) the function

x → ‖ξ(x)‖p
X =: qξ(x), x ∈ G ,

is continuous with compact support modulo H and satisfies the relation

qξ(xh) = ∆H,G (h)qξ(x), x ∈ G , h ∈ H,

and so qξ ∈ E(G/H). We can thus define a norm on E(G/H, ρ) by

‖ξ‖p
p :=

∮
G/H

‖ξ(g)‖p
Xdġ .
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Definition

Lp(G/H,T ) := Ep(G/H,T )
‖‖p
.

Since the left translation is isometric on Ep(G/H,T ), we obtain an
isometric action of G on the Banach space Lp(G/H,T ).
We denote this action by πT ,p = indG

H (T , p), where

(0.2) πT ,p(t)ξ(s) := ξ(t−1s), ξ ∈ Lp(G/H,T ), s, t ∈ G .
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The group G = SL2(R)
In the following we consider the linear group

(0.3) G := SL2(R) =
{
g =

(
a b
c d

)
∈ M2(R), ad − bc = 1

}
.

The torus

(0.4) K :=
{
kθ =

(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ R

}
maximal subgroup.
Characters χl , with l ∈ Z, are of the form χl (kθ) := e ilθ, θ ∈ R.
Let I denote the 2× 2 identity matrix. We set P := MAN ⊂ G , where

M := {±I} ,

A :=
{
ar =

(
r 0
0 r−1

)
, r > 0

}
,

N :=
{
nx =

(
1 x
0 1

)
, x ∈ R

}
.
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Modular function:

(0.5) ∆AN (

(
r x
0 r−1

)
) = r−2, r ∈ R∗+, x ∈ R.

Definition: ρ : A→ R∗+

ρ(ar ) := r , r > 0 .

Let g = κ(g)α(g)ν(g) (Iwasawa decomposition) g =

(
a b
c d

)
∈ G .

Then

r =
√
a2 + c2

cos θ =
a√

a2 + c2

sin θ = − c√
a2 + c2

.
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Examples of simple modules: the p-principal series.

For τ ∈ R, let ητ,± be the character of P = MAN defined by

ητ,±(marn) := σ±(m)r−iτ , r ∈ R∗+.

where

(0.6) σ±(εI ) :=

{
1 if ε = +

ε if ε = −
.

Let p ∈ [1,∞[. Define the space Lp(G/P, ητ,±) as the completion of the
space

C∞± (G/P, ητ , p)

= {f : G → C, f smooth, f (gmarn) = σ±(m)r−( 2
p +iτ)f (g)

for all g ∈ G , m ∈ M, ar ∈ A, n ∈ N}

for the Lp-norm:

‖f ‖p
p =

∮
G/P

|f (g)|p dġ =

∫
K

|f (k)|p dk, f ∈ C∞± (G/P, ητ ).
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Similarly, for p =∞, we let

C∞τ,±
= C∞± (G/P, ητ )

= {f : G → C, f smooth , f (gmarn) = σ±(m)r−iτ f (g)

for all g ∈ G , m ∈ M, ar ∈ A, n ∈ N} .

The Banach space L∞(G/P, ητ,±) is by definition the closure for the
infinity norm ‖f ‖∞ := supk∈K |f (k)| of the space C∞τ,±.



Similarly, for p =∞, we let

C∞τ,±
= C∞± (G/P, ητ )

= {f : G → C, f smooth , f (gmarn) = σ±(m)r−iτ f (g)

for all g ∈ G , m ∈ M, ar ∈ A, n ∈ N} .

The Banach space L∞(G/P, ητ,±) is by definition the closure for the
infinity norm ‖f ‖∞ := supk∈K |f (k)| of the space C∞τ,±.



Definition
Let

s :=
2

p
+ iτ − 1 ∈ C

Definition
Let for s ∈ [−1, 1] + iR

πp
τ,± = πs,± := indG

P (ητ,±, p)

be the induced representation for P = MAN and the character ητ,±,
which acts by left translation on the space Lp(G/P, ητ,±).



