Simple modules of the L^{1}-group algebra of $S L_{2}(\mathbb{R})$
by
J. Ludwig, A. Pasquale

Simple modules of the L^{1}-group algebra of $S L_{2}(\mathbb{R})$
by J. Ludwig, A. Pasquale

Abstract

We determine the simple modules of the algebra $L^{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$ up to equivalence
and we show that these modules are the finite rank sub-modules of the L^{p}-principal series and of the discrete series representations of $\mathrm{SL}_{2}(\mathbb{R})$

Elementary definitions

Let A be a Banach algebra

Elementary definitions

Let A be a Banach algebra
Let X be a complex vector space. We denote by $L(X)$ the algebra of linear endomorphisms of the vector X.

Elementary definitions

Let A be a Banach algebra
Let X be a complex vector space. We denote by $L(X)$ the algebra of linear endomorphisms of the vector X.
We say that X is an A-module or left A-module, if there exists a non-trivial algebra homomorphism $T: A \rightarrow L(X)$.

If X is equipped with a norm $\left\|\|_{X}\right.$ then we say that the A-module (T, X) is bounded, if there exists a constant $C>0$ such that

$$
\|a \cdot x\|_{x} \leq C\|a\|_{A}\|x\|_{x}, a \in A, x \in X .
$$

If X is equipped with a norm $\left\|\|_{X}\right.$ then we say that the A-module (T, X) is bounded, if there exists a constant $C>0$ such that

$$
\|a \cdot x\|_{X} \leq C\|a\|_{A}\|x\|_{X}, a \in A, x \in X
$$

We say that the bounded A-module (T, X) is a Banach module, if X is a Banach space.

We say that the A-module (T, X) is simple, if $X \neq\{0\}$ and if the only A-invariant subspaces of X are the two trivial ones, namely X and $\{0\}$.

We say that the A-module (T, X) is simple, if $X \neq\{0\}$ and if the only A-invariant subspaces of X are the two trivial ones, namely X and $\{0\}$. We say that the Banach A-module (T, X) is irreducible, if the only A-invariant closed subspaces of X are the two trivial ones, namely X and $\{0\}$.

We say that the A-module (T, X) is simple, if $X \neq\{0\}$ and if the only A-invariant subspaces of X are the two trivial ones, namely X and $\{0\}$. We say that the Banach A-module (T, X) is irreducible, if the only A-invariant closed subspaces of X are the two trivial ones, namely X and \{0\}.
Let (T, X) be an A-module. Let $0 \neq x \in X$. The annihilator A_{x} of x in A is the left ideal

$$
A_{x}:=\{a \in A ; a \cdot x=0\} .
$$

A left ideal I of the algebra A is called modular, if there exists $u \in A$, such that

$$
a \cdot u-a \in I, a \in A .
$$

The element $u \in A$ is called a (right) modular unit (for I).

A left ideal I of the algebra A is called modular, if there exists $u \in A$, such that

$$
a \cdot u-a \in I, a \in A
$$

The element $u \in A$ is called a (right) modular unit (for I).

Proposition

1. Let (T, X) be an A-module. Let $x \neq 0$ be a cyclic vector of X, which means that the subspace $A \cdot x$ is equal to X itself. Then the A modules (T, X) and A / A_{x} are equivalent.

A left ideal I of the algebra A is called modular, if there exists $u \in A$, such that

$$
a \cdot u-a \in I, a \in A
$$

The element $u \in A$ is called a (right) modular unit (for I).

Proposition

1. Let (T, X) be an A-module. Let $x \neq 0$ be a cyclic vector of X, which means that the subspace $A \cdot x$ is equal to X itself. Then the A modules (T, X) and A / A_{x} are equivalent.
2. Let (T, X) be an A-module. Then T is simple if and only if every $x \neq 0$ in X is a cyclic vector.

A left ideal I of the algebra A is called modular, if there exists $u \in A$, such that

$$
a \cdot u-a \in I, a \in A
$$

The element $u \in A$ is called a (right) modular unit (for I).

Proposition

1. Let (T, X) be an A-module. Let $x \neq 0$ be a cyclic vector of X, which means that the subspace $A \cdot x$ is equal to X itself. Then the A modules (T, X) and A / A_{x} are equivalent.
2. Let (T, X) be an A-module. Then T is simple if and only if every $x \neq 0$ in X is a cyclic vector.
3. If (T, X) is a simple A-module, then for every $x \neq 0$ in X the annihilator A_{x} of x is a maximal modular left ideal of A.

A left ideal I of the algebra A is called modular, if there exists $u \in A$, such that

$$
a \cdot u-a \in I, a \in A
$$

The element $u \in A$ is called a (right) modular unit (for I).

Proposition

1. Let (T, X) be an A-module. Let $x \neq 0$ be a cyclic vector of X, which means that the subspace $A \cdot x$ is equal to X itself. Then the A modules (T, X) and A / A_{x} are equivalent.
2. Let (T, X) be an A-module. Then T is simple if and only if every $x \neq 0$ in X is a cyclic vector.
3. If (T, X) is a simple A-module, then for every $x \neq 0$ in X the annihilator A_{x} of x is a maximal modular left ideal of A.
4. If I is a maximal modular left ideal of A, then the left A-module A / I is simple.

Remark

Two simple A-modules (T, X) and (T^{\prime}, X^{\prime}) are equivalent, if and only if there exists $x \in X$ and $x^{\prime} \in X^{\prime}$ such that the annihilator ideals A_{x} and $A_{x^{\prime}}$ coincide.

A fundamental property of simple modules

A fundamental property of simple modules

Theorem
Let A be a Banach algebra and let I be a proper maximal modular left ideal of A. Then I is closed in A.

A fundamental property of simple modules

Theorem
Let A be a Banach algebra and let I be a proper maximal modular left ideal of A. Then I is closed in A.

Corollary
Let (T, X) be a simple A-module. Then there exists a norm $\left\|\|_{X}\right.$ on X, such that $\left(T\left(X,\| \|_{X}\right)\right.$ is Banach A-module.

Simple modules and the spectrum

Simple modules and the spectrum

Theorem

Let A be a Banach algebra and $a \in A$. Take any $0 \neq \lambda \in \mathbb{C}$. Then $\lambda \in \sigma(a)$ if and only there exists a simple module (T, X) of A and an element $x \neq 0$ in X such that

$$
a \cdot x=\lambda x
$$

Simple modules and the spectrum

Theorem

Let A be a Banach algebra and $a \in A$. Take any $0 \neq \lambda \in \mathbb{C}$. Then $\lambda \in \sigma(a)$ if and only there exists a simple module (T, X) of A and an element $x \neq 0$ in X such that

$$
a \cdot x=\lambda x
$$

Definition

Let A be an involutive Banach algebra. We say that A is symmetric or hermitian if the spectrum $\sigma_{A}(a) \subset \mathbb{R}$ for any $a=a^{*}$.

Simple modules and the spectrum

Theorem

Let A be a Banach algebra and $a \in A$. Take any $0 \neq \lambda \in \mathbb{C}$. Then $\lambda \in \sigma(a)$ if and only there exists a simple module (T, X) of A and an element $x \neq 0$ in X such that

$$
a \cdot x=\lambda x
$$

Definition

Let A be an involutive Banach algebra. We say that A is symmetric or hermitian if the spectrum $\sigma_{\mathcal{A}}(a) \subset \mathbb{R}$ for any $a=a^{*}$.
It is wellknown that A is symmetric if and only if every simple module (T, X) of A is unitarizable, which means that (T, X) is equivalent to a submodule of an irreducible representation.

Simple modules and the spectrum

Theorem

Let A be a Banach algebra and $a \in A$. Take any $0 \neq \lambda \in \mathbb{C}$. Then $\lambda \in \sigma(a)$ if and only there exists a simple module (T, X) of A and an element $x \neq 0$ in X such that

$$
a \cdot x=\lambda x
$$

Definition

Let A be an involutive Banach algebra. We say that A is symmetric or hermitian if the spectrum $\sigma_{A}(a) \subset \mathbb{R}$ for any $a=a^{*}$.
It is wellknown that A is symmetric if and only if every simple module (T, X) of A is unitarizable, which means that (T, X) is equivalent to a submodule of an irreducible representation.

Example

Let G be a locally compact nilpotent or compactly generated group of polynomial growth. Then $L^{1}(G)$ is symmetric.

Construction of simple modules

Construction of simple modules

Definition

Let A be a Banach algebra and let (T, X) be a Banach module. We denote by $I_{T}^{\text {fin }}$ the ideal of A defined by

$$
I_{T}^{f_{i}}:=\{a \in A ; \text { the operator } T(a) \in B(X) \text { has finite rank }\} .
$$

Let also $X^{\text {fin }}$ be the (A)-invariant subspace of X given by

$$
X^{\text {fin }}:=\left\{\operatorname{span}(T(a)(X)) ; a \in I_{T}^{f i n}\right\}
$$

We have the following method to obtain simple modules

Construction of simple modules

Definition

Let A be a Banach algebra and let (T, X) be a Banach module. We denote by $I_{T}^{\text {fin }}$ the ideal of A defined by

$$
I_{T}^{\text {fin }}:=\{a \in A ; \text { the operator } T(a) \in B(X) \text { has finite rank }\} .
$$

Let also $X^{\text {fin }}$ be the (A)-invariant subspace of X given by

$$
X^{f i n}:=\left\{\operatorname{span}(T(a)(X)) ; a \in I_{T}^{f i n}\right\}
$$

We have the following method to obtain simple modules

Theorem

Let A be a Banach algebra and let (T, X) be an irreducible Banach module. Suppose that the finite rank subspace $X^{\text {fin }}$ is different from $\{0\}$. Then $X^{\text {fin }}$ is the unique simple submodule of (T, X).

An example: The Heisenberg group

An example: The Heisenberg group

Let $H_{n}=\mathbb{R}^{2 n} \times \mathbb{R}$ with the multiplication

$$
(x, y, t)\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(x \cdot y^{\prime}-x^{\prime} \cdot y\right)\right)
$$

where $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ denotes the Euclidean scalar product on \mathbb{R}^{n}.

For every $\lambda \in \mathbb{R}^{*}$, there exists an irreducible unitary representation π_{λ} of H_{n} on the Hilbert space $\mathcal{H}_{\lambda}=L^{2}\left(\mathbb{R}^{n}\right)$, which is given by the formula

$$
\begin{aligned}
\pi_{\lambda}(x, y, t) \xi(s):= & e^{-2 \pi i \lambda t-2 \pi i \frac{\lambda}{2} x \cdot y+2 \pi i \lambda s \cdot y} \xi(s-x), \\
& s \in \mathbb{R}^{n}, \xi \in L^{2}\left(\mathbb{R}^{n}\right),(x, y, t) \in H_{n} .
\end{aligned}
$$

For every $\lambda \in \mathbb{R}^{*}$, there exists an irreducible unitary representation π_{λ} of H_{n} on the Hilbert space $\mathcal{H}_{\lambda}=L^{2}\left(\mathbb{R}^{n}\right)$, which is given by the formula

$$
\begin{aligned}
\pi_{\lambda}(x, y, t) \xi(s):= & e^{-2 \pi i \lambda t-2 \pi i \frac{\lambda}{2} x \cdot y+2 \pi i \lambda s \cdot y} \xi(s-x) \\
& s \in \mathbb{R}^{n}, \xi \in L^{2}\left(\mathbb{R}^{n}\right),(x, y, t) \in H_{n}
\end{aligned}
$$

For $F \in L^{1}\left(H_{n}\right)$ the operator $\pi_{\lambda}(F)$ is a kernel operator with kernel function F_{λ} given by

$$
F_{\lambda}(s, t)=\hat{F}^{2,3}\left(s-t,-\frac{\lambda}{2}(s+t), \lambda\right), s, t \in \mathbb{R}^{n}
$$

Take any $\xi, \eta \in L^{2}(\mathbb{R})$ and let $P_{\xi, \eta}$ be the rank one operator

$$
P_{\xi, \eta}(\varphi):=\langle\varphi, \eta\rangle \cdot \xi, \varphi \in L^{2}\left(H_{n}\right) .
$$

Take any $\xi, \eta \in L^{2}(\mathbb{R})$ and let $P_{\xi, \eta}$ be the rank one operator

$$
P_{\xi, \eta}(\varphi):=\langle\varphi, \eta\rangle \cdot \xi, \varphi \in L^{2}\left(H_{n}\right) .
$$

If now $\pi_{\lambda}(F)=P_{\xi, \eta}$ for some $F \in L^{1}\left(H_{n}\right)$, then

$$
\hat{F}^{2,3}\left(s-t,-\frac{\lambda}{2}(s+t), \lambda\right)=\xi(s) \overline{\eta(t)}, s, t \in \mathbb{R}^{2 n}
$$

Hence

$$
\hat{F}^{3}(s, u, \lambda)=e^{\frac{i \lambda}{4} u \cdot s} \frac{|\lambda|^{n}}{4}\left(\chi_{s} \cdot \hat{\xi}\right) * \hat{\eta}^{*}\left(\frac{\lambda}{2} u\right), s, u \in \mathbb{R}^{n} .
$$

Take any $\xi, \eta \in L^{2}(\mathbb{R})$ and let $P_{\xi, \eta}$ be the rank one operator

$$
P_{\xi, \eta}(\varphi):=\langle\varphi, \eta\rangle \cdot \xi, \varphi \in L^{2}\left(H_{n}\right) .
$$

If now $\pi_{\lambda}(F)=P_{\xi, \eta}$ for some $F \in L^{1}\left(H_{n}\right)$, then

$$
\hat{F}^{2,3}\left(s-t,-\frac{\lambda}{2}(s+t), \lambda\right)=\xi(s) \overline{\eta(t)}, s, t \in \mathbb{R}^{2 n}
$$

Hence

$$
\hat{F}^{3}(s, u, \lambda)=e^{\frac{i \lambda}{4} u \cdot s} \frac{|\lambda|^{n}}{4}\left(\chi_{s} \cdot \hat{\xi}\right) * \hat{\eta}^{*}\left(\frac{\lambda}{2} u\right), s, u \in \mathbb{R}^{n} .
$$

Hence π_{λ} admits finite rank operator and fixing a Schwartz function η we have that

$$
\mathcal{H}_{\lambda}^{f i n}=\left\{\xi \in L^{2}\left(\mathbb{R}^{n}\right) ; \int_{\mathbb{R}^{2 n}}\left|\left(\chi_{s} \cdot \hat{\xi}\right) * \hat{\eta}^{*}(u)\right| d u d s<\infty .\right.
$$

The use of idempotent multipliers

The use of idempotent multipliers

Proposition
Let A be a Banach algebra and take a multiplier p of A, such that $p^{2}=p$. Let (T, X) be a simple A-module such that $X_{p}:=T(p) X \neq\{0\}$.

The use of idempotent multipliers

Proposition

Let A be a Banach algebra and take a multiplier p of A, such that $p^{2}=p$. Let (T, X) be a simple A-module such that $X_{p}:=T(p) X \neq\{0\}$.
a) Then $\left(\left.T\right|_{X_{p}}, X_{p}\right)$ is a simple $(p A p)$-module.

The use of idempotent multipliers

Proposition

Let A be a Banach algebra and take a multiplier p of A, such that $p^{2}=p$. Let (T, X) be a simple A-module such that $X_{p}:=T(p) X \neq\{0\}$.
a) Then $\left(\left.T\right|_{X_{p}}, X_{p}\right)$ is a simple ($p A p$)-module.
b) Take $0 \neq y \in X_{p}$. The ideal $A_{y} \subset A$ is then given by

$$
A_{y}=\{a \in A \mid T(p A a p) y=\{0\}\} .
$$

The use of idempotent multipliers

Proposition

Let A be a Banach algebra and take a multiplier p of A, such that $p^{2}=p$. Let (T, X) be a simple A-module such that $X_{p}:=T(p) X \neq\{0\}$.
a) Then $\left(\left.T\right|_{X_{p}}, X_{p}\right)$ is a simple ($p A p$)-module.
b) Take $0 \neq y \in X_{p}$. The ideal $A_{y} \subset A$ is then given by

$$
A_{y}=\{a \in A \mid T(p A a p) y=\{0\}\} .
$$

c) Let (T, X) and $\left(T^{\prime}, X^{\prime}\right)$ be two simple A-modules. Let's assume that there is a ($p A p$)-linear isomorphism

$$
\Phi: X_{p} \longrightarrow X_{p}^{\prime}
$$

i.e. such that

$$
\Phi(T(p a p) p v)=T^{\prime}(p a p) \Phi(p v) .
$$

Then there is a unique extension of Φ to an A-linear isomorphism between X and X^{\prime}.

Proposition

a) Assume that (S, Y) is a simple $(p A p)$-module. Then A / A_{y} is a simple A-module, where

$$
A_{y}=\{a \in A \mid S(p A a p) y=0\} .
$$

Proposition

a) Assume that (S, Y) is a simple $(p A p)$-module. Then A / A_{y} is a simple A-module, where

$$
A_{y}=\{a \in A \mid S(p A a p) y=0\} .
$$

b) The simple ($p A p$)-module (S, Y) is equivalent to $\left(L_{\left(p \cdot A / A_{y}\right)}, p \cdot A / A_{y}\right)$.

Semi-simple Lie groups

Suppose that G is a connected non compact semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G.

Semi-simple Lie groups

Suppose that G is a connected non compact semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G.

Definition

Let $\chi_{\rho}=\chi$ be the character of K corresponding to a fixed irreducible representation ρ of K of dimension d_{ρ}, i.e. $\chi(k)=\chi_{\rho}(k)=\overline{d_{\rho} \operatorname{tr} \rho(k)}$, $k \in K$. Normalize the Haar measure $d k$ of K so that $\int_{K} d k=1$. The operator $\pi(\chi)$ in $B(X)$ is a projection, since $\chi * \chi=\chi$.

Semi-simple Lie groups

Suppose that G is a connected non compact semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G.