For the composition series of πp
τ,±, consider for l ∈ Z the function χp

τ,l

defined by

χp
τ,l (kan) := χ−l (k)ητ (a)∆

1/p
AN (an), k ∈ K , a ∈ A, n ∈ N

Then the functions χp
τ,l , l ∈ 2Z, form a total subset of Lp

τ,+ and the

functions χp
τ,l , l ∈ 2Z + 1, form a total subset of Lp

τ,−. The matrices

E− :=

(
1 −i
−i −1

)
, E+ :=

(
1 i
i −1

)
, W :=

(
0 1
−1 0

)
form a basis for the complexification gC := sl2(C) of the Lie algebra
g := sl2(R) of G .
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We know from [La85], VI.5, that we have

dπp
τ,±(W )χp

τ,l = il χp
τ,l ,(0.7)

dπp
τ,±(E−)χp

τ,l =
(2

p
+ iτ − l

)
χp
τ,l−2,

dπp
τ,±(E+)χp

τ,l =
(2

p
+ iτ + l

)
χp
τ,l+2.

These relations hold true for the case p =∞ by setting 2/p := 0.
The formulas (0.7) show that the representations πp

τ,± are irreducible if
2
p + iτ 6∈ Z. For 2

p + iτ ∈ Z we have special cases.
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The discrete series.

For x =

(
a b
c d

)
∈ G , let

(0.8) α(x) :=
1

2
(a + d − ic + ib) , β(x) :=

1

2
(c + b − ia + id) .

Let s be now an integer ≥ 2. Then for r ∈ N := {0, 1, . . . } the functions
ξs,r := α−s−rβr are in L2(G ) and the closed subspace L2

s (G ) they
generate in L2(G ) is invariant under left translation by G .
The restriction of the left regular representation to L2

s,+(G ) defines a
unitary representation of G which we denote by πs , which is irreducible.
The vectors ξs,r are the eigenvectors for K with eigenvalue χk+2r (see
[La85], IX,2).

If we take the subspaces L2
s (G ) := L2

−s(G ) with s ∈ −N and s ≤ −2,
which are also invariant by left translation, then we obtain another family
of irreducible subrepresentations of the left regular representation.
We denote them by πs .
The K -eigenvalues of the spanning functions ξs,r are again the characters
ξ−s−2r , r ∈ N, s ≤ −2.
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generate in L2(G ) is invariant under left translation by G .

The restriction of the left regular representation to L2
s,+(G ) defines a

unitary representation of G which we denote by πs , which is irreducible.
The vectors ξs,r are the eigenvectors for K with eigenvalue χk+2r (see
[La85], IX,2).

If we take the subspaces L2
s (G ) := L2

−s(G ) with s ∈ −N and s ≤ −2,
which are also invariant by left translation, then we obtain another family
of irreducible subrepresentations of the left regular representation.
We denote them by πs .
The K -eigenvalues of the spanning functions ξs,r are again the characters
ξ−s−2r , r ∈ N, s ≤ −2.
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A list of simple module

Proposition

1) If s := 2
p + iτ − 1 6∈ Z, p ∈ [1,∞], then to (p, τ) correspond two

simple L1(G )-modules: ((πp
τ,+)fin, (Lp

τ,+)fin) and ((πp
τ,−)fin, (Lp

τ,−)fin).

2) To (p, τ) = (∞, 0), there correspond 4 simple L1(G )-modules:

I ((π∞0,−)fin, (L∞0,−)fin),

I the trivial one dimensional module f ∈ L1(G )→
∫

G
f (g) dg,

I the module ((π∞0,+,+)fin, (L∞0,+,+)fin), where

L∞0,+,+ = span{χ∞0,l ; l ∈ 2N} mod Cχ∞0,0

I and the module ((π∞0,+,−)fin, (L∞0,+,−)fin), where

L∞0,+,− = span{χ∞0,l ; l ∈ −2N} mod Cχ∞0,0.
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3) To (p, τ) = (2, 0) there correspond three simple L1(G )-modules:

I ((π2
0,+)fin, (L2
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0,−,− = span{χ∞0,l ; l ∈ −1− 2N}.
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I the module ((π1
0,+,+)fin, (L1
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I and the module ((π1
0,+,−)fin, (L1

0,+,−)fin), where

L1
0,+,− = span{χ∞0,l ; l ∈ −2N∗}.