Definition

Let $\chi_{\rho}=\chi$ be the character of K corresponding to a fixed irreducible representation ρ of K of dimension d_{ρ}, i.e. $\chi(k)=\chi_{\rho}(k)=\overline{d_{\rho} \operatorname{tr} \rho(k)}$, $k \in K$. Normalize the Haar measure $d k$ of K so that $\int_{K} d k=1$. The operator $\pi(\chi)$ in $B(X)$ is a projection, since $\chi * \chi=\chi$. Hence its range X_{χ} is a closed $L^{1}(K)$-invariant subspace of X.

Semi-simple Lie groups

Suppose that G is a connected non compact semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G.

Definition

Let $\chi_{\rho}=\chi$ be the character of K corresponding to a fixed irreducible representation ρ of K of dimension d_{ρ}, i.e. $\chi(k)=\chi_{\rho}(k)=\overline{d_{\rho} \operatorname{tr} \rho(k)}$, $k \in K$. Normalize the Haar measure $d k$ of K so that $\int_{K} d k=1$. The operator $\pi(\chi)$ in $B(X)$ is a projection, since $\chi * \chi=\chi$. Hence its range X_{χ} is a closed $L^{1}(K)$-invariant subspace of X.
We say that the representation (π, X) is admissible (for K) if for every character χ of K the subspace X_{χ} is finite dimensional.

Let $\equiv(K)$ be the set of all the irreducible characters of K. Notice that the sum $\sum_{\chi \in \equiv} X_{\chi}$ is direct and that the Banach space X is the closure of $\sum_{\chi} X_{\chi}$.

Let $\equiv(K)$ be the set of all the irreducible characters of K. Notice that the sum $\sum_{\chi \in \equiv} X_{\chi}$ is direct and that the Banach space X is the closure of $\sum_{\chi} X_{\chi}$.
Definition
For every character χ of K, let $L_{\chi}^{1}=L^{1}(G)_{\chi}$ be the closed involutive subalgebra of $L^{1}(G)$ defined by

$$
L^{1}(G)_{\chi}:=\chi * L^{1}(G) * \chi .
$$

Proposition

Let (π, X) be a bounded Banach irreducible representation of the non compact linear semi-simple Lie group G.

Proposition

Let (π, X) be a bounded Banach irreducible representation of the non compact linear semi-simple Lie group G.

1. If π is admissible, then the dense submodule $X_{\text {fin }}$ of π is the unique simple submodule of π.
2. If π admits a simple submodule X_{0}, then π is admissible with $\operatorname{dim}\left(X_{\chi}\right) \leq d_{\chi}^{2}$ for all $\chi \in \equiv(K)$.

Proposition

Let (π, X) be a bounded Banach irreducible representation of the non compact linear semi-simple Lie group G.

1. If π is admissible, then the dense submodule $X_{\text {fin }}$ of π is the unique simple submodule of π.
2. If π admits a simple submodule X_{0}, then π is admissible with $\operatorname{dim}\left(X_{\chi}\right) \leq d_{\chi}^{2}$ for all $\chi \in \equiv(K)$.

Proposition

Let G be a connected linear semi-simple Lie group and let (π, X) be an irreducible bounded admissible Banach representation of G. Then, for every element D in the center of the enveloping algebra $U(\mathfrak{g})$ of G, the operator $d \pi(D)$ on X^{∞} is a multiple of the identity.

Remark

Let (π, X) be a simple $L^{1}(G)$ module such that $\pi(\chi) \neq 0$ for some character χ of K. Let $x \in X_{\chi}$ and choose a vector ξ in the anti-dual space X^{\prime} of X such that $\langle\xi, x\rangle=1$ and $\langle\xi, \operatorname{ker}(\pi(\chi))\rangle=\{0\}$. Then we obtain a coefficient

$$
c_{x, \xi}^{\pi}(g):=\langle\xi, \pi(g) x\rangle, \quad g \in G,
$$

which has the following property.

Remark

Let (π, X) be a simple $L^{1}(G)$ module such that $\pi(\chi) \neq 0$ for some character χ of K. Let $x \in X_{\chi}$ and choose a vector ξ in the anti-dual space X^{\prime} of X such that $\langle\xi, x\rangle=1$ and $\langle\xi, \operatorname{ker}(\pi(\chi))\rangle=\{0\}$. Then we obtain a coefficient

$$
c_{x, \xi}^{\pi}(g):=\langle\xi, \pi(g) x\rangle, \quad g \in G,
$$

which has the following property.

Proposition

1. For every central element $D \in \mathcal{U}(\mathfrak{g})$, we have that $D * c_{x, \xi}^{\pi}=\lambda c_{x, \xi}^{\pi}$ for some $\lambda \in \mathbb{C}$.

Remark

Let (π, X) be a simple $L^{1}(G)$ module such that $\pi(\chi) \neq 0$ for some character χ of K. Let $x \in X_{\chi}$ and choose a vector ξ in the anti-dual space X^{\prime} of X such that $\langle\xi, x\rangle=1$ and $\langle\xi, \operatorname{ker}(\pi(\chi))\rangle=\{0\}$. Then we obtain a coefficient

$$
c_{x, \xi}^{\pi}(g):=\langle\xi, \pi(g) x\rangle, \quad g \in G,
$$

which has the following property.

Proposition

1. For every central element $D \in \mathcal{U}(\mathfrak{g})$, we have that $D * c_{x, \xi}^{\pi}=\lambda c_{x, \xi}^{\pi}$ for some $\lambda \in \mathbb{C}$.
2. Two simple $L^{1}(G)$-modules (π, X,) and $\left(\pi^{\prime}, X^{\prime}\right)$ are equivalent if and only if there exists a coefficient $c_{x, \xi}^{\pi} \neq 0$ of π and a coefficient $c_{x^{\prime}, \xi^{\prime}}^{\pi^{\prime}}$ of π such that $c_{x^{\prime}, \xi^{\prime}}^{\pi^{\prime}}=c_{x, \xi}^{\pi}$.

Induced representation

Definition

Let H be a closed subgroup of a locally compact group G. Let $\mathcal{E}(G / H)$ be defined by

$$
\begin{aligned}
\mathcal{E}(G / H)=\quad & \left\{\xi: G \rightarrow \mathbb{C} ; \xi(g h)=\Delta_{H, G}(h) \xi(g), \quad \forall g \in G, h \in H\right. \\
& \xi \text { is continuous with compact support modulo } H\}
\end{aligned}
$$

Induced representation

Definition

Let H be a closed subgroup of a locally compact group G. Let $\mathcal{E}(G / H)$ be defined by

$$
\begin{aligned}
\mathcal{E}(G / H)= & \left\{\xi: G \rightarrow \mathbb{C} ; \xi(g h)=\Delta_{H, G}(h) \xi(g), \quad \forall g \in G, h \in H,\right. \\
& \xi \text { is continuous with compact support modulo } H\}
\end{aligned}
$$

Proposition

Let H be a closed subgroup of a locally compact group G. There exists a unique (up to multiplication by a positive constant) G-invariant positive linear functional, denoted by

$$
k \mapsto \mu_{G, H}(k)=\oint_{G / H} k(x) d \mu_{G, H}(x)=\oint_{G / H} k(x) d \dot{x},
$$

on the space $\mathcal{E}(G / H)$. We have that

$$
\begin{equation*}
\int_{G} k(t) d t=\oint_{G / H}\left(\int_{H} k(t h) \Delta_{G, H}(h) d h\right) d \dot{t}, \quad \forall k \in C_{c}(G) . \tag{0.1}
\end{equation*}
$$

Definition

Let H be a closed subgroup of a locally compact group G. Let (T, X) be an isometric Banach space representation of H. Let $p \in[1, \infty[$.

Definition

Let H be a closed subgroup of a locally compact group G. Let (T, X) be an isometric Banach space representation of H. Let $p \in[1, \infty[$. Define the space of mappings

$$
\mathcal{E}^{p}(G / H, T)
$$

by

$$
\begin{aligned}
\mathcal{E}^{p}(G / H, T):= & \left\{\xi: G \rightarrow X ; \xi(g h)=\Delta_{H, G}^{1 / p}(h) T\left(h^{-1}\right)(\xi(g)),\right. \\
& g \in G, h \in H, \\
& \xi \text { is continuous with compact support modulo } H\} .
\end{aligned}
$$

We remark that the space $\mathcal{E}^{p}(G / H, T)$ is left translation invariant and that for $\xi \in \mathcal{E}^{p}(G / H, T)$ the function

$$
x \rightarrow\|\xi(x)\|_{X}^{p}=: q_{\xi}(x), x \in G
$$

is continuous with compact support modulo H and satisfies the relation

We remark that the space $\mathcal{E}^{p}(G / H, T)$ is left translation invariant and that for $\xi \in \mathcal{E}^{p}(G / H, T)$ the function

$$
x \rightarrow\|\xi(x)\|_{X}^{p}=: q_{\xi}(x), x \in G
$$

is continuous with compact support modulo H and satisfies the relation

$$
q_{\xi}(x h)=\Delta_{H, G}(h) q_{\xi}(x), x \in G, h \in H,
$$

and so $q_{\xi} \in \mathcal{E}(G / H)$. We can thus define a norm on $\mathcal{E}(G / H, \rho)$ by

$$
\|\xi\|_{p}^{p}:=\oint_{G / H}\|\xi(g)\|_{X}^{p} d \dot{g}
$$

Definition

$$
L^{p}(G / H, T):=\overline{\mathcal{E}^{p}(G / H, T)}{ }^{\| \| \|_{p}} .
$$

Definition

$$
L^{p}(G / H, T):=\overline{\mathcal{E}^{p}(G / H, T)}{ }^{\| \| \|_{p}} .
$$

Since the left translation is isometric on $\mathcal{E}^{p}(G / H, T)$, we obtain an isometric action of G on the Banach space $L^{P}(G / H, T)$.

Definition

$$
L^{p}(G / H, T):=\overline{\mathcal{E}^{p}(G / H, T)}{ }^{\| \| \|_{p}} .
$$

Since the left translation is isometric on $\mathcal{E}^{p}(G / H, T)$, we obtain an isometric action of G on the Banach space $L^{p}(G / H, T)$. We denote this action by $\pi_{T, p}=\operatorname{ind}_{H}^{G}(T, p)$, where

$$
\begin{equation*}
\pi_{T, p}(t) \xi(s):=\xi\left(t^{-1} s\right), \xi \in L^{p}(G / H, T), s, t \in G . \tag{0.2}
\end{equation*}
$$

The group $G=S L_{2}(\mathbb{R})$
In the following we consider the linear group
(0.3) $\quad G:=S L_{2}(\mathbb{R})=\left\{g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}), a d-b c=1\right\}$.

The group $G=S L_{2}(\mathbb{R})$

In the following we consider the linear group
(0.3) $\quad G:=S L_{2}(\mathbb{R})=\left\{g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}), a d-b c=1\right\}$.

The torus

$$
K:=\left\{k_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{0.4}\\
-\sin \theta & \cos \theta
\end{array}\right), \theta \in \mathbb{R}\right\}
$$

maximal subgroup.

The group $G=S L_{2}(\mathbb{R})$

In the following we consider the linear group
(0.3) $\quad G:=S L_{2}(\mathbb{R})=\left\{g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}), a d-b c=1\right\}$.

The torus

$$
K:=\left\{k_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{0.4}\\
-\sin \theta & \cos \theta
\end{array}\right), \theta \in \mathbb{R}\right\}
$$

maximal subgroup.
Characters χ_{I}, with $I \in \mathbb{Z}$, are of the form $\chi_{I}\left(k_{\theta}\right):=e^{i l \theta}, \theta \in \mathbb{R}$.

The group $G=S L_{2}(\mathbb{R})$

In the following we consider the linear group

$$
G:=S L_{2}(\mathbb{R})=\left\{g=\left(\begin{array}{ll}
a & b \tag{0.3}\\
c & d
\end{array}\right) \in M_{2}(\mathbb{R}), a d-b c=1\right\}
$$

The torus

$$
K:=\left\{k_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{0.4}\\
-\sin \theta & \cos \theta
\end{array}\right), \theta \in \mathbb{R}\right\}
$$

maximal subgroup.
Characters χ_{I}, with $I \in \mathbb{Z}$, are of the form $\chi_{I}\left(k_{\theta}\right):=e^{i l \theta}, \theta \in \mathbb{R}$.
Let I denote the 2×2 identity matrix. We set $P:=M A N \subset G$, where

$$
\begin{aligned}
M & :=\{ \pm l\} \\
A & :=\left\{a_{r}=\left(\begin{array}{cc}
r & 0 \\
0 & r^{-1}
\end{array}\right), r>0\right\} \\
N & :=\left\{n_{x}=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right), x \in \mathbb{R}\right\}
\end{aligned}
$$

Modular function:
(0.5)

$$
\Delta_{A N}\left(\left(\begin{array}{cc}
r & x \\
0 & r^{-1}
\end{array}\right)\right)=r^{-2}, \quad r \in \mathbb{R}_{+}^{*}, x \in \mathbb{R}
$$

Definition: $\rho: A \rightarrow \mathbb{R}_{+}^{*}$

$$
\rho\left(a_{r}\right):=r, \quad r>0 .
$$

Modular function:
(0.5)

$$
\Delta_{A N}\left(\left(\begin{array}{cc}
r & x \\
0 & r^{-1}
\end{array}\right)\right)=r^{-2}, \quad r \in \mathbb{R}_{+}^{*}, x \in \mathbb{R} .
$$

Definition: $\rho: A \rightarrow \mathbb{R}_{+}^{*}$

$$
\rho\left(a_{r}\right):=r, \quad r>0 .
$$

Let $g=\kappa(g) \alpha(g) \nu(g)$ (Iwasawa decomposition) $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$.

Modular function:

$$
\Delta_{A N}\left(\left(\begin{array}{cc}
r & x \tag{0.5}\\
0 & r^{-1}
\end{array}\right)\right)=r^{-2}, \quad r \in \mathbb{R}_{+}^{*}, x \in \mathbb{R} .
$$

Definition: $\rho: A \rightarrow \mathbb{R}_{+}^{*}$

$$
\rho\left(a_{r}\right):=r, \quad r>0 .
$$

Let $g=\kappa(g) \alpha(g) \nu(g)$ (Iwasawa decomposition) $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$.
Then

$$
\begin{aligned}
r & =\sqrt{a^{2}+c^{2}} \\
\cos \theta & =\frac{a}{\sqrt{a^{2}+c^{2}}} \\
\sin \theta & =-\frac{c}{\sqrt{a^{2}+c^{2}}} .
\end{aligned}
$$

Examples of simple modules: the p-principal series.

Examples of simple modules: the p-principal series.

For $\tau \in \mathbb{R}$, let $\eta_{\tau, \pm}$ be the character of $P=$ MAN defined by

$$
\eta_{\tau, \pm}\left(m a_{r} n\right):=\sigma_{ \pm}(m) r^{-i \tau}, \quad r \in \mathbb{R}_{+}^{*}
$$

where
(0.6)

$$
\sigma_{ \pm}(\varepsilon l):=\left\{\begin{array}{ll}
1 & \text { if } \varepsilon=+ \\
\varepsilon & \text { if } \varepsilon=-
\end{array} .\right.
$$

Examples of simple modules: the p-principal series.

For $\tau \in \mathbb{R}$, let $\eta_{\tau, \pm}$ be the character of $P=$ MAN defined by

$$
\eta_{\tau, \pm}\left(m a_{r} n\right):=\sigma_{ \pm}(m) r^{-i \tau}, \quad r \in \mathbb{R}_{+}^{*} .
$$

where

$$
\sigma_{ \pm}(\varepsilon l):=\left\{\begin{array}{ll}
1 & \text { if } \varepsilon=+ \tag{0.6}\\
\varepsilon & \text { if } \varepsilon=-
\end{array} .\right.
$$

Let $p \in\left[1, \infty\left[\right.\right.$. Define the space $L^{p}\left(G / P, \eta_{\tau, \pm}\right)$ as the completion of the space

$$
\begin{aligned}
& C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}, p\right) \\
= & \left\{f: G \rightarrow \mathbb{C}, f \text { smooth, } f\left(g m a_{r} n\right)=\sigma_{ \pm}(m) r^{-\left(\frac{2}{p}+i \tau\right)} f(g)\right. \\
& \text { for all } \left.g \in G, m \in M, a_{r} \in A, n \in N\right\}
\end{aligned}
$$

Examples of simple modules: the p-principal series.

For $\tau \in \mathbb{R}$, let $\eta_{\tau, \pm}$ be the character of $P=$ MAN defined by

$$
\eta_{\tau, \pm}\left(m a_{r} n\right):=\sigma_{ \pm}(m) r^{-i \tau}, \quad r \in \mathbb{R}_{+}^{*} .
$$

where

$$
\sigma_{ \pm}(\varepsilon l):=\left\{\begin{array}{ll}
1 & \text { if } \varepsilon=+ \tag{0.6}\\
\varepsilon & \text { if } \varepsilon=-
\end{array} .\right.
$$

Let $p \in\left[1, \infty\left[\right.\right.$. Define the space $L^{p}\left(G / P, \eta_{\tau, \pm}\right)$ as the completion of the space

$$
\begin{aligned}
& C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}, p\right) \\
= & \left\{f: G \rightarrow \mathbb{C}, f \text { smooth, } f\left(g m a_{r} n\right)=\sigma_{ \pm}(m) r^{-\left(\frac{2}{p}+i \tau\right)} f(g)\right. \\
& \text { for all } \left.g \in G, m \in M, a_{r} \in A, n \in N\right\}
\end{aligned}
$$

for the L^{p}-norm:

$$
\|f\|_{p}^{p}=\oint_{G / P}|f(g)|^{p} d \dot{g}=\int_{K}|f(k)|^{p} d k, \quad f \in C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}\right)
$$

Examples of simple modules: the p-principal series.