5) For every s ∈ N, s ≥ 2 or s ∈ −N, s ≤ −2, we have the simple
L1(G )-modules (πfin

s , (L2
s (G ))fin) inside L2(G ).
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Some coefficients

Questions:
When is πfin

s,ε equivalent to π
fin
s ′,ε′?

Are there other simple modules?

Let us compute some coefficients of these representations. Let p ∈ [1,∞]
and choose q ∈ [1,∞[ such that 1

p + 1
q = 1. We indicate by 〈·, ·〉 the

duality relation between Lp and Lq.
Let s + 1 := 2

p + iτ ∈ [−1, 1] + iR and let l ∈ Z. We obtain the

coefficient cs,l of the representation πp
τ,± by

(0.9) cs,l (g) := 〈πp
τ (g)χp

τ,l , χ
q
τ,l〉, g ∈ G .
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For r ∈ R∗+ we then have that

cs,l (ar ) =

∫
K

χp
τ,l (a

−1
r k)χq

τ,l (k) dk

= 2

∫ π/2

−π/2

( 1√
r2 sin2 ψ + cos2 ψ

r 2

)2/p+iτ

(cosψ + i sinψ)l

×
( cosψ

r
√
r2 sin2 ψ + cos2 ψ

r 2

+ i
rsinψ√

r2 sin2 ψ + cos2 ψ
r 2

)−l dψ

2π



Furthermore, we have

(0.10) cs,l (kgk
′) = χl (k

′)χl (k)cs,l (g), g ∈ G , k, k ′ ∈ K .

Hence cs,l is K -invariant.



Furthermore, we have

(0.10) cs,l (kgk
′) = χl (k

′)χl (k)cs,l (g), g ∈ G , k, k ′ ∈ K .

Hence cs,l is K -invariant.



The characters of the algebra L1(G )l
Let l ∈ Z. To simplify the notation, we write L1(G )l for the subalgebra
L1(G )χl

= χl ∗ L1(G ) ∗ χl = χ−l ∗ L1(G ) ∗ χ−l of L1(G ).

It consists of all
integrable functions f for which

(0.11) χl ∗ f = f = f ∗ χl .

Another description is
(0.12)

L1(G )l = {f ∈ L1(G ), f (kgk ′) = χl (kk ′)f (g), g ∈ G , k, k ′ ∈ K} .

Obviously, the elements f of L1(G )l have the following invariance
property :

(0.13) f (kgk−1) = f (g), g ∈ G , k ∈ K .

Proposition
The algebras L1(G )l , l ∈ Z, are commutative.

Hence the simple L1(G )-modules are now determined by the characters
of the abelian algebras L1(G )l , l ∈ Z.
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Proposition
The algebras L1(G )l , l ∈ Z, are commutative.

Hence the simple L1(G )-modules are now determined by the characters
of the abelian algebras L1(G )l , l ∈ Z.



Definition
Let φ : G → C a nonzero C∞-function on G . We say that φ is an
l -spherical function provided it satisfies

(0.14)

∫
K

φ(gkg ′)χl (k
−1)dk = φ(g)φ(g ′)

for all g , g ′ ∈ G .
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The following proposition is standard knowledge.

Proposition

1. The subspace

L∞(G )l := {φ ∈ L∞(G ), φ(kgk ′) = χl (kk ′)φ(g), k, k ′ ∈ K , g ∈ G}

of L∞(G ) represents the algebraic dual space of the Banach space
L1(G )l .

2. The characters of the commutative Banach algebra L1(G )l are given
by the bounded l-spherical functions.



A family of characters

We now define for s ∈ C and l ∈ Z the functions

(0.15) ρs,l (karn) := r−(s+1)χl (k), k ∈ K , r ∈ R∗+, n ∈ N.