For $\tau \in \mathbb{R}$, let $\eta_{\tau, \pm}$ be the character of $P=$ MAN defined by

$$
\eta_{\tau, \pm}\left(m a_{r} n\right):=\sigma_{ \pm}(m) r^{-i \tau}, \quad r \in \mathbb{R}_{+}^{*} .
$$

where

$$
\sigma_{ \pm}(\varepsilon l):=\left\{\begin{array}{ll}
1 & \text { if } \varepsilon=+ \tag{0.6}\\
\varepsilon & \text { if } \varepsilon=-
\end{array} .\right.
$$

Let $p \in\left[1, \infty\left[\right.\right.$. Define the space $L^{p}\left(G / P, \eta_{\tau, \pm}\right)$ as the completion of the space

$$
\begin{aligned}
& C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}, p\right) \\
= & \left\{f: G \rightarrow \mathbb{C}, f \text { smooth, } f\left(g m a_{r} n\right)=\sigma_{ \pm}(m) r^{-\left(\frac{2}{p}+i \tau\right)} f(g)\right. \\
& \text { for all } \left.g \in G, m \in M, a_{r} \in A, n \in N\right\}
\end{aligned}
$$

for the L^{p}-norm:

$$
\|f\|_{p}^{p}=\oint_{G / P}|f(g)|^{p} d \dot{g}=\int_{K}|f(k)|^{p} d k, \quad f \in C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}\right)
$$

Similarly, for $p=\infty$, we let

$$
\begin{aligned}
& C_{\tau, \pm}^{\infty} \\
= & C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}\right) \\
= & \left\{f: G \rightarrow \mathbb{C}, f \text { smooth }, f\left(g m a_{r} n\right)=\sigma_{ \pm}(m) r^{-i \tau} f(g)\right. \\
& \text { for all } \left.g \in G, m \in M, a_{r} \in A, n \in N\right\} .
\end{aligned}
$$

Similarly, for $p=\infty$, we let

$$
\begin{aligned}
& C_{\tau, \pm}^{\infty} \\
= & C_{ \pm}^{\infty}\left(G / P, \eta_{\tau}\right) \\
= & \left\{f: G \rightarrow \mathbb{C}, f \text { smooth }, f\left(g m a_{r} n\right)=\sigma_{ \pm}(m) r^{-i \tau} f(g)\right. \\
& \text { for all } \left.g \in G, m \in M, a_{r} \in A, n \in N\right\} .
\end{aligned}
$$

The Banach space $L^{\infty}\left(G / P, \eta_{\tau, \pm}\right)$ is by definition the closure for the infinity norm $\|f\|_{\infty}:=\sup _{k \in K}|f(k)|$ of the space $C_{\tau, \pm}^{\infty}$.

Definition

Let

$$
s:=\frac{2}{p}+i \tau-1 \in \mathbb{C}
$$

Definition
Let for $s \in[-1,1]+i \mathbb{R}$

$$
\pi_{\tau, \pm}^{p}=\pi_{s, \pm}:=\operatorname{ind}_{P}^{G}\left(\eta_{\tau, \pm}, p\right)
$$

be the induced representation for $P=M A N$ and the character $\eta_{\tau, \pm}$, which acts by left translation on the space $L^{P}\left(G / P, \eta_{\tau, \pm}\right)$.

For the composition series of $\pi_{\tau, \pm}^{p}$, consider for $l \in \mathbb{Z}$ the function $\chi_{\tau, l}^{p}$ defined by

$$
\chi_{\tau, l}^{p}(k a n):=\chi_{-\jmath}(k) \eta_{\tau}(a) \Delta_{A N}^{1 / p}(a n), \quad k \in K, a \in A, n \in N
$$

For the composition series of $\pi_{\tau, \pm}^{p}$, consider for $I \in \mathbb{Z}$ the function $\chi_{\tau, l}^{p}$ defined by

$$
\chi_{\tau, I}^{p}(k a n):=\chi_{-I}(k) \eta_{\tau}(a) \Delta_{A N}^{1 / p}(a n), \quad k \in K, a \in A, n \in N
$$

Then the functions $\chi_{\tau, l}^{p}, I \in 2 \mathbb{Z}$, form a total subset of $L_{\tau,+}^{p}$ and the functions $\chi_{\tau, I}^{p}, I \in 2 \mathbb{Z}+1$, form a total subset of $L_{\tau,-}^{p}$.

For the composition series of $\pi_{\tau, \pm}^{p}$, consider for $I \in \mathbb{Z}$ the function $\chi_{\tau, l}^{p}$ defined by

$$
\chi_{\tau, I}^{p}(k a n):=\chi_{-I}(k) \eta_{\tau}(a) \Delta_{A N}^{1 / p}(a n), \quad k \in K, a \in A, n \in N
$$

Then the functions $\chi_{\tau, I}^{p}, I \in 2 \mathbb{Z}$, form a total subset of $L_{\tau,+}^{p}$ and the functions $\chi_{\tau, I}^{p}, I \in 2 \mathbb{Z}+1$, form a total subset of $L_{\tau,-}^{p}$. The matrices

$$
E^{-}:=\left(\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right), \quad E^{+}:=\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right), \quad W:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

form a basis for the complexification $\mathfrak{g}_{\mathbb{C}}:=\mathfrak{s l}_{2}(\mathbb{C})$ of the Lie algebra $\mathfrak{g}:=\mathfrak{s l}_{2}(\mathbb{R})$ of G.

We know from [La85], VI.5, that we have
(0.7)

$$
\begin{aligned}
d \pi_{\tau, \pm}^{p}(W) \chi_{\tau, l}^{p} & =i \chi_{\tau, l}^{p} \\
d \pi_{\tau, \pm}^{p}\left(E^{-}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau-l\right) \chi_{\tau, l-2}^{p} \\
d \pi_{\tau, \pm}^{p}\left(E^{+}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau+l\right) \chi_{\tau, l+2}^{p} .
\end{aligned}
$$

We know from [La85], VI.5, that we have

$$
\begin{align*}
d \pi_{\tau, \pm}^{p}(W) \chi_{\tau, l}^{p} & =i \chi_{\tau, l}^{p}, \tag{0.7}\\
d \pi_{\tau, \pm}^{p}\left(E^{-}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau-l\right) \chi_{\tau, l-2}^{p} \\
d \pi_{\tau, \pm}^{p}\left(E^{+}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau+l\right) \chi_{\tau, l+2}^{p}
\end{align*}
$$

These relations hold true for the case $p=\infty$ by setting $2 / p:=0$.

We know from [La85], VI.5, that we have

$$
\begin{align*}
d \pi_{\tau, \pm}^{p}(W) \chi_{\tau, l}^{p} & =i \chi_{\tau, l}^{p} \tag{0.7}\\
d \pi_{\tau, \pm}^{p}\left(E^{-}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau-l\right) \chi_{\tau, l-2}^{p} \\
d \pi_{\tau, \pm}^{p}\left(E^{+}\right) \chi_{\tau, l}^{p} & =\left(\frac{2}{p}+i \tau+l\right) \chi_{\tau, l+2}^{p}
\end{align*}
$$

These relations hold true for the case $p=\infty$ by setting $2 / p:=0$. The formulas (0.7) show that the representations $\pi_{\tau, \pm}^{p}$ are irreducible if $\frac{2}{p}+i \tau \notin \mathbb{Z}$. For $\frac{2}{p}+i \tau \in \mathbb{Z}$ we have special cases.

The discrete series.
For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let
(0.8) $\quad \alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d)$.

The discrete series.

For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let
(0.8) $\quad \alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d)$.

Let s be now an integer ≥ 2. Then for $r \in \mathbb{N}:=\{0,1, \ldots\}$ the functions $\xi_{s, r}:=\alpha^{-s-r} \beta^{r}$ are in $L^{2}(G)$ and the closed subspace $L_{s}^{2}(G)$ they generate in $L^{2}(G)$ is invariant under left translation by G.

The discrete series.

For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let
(0.8) $\quad \alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d)$.

Let s be now an integer ≥ 2. Then for $r \in \mathbb{N}:=\{0,1, \ldots\}$ the functions $\xi_{s, r}:=\alpha^{-s-r} \beta^{r}$ are in $L^{2}(G)$ and the closed subspace $L_{s}^{2}(G)$ they generate in $L^{2}(G)$ is invariant under left translation by G.
The restriction of the left regular representation to $L_{s,+}^{2}(G)$ defines a unitary representation of G which we denote by π_{s}, which is irreducible.

The discrete series.

For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let
(0.8) $\quad \alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d)$.

Let s be now an integer ≥ 2. Then for $r \in \mathbb{N}:=\{0,1, \ldots\}$ the functions $\xi_{s, r}:=\alpha^{-s-r} \beta^{r}$ are in $L^{2}(G)$ and the closed subspace $L_{s}^{2}(G)$ they generate in $L^{2}(G)$ is invariant under left translation by G.
The restriction of the left regular representation to $L_{s,+}^{2}(G)$ defines a unitary representation of G which we denote by π_{s}, which is irreducible. The vectors $\xi_{s, r}$ are the eigenvectors for K with eigenvalue $\chi_{k+2 r}$ (see [La85], IX,2).

The discrete series.

For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let
(0.8) $\quad \alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d)$.

Let s be now an integer ≥ 2. Then for $r \in \mathbb{N}:=\{0,1, \ldots\}$ the functions $\xi_{s, r}:=\alpha^{-s-r} \beta^{r}$ are in $L^{2}(G)$ and the closed subspace $L_{s}^{2}(G)$ they generate in $L^{2}(G)$ is invariant under left translation by G.
The restriction of the left regular representation to $L_{s,+}^{2}(G)$ defines a unitary representation of G which we denote by π_{s}, which is irreducible. The vectors $\xi_{s, r}$ are the eigenvectors for K with eigenvalue $\chi_{k+2 r}$ (see [La85], IX,2).
If we take the subspaces $L_{s}^{2}(G):=\overline{L_{-s}^{2}(G)}$ with $s \in-\mathbb{N}$ and $s \leq-2$, which are also invariant by left translation, then we obtain another family of irreducible subrepresentations of the left regular representation.

The discrete series.

For $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, let

$$
\begin{equation*}
\alpha(x):=\frac{1}{2}(a+d-i c+i b), \quad \beta(x):=\frac{1}{2}(c+b-i a+i d) . \tag{0.8}
\end{equation*}
$$

Let s be now an integer ≥ 2. Then for $r \in \mathbb{N}:=\{0,1, \ldots\}$ the functions $\xi_{s, r}:=\alpha^{-s-r} \beta^{r}$ are in $L^{2}(G)$ and the closed subspace $L_{s}^{2}(G)$ they generate in $L^{2}(G)$ is invariant under left translation by G.
The restriction of the left regular representation to $L_{s,+}^{2}(G)$ defines a unitary representation of G which we denote by π_{s}, which is irreducible. The vectors $\xi_{s, r}$ are the eigenvectors for K with eigenvalue $\chi_{k+2 r}$ (see [La85], IX,2).
If we take the subspaces $L_{s}^{2}(G):=\overline{L_{-s}^{2}(G)}$ with $s \in-\mathbb{N}$ and $s \leq-2$, which are also invariant by left translation, then we obtain another family of irreducible subrepresentations of the left regular representation.
We denote them by π_{s}.
The K-eigenvalues of the spanning functions $\overline{\xi_{s, r}}$ are again the characters $\xi_{-s-2 r}, r \in \mathbb{N}, s \leq-2$.

A list of simple module

Proposition

A list of simple module

Proposition

1) If $s:=\frac{2}{p}+i \tau-1 \notin \mathbb{Z}, p \in[1, \infty]$, then to (p, τ) correspond two simple $L^{1}(G)$-modules: $\left(\left(\pi_{\tau,+}^{p}\right)^{f i n},\left(L_{\tau,+}^{p}\right)^{\text {fin }}\right)$ and $\left(\left(\pi_{\tau,-}^{p}\right)^{\text {fin }},\left(L_{\tau,-}^{p}\right)^{\text {fin }}\right)$.

A list of simple module

Proposition

1) If $s:=\frac{2}{p}+i \tau-1 \notin \mathbb{Z}, p \in[1, \infty]$, then to (p, τ) correspond two simple $L^{1}(G)$-modules: $\left(\left(\pi_{\tau,+}^{p}\right)^{\text {fin }},\left(L_{\tau,+}^{p}\right)^{\text {fin }}\right)$ and $\left(\left(\pi_{\tau,-}^{p}\right)^{\text {fin }},\left(L_{\tau,-}^{p}\right)^{\text {fin }}\right)$. 2) $T_{o}(p, \tau)=(\infty, 0)$, there correspond 4 simple $L^{1}(G)$-modules:

A list of simple module

Proposition

1) If $s:=\frac{2}{p}+i \tau-1 \notin \mathbb{Z}, p \in[1, \infty]$, then to ($\left.p, \tau\right)$ correspond two simple $L^{1}(G)$-modules: $\left(\left(\pi_{\tau,+}^{p}\right)^{\text {fin }^{\prime}},\left(L_{\tau,+}^{p}\right)^{\text {fin }}\right)$ and $\left(\left(\pi_{\tau,-}^{p}\right)^{\text {fin }},\left(L_{\tau,-}^{p}\right)^{\text {fin }}\right)$.
2) $T_{o}(p, \tau)=(\infty, 0)$, there correspond 4 simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,-}^{\infty}\right)^{\text {fin }},\left(L_{0,-}^{\infty}\right)^{\text {fin }}\right)$,
- the trivial one dimensional module $f \in L^{1}(G) \rightarrow \int_{G} f(g) d g$,
- the module $\left(\left(\pi_{0,+,+}^{\infty}\right)^{\text {fin }},\left(L_{0,+,+}^{\infty}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,+}^{\infty}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in 2 \mathbb{N}\right\} \bmod \mathbb{C} \chi_{0,0}^{\infty}
$$

- and the module $\left(\left(\pi_{0,+,-}^{\infty}\right)^{\text {fin }},\left(L_{0,+,-}^{\infty}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,-}^{\infty}=\operatorname{span}\left\{\chi_{0,1}^{\infty}, I \in-2 \mathbb{N}\right\} \bmod \mathbb{C} \chi_{0,0}^{\infty} .
$$

3) To $(p, \tau)=(2,0)$ there correspond three simple $L^{1}(G)$-modules:
4) To $(p, \tau)=(2,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,+}^{2}\right)^{\text {fin }},\left(L_{0,+}^{2}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,-,+}^{2}\right)^{\text {fin }},\left(L_{0,-,+}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,+}^{2}=\operatorname{span}\left\{\chi_{0, l}^{2} ; I \in 1+2 \mathbb{N}\right\} .
$$

- and the module $\left(\left(\pi_{0,-,-}^{2}\right)^{\text {fin }},\left(L_{0,-,-}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,-}^{2}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-1-2 \mathbb{N}\right\} .
$$

3) To $(p, \tau)=(2,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,+}^{2}\right)^{\text {fin }},\left(L_{0,+}^{2}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,-,+}^{2}\right)^{\text {fin }},\left(L_{0,-,+}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,+}^{2}=\operatorname{span}\left\{\chi_{0, l}^{2} ; I \in 1+2 \mathbb{N}\right\} .
$$

- and the module $\left(\left(\pi_{0,-,-}^{2}\right)^{\text {fin }},\left(L_{0,-,-}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,-}^{2}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-1-2 \mathbb{N}\right\} .
$$

4) To $(p, \tau)=(1,0)$ there correspond three simple $L^{1}(G)$-modules:
5) $\mathrm{To}(p, \tau)=(2,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,+}^{2}\right)^{\text {fin }},\left(L_{0,+}^{2}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,-,+}^{2}\right)^{\text {fin }},\left(L_{0,-,+}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,+}^{2}=\operatorname{span}\left\{\chi_{0, l}^{2} ; I \in 1+2 \mathbb{N}\right\} .
$$

- and the module $\left(\left(\pi_{0,-,-}^{2}\right)^{\text {fin }},\left(L_{0,-,-}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,-}^{2}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-1-2 \mathbb{N}\right\} .
$$

4) To $(p, \tau)=(1,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,-}^{1}\right)^{\text {fin }},\left(L_{0,-}^{1}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,+,+}^{1}\right)^{\text {fin }},\left(L_{0,+,+}^{1}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,+}^{1}=\operatorname{span}\left\{\chi_{0, l}^{1} ; I \in 2 \mathbb{N}^{*}\right\} .
$$

- and the module $\left(\left(\pi_{0,+,-}^{1}\right)^{\text {fin }},\left(L_{0,+,-}^{1}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,-}^{1}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-2 \mathbb{N}^{*}\right\} .
$$

3) To $(p, \tau)=(2,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,+}^{2}\right)^{\text {fin }},\left(L_{0,+}^{2}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,-,+}^{2}\right)^{\text {fin }},\left(L_{0,-,+}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,+}^{2}=\operatorname{span}\left\{\chi_{0, l}^{2} ; I \in 1+2 \mathbb{N}\right\} .
$$

- and the module $\left(\left(\pi_{0,-,-}^{2}\right)^{\text {fin }},\left(L_{0,-,-}^{2}\right)^{\text {fin }}\right)$, where

$$
L_{0,-,-}^{2}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-1-2 \mathbb{N}\right\} .
$$

4) To $(p, \tau)=(1,0)$ there correspond three simple $L^{1}(G)$-modules:

- $\left(\left(\pi_{0,-}^{1}\right)^{\text {fin }},\left(L_{0,-}^{1}\right)^{\text {fin }}\right)$,
- the module $\left(\left(\pi_{0,+,+}^{1}\right)^{\text {fin }},\left(L_{0,+,+}^{1}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,+}^{1}=\operatorname{span}\left\{\chi_{0, l}^{1} ; I \in 2 \mathbb{N}^{*}\right\} .
$$

- and the module $\left(\left(\pi_{0,+,-}^{1}\right)^{\text {fin }},\left(L_{0,+,-}^{1}\right)^{\text {fin }}\right)$, where

$$
L_{0,+,-}^{1}=\operatorname{span}\left\{\chi_{0, l}^{\infty} ; I \in-2 \mathbb{N}^{*}\right\} .
$$

5) For every $s \in \mathbb{N}, s \geq 2$ or $s \in-\mathbb{N}, s \leq-2$, we have the simple $L^{1}(G)$-modules $\left(\pi_{s}^{f i n},\left(L_{s}^{2}(G)\right)^{f i n}\right)$ inside $L^{2}(G)$.