Notice that for all g ∈ G , r ∈ R∗+ and k ∈ K , we have

(0.16) ρs,l (kgar ) = r−(s+1)χl (k)ρs,l (g) .

Definition
For s ∈ C and l ∈ Z we define the function φs,l : G → C by

(0.17) φs,l (g) :=

∫
K

χl (k)ρs,l (g
−1k) dk , g ∈ G .

Lemma
The function φs,l is an l-spherical function.
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By Lemma 31 and Proposition 29, each function φs,l determines by
integration on G a character of the commutative algebra Cc,l (G ).

For their explicit expression, observe that because of Lemma 27 and the
decomposition G = KAK of G , the functions φs,l are uniquely
determined by their restriction to A. Remarking that the function
φ 7→ χl (kψ)ρs,l (a

−1
r kψ) is π-periodic, we get:

φs,l (ar ) = 2

∫ π
2

−π
2

(cosψ + i sinψ)lρs,l (a
−1
r kψ)

dψ

2π

= 2

∫ π
2

−π
2

(cosψ + i sinψ)l 1(√
r2 sin2 ψ + cos2 ψ

r 2

)s+1
(0.18)

( cosψ

r
√
r2 sin2 ψ + cos2 ψ

r 2

+ i
rsinψ√

r2 sin2 ψ + cos2 ψ
r 2

)−l dψ

2π
.
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Proposition
Let s ∈ C and l ∈ Z .

1. For any s ∈ C and l ∈ Z we have that

φs,l = φ−s,l .

2.

cs,l = φs,l , s + 1 ∈ [−1, 1] + iR.



Koornwinder’s list

Proposition
Let l ∈ Z. Every bounded l-spherical function is of the form φs,l for some
s ∈ C.



Behaviour at infinity

We must study limr→∞ φs,l (r). Starting from the expression (0.18) of
φs,l , we get for ar ∈ A

φs,l (ar ) =
1

π
r s−1

∫ ∞
−∞

e il arctan( v
r2 )e−ilarctan(v)

(1 + v 2

r 4

v2 + 1

) s+1
2
( 1

1 + v 2

r 4

)
dv

Hence, if Re s > 1, we see that

lim
r→∞

φs,l (ar )

r s−1
=

1

π

∫ ∞
−∞

e−ilarctan(v)
( 1

v2 + 1

) s+1
2

dv .

and if Re s < −1 then

lim
r→0

φs,l (ar )

r s+1
=

1

π

∫ ∞
−∞

e ilarctan(v)
( 1

v2 + 1

)−s+1
2

dv .
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Therefore, if Re (s) > 1, a necessary condition for φs,l to be bounded is
that the number

(0.19) Is,l :=

∫ ∞
−∞

e−ilarctan(v)
( 1

v2 + 1

) s+1
2

dv

is equal to 0 and

similarly for Re s < −1 the number

(0.20) Is,l :=

∫ ∞
−∞

e ilarctan(v)
( 1

v2 + 1

)−s+1
2

dv

must be 0.
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Proposition
For every s ∈ C \ Z with Re (s) > 1 or Re (s) < −1, the integral Is,l is
nonzero. In particular the functions φs,l are not bounded if Re (s) > 1 or
Re (s) < −1 and s 6∈ Z.



We can now formulate the main theorem.

Theorem
Every simple module of the Banach algebra L1(SL2(R)) is equivalent to
one of the simple modules listed in Proposition 24. Two simple modules
with the parameters (s, ε) resp. (s ′, ε′) are equivalent if and only if ε = ε′

and s ′ = s or s ′ = −s.



Mautner’s group, a question

Let θ ∈ R \Q. Let

M = Mθ = Rn C2

(t, u, v) · (t ′, u′, v ′) = (t + t ′), e−it′u + u′, e−iθt′v + v ′)

Proposition
The group M is connected and has polynomial growth. Hence L1(M) is
symmetric, every simple module is unitarizable.

Remark
Mautner’s group is not type I.

Question: What is Simple(M)?
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Thank you
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