Some coefficients

Some coefficients

Questions:
When is $\pi_{s, \varepsilon}^{\text {fin }}$ equivalent to $\pi_{s^{\prime}, \varepsilon^{\prime}}^{\text {fin }}$?

Some coefficients
Questions:
When is $\pi_{s, \varepsilon}^{\text {fin }}$ equivalent to $\pi_{s^{\prime}, \varepsilon^{\prime}}^{\text {fin }}$?
Are there other simple modules?

Some coefficients

Questions:
When is $\pi_{s, \varepsilon}^{\text {fin }}$ equivalent to $\pi_{s^{\prime}, \varepsilon^{\prime}}^{\text {fin }}$? Are there other simple modules?

Let us compute some coefficients of these representations. Let $p \in[1, \infty]$ and choose $q \in\left[1, \infty\left[\right.\right.$ such that $\frac{1}{p}+\frac{1}{q}=1$. We indicate by $\langle\cdot, \cdot\rangle$ the duality relation between L^{p} and L^{p}.

Some coefficients

Questions:

When is $\pi_{s, \varepsilon}^{\text {fin }}$ equivalent to $\pi_{s, \varepsilon \in \varepsilon}^{f i n}$? Are there other simple modules?

Let us compute some coefficients of these representations. Let $p \in[1, \infty]$ and choose $q \in\left[1, \infty\left[\right.\right.$ such that $\frac{1}{p}+\frac{1}{q}=1$. We indicate by $\langle\cdot, \cdot\rangle$ the duality relation between L^{p} and L^{p}.
Let $s+1:=\frac{2}{p}+i \tau \in[-1,1]+i \mathbb{R}$ and let $I \in \mathbb{Z}$. We obtain the coefficient $c_{s, l}$ of the representation $\pi_{\tau, \pm}^{p}$ by

Some coefficients

Questions:

When is $\pi_{s, \varepsilon}^{\text {fin }}$ equivalent to $\pi_{s, \varepsilon \in \varepsilon}^{f i n}$? Are there other simple modules?

Let us compute some coefficients of these representations. Let $p \in[1, \infty]$ and choose $q \in\left[1, \infty\left[\right.\right.$ such that $\frac{1}{p}+\frac{1}{q}=1$. We indicate by $\langle\cdot, \cdot\rangle$ the duality relation between L^{p} and L^{p}.
Let $s+1:=\frac{2}{p}+i \tau \in[-1,1]+i \mathbb{R}$ and let $I \in \mathbb{Z}$. We obtain the coefficient $c_{s, l}$ of the representation $\pi_{\tau, \pm}^{p}$ by

$$
\begin{equation*}
c_{\varsigma, l}(g):=\left\langle\pi_{\tau}^{p}(g) \chi_{\tau, l}^{p}, \chi_{\tau, l}^{q}\right\rangle, g \in G . \tag{0.9}
\end{equation*}
$$

For $r \in \mathbb{R}_{+}^{*}$ we then have that

$$
\begin{aligned}
c_{s, l}\left(a_{r}\right)= & \int_{K} \chi_{\tau, l}^{p}\left(a_{r}^{-1} k\right) \overline{\chi_{\tau, I}^{q}(k)} d k \\
= & 2 \int_{-\pi / 2}^{\pi / 2}\left(\frac{1}{\sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}}\right)^{2 / p+i \tau}(\cos \psi+i \sin \psi)^{I} \\
& \quad \times\left(\frac{\cos \psi}{r \sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}}+i \frac{r \sin \psi}{\sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}}\right)^{-I} \frac{d \psi}{2 \pi}
\end{aligned}
$$

Furthermore, we have
(0.10) $\quad c_{s, l}\left(k g k^{\prime}\right)=\chi_{l}\left(k^{\prime}\right) \chi_{l}(k) c_{s, l}(g), \quad g \in G, k, k^{\prime} \in K$.

Furthermore, we have
(0.10) $\quad c_{s, l}\left(k g k^{\prime}\right)=\chi_{l}\left(k^{\prime}\right) \chi_{I}(k) c_{s, l}(g), \quad g \in G, k, k^{\prime} \in K$.

Hence $c_{s, I}$ is K-invariant.

The characters of the algebra $L^{1}(G)$ ।

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)_{\text {, }}$ for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-I} * L^{1}(G) * \chi_{-I}$ of $L^{1}(G)$.

The characters of the algebra $L^{1}(G)$ ।

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)$, for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-1} * L^{1}(G) * \chi_{-\prime}$ of $L^{1}(G)$. It consists of all integrable functions f for which
(0.11)

$$
\bar{\chi}_{I} * f=f=f * \bar{\chi}_{I} .
$$

The characters of the algebra $L^{1}(G)$ ।

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)$, for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-I} * L^{1}(G) * \chi_{-।}$ of $L^{1}(G)$. It consists of all integrable functions f for which
(0.11)

$$
\bar{\chi}_{I} * f=f=f * \bar{\chi}_{I} .
$$

Another description is (0.12)

$$
L^{1}(G)_{I}=\left\{f \in L^{1}(G), f\left(k g k^{\prime}\right)=\overline{\chi_{I}\left(k k^{\prime}\right)} f(g), g \in G, k, k^{\prime} \in K\right\} .
$$

The characters of the algebra $L^{1}(G)$,

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)$, for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-I} * L^{1}(G) * \chi_{-I}$ of $L^{1}(G)$. It consists of all integrable functions f for which

$$
\begin{equation*}
\bar{\chi}_{I} * f=f=f * \bar{\chi}_{I} . \tag{0.11}
\end{equation*}
$$

Another description is (0.12)

$$
L^{1}(G)_{I}=\left\{f \in L^{1}(G), f\left(k g k^{\prime}\right)=\overline{\chi_{l}\left(k k^{\prime}\right)} f(g), g \in G, k, k^{\prime} \in K\right\} .
$$

Obviously, the elements f of $L^{1}(G)$, have the following invariance property :
(0.13)

$$
f\left(k g k^{-1}\right)=f(g), \quad g \in G, k \in K .
$$

The characters of the algebra $L^{1}(G)$,

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)$, for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-1} * L^{1}(G) * \chi_{-\prime}$ of $L^{1}(G)$. It consists of all integrable functions f for which

$$
\begin{equation*}
\bar{\chi}_{I} * f=f=f * \bar{\chi}_{I} . \tag{0.11}
\end{equation*}
$$

Another description is (0.12)

$$
L^{1}(G)_{I}=\left\{f \in L^{1}(G), f\left(k g k^{\prime}\right)=\overline{\chi_{I}\left(k k^{\prime}\right)} f(g), g \in G, k, k^{\prime} \in K\right\} .
$$

Obviously, the elements f of $L^{1}(G)$, have the following invariance property :
(0.13)

$$
f\left(k g k^{-1}\right)=f(g), \quad g \in G, k \in K .
$$

Proposition

The algebras $L^{1}(G)_{I}, I \in \mathbb{Z}$, are commutative.

The characters of the algebra $L^{1}(G)$,

Let $I \in \mathbb{Z}$. To simplify the notation, we write $L^{1}(G)$, for the subalgebra $L^{1}(G)_{\chi_{I}}=\bar{\chi}_{I} * L^{1}(G) * \bar{\chi}_{I}=\chi_{-I} * L^{1}(G) * \chi_{-I}$ of $L^{1}(G)$. It consists of all integrable functions f for which

$$
\begin{equation*}
\bar{\chi}_{I} * f=f=f * \bar{\chi}_{I} . \tag{0.11}
\end{equation*}
$$

Another description is (0.12)

$$
L^{1}(G)_{I}=\left\{f \in L^{1}(G), f\left(k g k^{\prime}\right)=\overline{\chi_{l}\left(k k^{\prime}\right)} f(g), g \in G, k, k^{\prime} \in K\right\} .
$$

Obviously, the elements f of $L^{1}(G)$, have the following invariance property :
(0.13)

$$
f\left(k g k^{-1}\right)=f(g), \quad g \in G, k \in K .
$$

Proposition

The algebras $L^{1}(G)_{I}, I \in \mathbb{Z}$, are commutative.
Hence the simple $L^{1}(G)$-modules are now determined by the characters of the abelian algebras $L^{1}(G)_{\mid}, I \in \mathbb{Z}$.

Definition

Let $\phi: G \rightarrow \mathbb{C}$ a nonzero C^{∞}-function on G. We say that ϕ is an l-spherical function provided it satisfies
(0.14)

$$
\int_{K} \phi\left(g k g^{\prime}\right) \chi_{I}\left(k^{-1}\right) d k=\phi(g) \phi\left(g^{\prime}\right)
$$

for all $g, g^{\prime} \in G$.

Definition

Let $\phi: G \rightarrow \mathbb{C}$ a nonzero C^{∞}-function on G. We say that ϕ is an l-spherical function provided it satisfies
(0.14)

$$
\int_{K} \phi\left(g k g^{\prime}\right) \chi_{I}\left(k^{-1}\right) d k=\phi(g) \phi\left(g^{\prime}\right)
$$

for all $g, g^{\prime} \in G$.

Lemma
Let ϕ be an I-spherical function. Then

$$
\phi\left(k g k^{\prime}\right)=\chi_{l}\left(k k^{\prime}\right) \phi(g)
$$

for all $g \in G$ and $k, k^{\prime} \in K$. Consequently,

$$
\begin{aligned}
\phi(k) & =\chi_{I}(k) \quad \text { for all } k \in K, \\
\phi(I) & =1
\end{aligned}
$$

Lemma

Let ϕ be an I-spherical function. Then

$$
\phi\left(k g k^{\prime}\right)=\chi_{I}\left(k k^{\prime}\right) \phi(g)
$$

for all $g \in G$ and $k, k^{\prime} \in K$. Consequently,

$$
\begin{aligned}
\phi(k) & =\chi_{I}(k) \quad \text { for all } k \in K, \\
\phi(I) & =1
\end{aligned}
$$

Proposition

Integration against the I-spherical functions gives the characters of the commutative convolution algebra

$$
\begin{aligned}
C_{c, l}(G) & :=\bar{\chi}_{l} * C_{c}(G) * \bar{\chi}_{\prime} \\
& =\left\{f \in C_{c}(G), f\left(k g k^{\prime}\right)=\overline{\chi_{l}\left(k k^{\prime}\right)} f(g) \text { for all } g \in G \text { and } k, k^{\prime} \in K\right\}
\end{aligned}
$$

The following proposition is standard knowledge.

Proposition

1. The subspace

$$
L^{\infty}(G)_{I}:=\left\{\phi \in L^{\infty}(G), \phi\left(k g k^{\prime}\right)=\overline{\chi_{I}\left(k k^{\prime}\right)} \phi(g), k, k^{\prime} \in K, g \in G\right\}
$$

of $L^{\infty}(G)$ represents the algebraic dual space of the Banach space $L^{1}(G)$ ।.
2. The characters of the commutative Banach algebra $L^{1}(G)$, are given by the bounded I-spherical functions.

A family of characters

We now define for $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ the functions
(0.15) $\quad \rho_{s, l}\left(k a_{r} n\right):=r^{-(s+1)} \overline{\chi /(k)}, \quad k \in K, r \in \mathbb{R}_{+}^{*}, n \in N$.

A family of characters

We now define for $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ the functions
(0.15) $\quad \rho_{s, l}\left(k a_{r} n\right):=r^{-(s+1)} \overline{\chi_{l}(k)}, \quad k \in K, r \in \mathbb{R}_{+}^{*}, n \in N$.

Notice that for all $g \in G, r \in \mathbb{R}_{+}^{*}$ and $k \in K$, we have
(0.16)

$$
\rho_{s, l}\left(k g a_{r}\right)=r^{-(s+1)} \overline{\chi_{l}(k)} \rho_{s, l}(g) .
$$

A family of characters

We now define for $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ the functions
(0.15) $\quad \rho_{s, l}\left(k a_{r} n\right):=r^{-(s+1)} \overline{\chi_{l}(k)}, \quad k \in K, r \in \mathbb{R}_{+}^{*}, n \in N$.

Notice that for all $g \in G, r \in \mathbb{R}_{+}^{*}$ and $k \in K$, we have

$$
\begin{equation*}
\rho_{s, l}\left(k g a_{r}\right)=r^{-(s+1)} \overline{\chi_{l}(k)} \rho_{s, l}(g) . \tag{0.16}
\end{equation*}
$$

Definition
For $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ we define the function $\phi_{s, l}: G \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\phi_{s, l}(g):=\int_{K} \chi_{I}(k) \rho_{s, l}\left(g^{-1} k\right) d k, \quad g \in G . \tag{0.17}
\end{equation*}
$$

A family of characters

We now define for $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ the functions
(0.15) $\quad \rho_{s, l}\left(k a_{r} n\right):=r^{-(s+1)} \overline{\chi_{l}(k)}, \quad k \in K, r \in \mathbb{R}_{+}^{*}, n \in N$.

Notice that for all $g \in G, r \in \mathbb{R}_{+}^{*}$ and $k \in K$, we have

$$
\begin{equation*}
\rho_{s, l}\left(k g a_{r}\right)=r^{-(s+1)} \overline{\chi_{l}(k)} \rho_{s, l}(g) . \tag{0.16}
\end{equation*}
$$

Definition
For $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ we define the function $\phi_{s, l}: G \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\phi_{s, l}(g):=\int_{K} \chi_{I}(k) \rho_{s, l}\left(g^{-1} k\right) d k, \quad g \in G . \tag{0.17}
\end{equation*}
$$

Lemma
The function $\phi_{s, l}$ is an I-spherical function.

By Lemma 31 and Proposition 29, each function $\phi_{s, l}$ determines by integration on G a character of the commutative algebra $C_{c, l}(G)$.

By Lemma 31 and Proposition 29, each function $\phi_{s, l}$ determines by integration on G a character of the commutative algebra $C_{c, l}(G)$.
For their explicit expression, observe that because of Lemma 27 and the decomposition $G=K A K$ of G, the functions $\phi_{s, l}$ are uniquely determined by their restriction to A.

By Lemma 31 and Proposition 29, each function $\phi_{s, I}$ determines by integration on G a character of the commutative algebra $C_{c, I}(G)$.
For their explicit expression, observe that because of Lemma 27 and the decomposition $G=K A K$ of G, the functions $\phi_{s, l}$ are uniquely determined by their restriction to A. Remarking that the function $\phi \mapsto \chi_{I}\left(k_{\psi}\right) \rho_{s, I}\left(a_{r}^{-1} k_{\psi}\right)$ is π-periodic, we get:

$$
\begin{aligned}
\phi_{s, l}\left(a_{r}\right)= & 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos \psi+i \sin \psi)^{\prime} \rho_{s, l}\left(a_{r}^{-1} k_{\psi}\right) \frac{d \psi}{2 \pi} \\
(0.18)= & 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos \psi+i \sin \psi)^{\prime} \frac{1}{\left(\sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}\right)^{s+1}} \\
& \left(\frac{\cos \psi}{r \sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}}+i \frac{r \sin \psi}{\sqrt{r^{2} \sin ^{2} \psi+\frac{\cos ^{2} \psi}{r^{2}}}}\right)^{-I} \frac{d \psi}{2 \pi} .
\end{aligned}
$$

Proposition

Let $s \in \mathbb{C}$ and $I \in \mathbb{Z}$.

1. For any $s \in \mathbb{C}$ and $I \in \mathbb{Z}$ we have that

$$
\phi_{s, l}=\phi_{-s, l} .
$$

2.

$$
c_{s, l}=\phi_{s, l}, s+1 \in[-1,1]+i \mathbb{R}
$$

Koornwinder's list

Proposition

Let $I \in \mathbb{Z}$. Every bounded I-spherical function is of the form $\phi_{s, l}$ for some $s \in \mathbb{C}$.

Behaviour at infinity

We must study $\lim _{r \rightarrow \infty} \phi_{s, l}(r)$. Starting from the expression (0.18) of $\phi_{s, l}$, we get for $a_{r} \in A$

Behaviour at infinity

We must study $\lim _{r \rightarrow \infty} \phi_{s, l}(r)$. Starting from the expression (0.18) of $\phi_{s, l}$, we get for $a_{r} \in A$

$$
\phi_{s, l}\left(a_{r}\right)=\frac{1}{\pi} r^{s-1} \int_{-\infty}^{\infty} e^{i l \arctan \left(\frac{v}{r^{2}}\right)} e^{-i \operatorname{larctan}(v)}\left(\frac{1+\frac{v^{2}}{r^{4}}}{v^{2}+1}\right)^{\frac{s+1}{2}}\left(\frac{1}{1+\frac{v^{2}}{r^{4}}}\right) d v
$$

Behaviour at infinity

We must study $\lim _{r \rightarrow \infty} \phi_{s, l}(r)$. Starting from the expression (0.18) of $\phi_{s, l}$, we get for $a_{r} \in A$
$\phi_{s, l}\left(a_{r}\right)=\frac{1}{\pi} r^{s-1} \int_{-\infty}^{\infty} e^{i l \arctan \left(\frac{v}{r^{2}}\right)} e^{-i \operatorname{larctan}(v)}\left(\frac{1+\frac{v^{2}}{r^{4}}}{v^{2}+1}\right)^{\frac{s+1}{2}}\left(\frac{1}{1+\frac{v^{2}}{r^{4}}}\right) d v$
Hence, if $\operatorname{Re} s>1$, we see that

$$
\lim _{r \rightarrow \infty} \frac{\phi_{s, l}\left(a_{r}\right)}{r^{s-1}}=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{s+1}{2}} d v
$$

Behaviour at infinity

We must study $\lim _{r \rightarrow \infty} \phi_{s, l}(r)$. Starting from the expression (0.18) of $\phi_{s, l}$, we get for $a_{r} \in A$
$\phi_{s, l}\left(a_{r}\right)=\frac{1}{\pi} r^{s-1} \int_{-\infty}^{\infty} e^{i l \arctan \left(\frac{v}{r^{2}}\right)} e^{-i \operatorname{larctan}(v)}\left(\frac{1+\frac{v^{2}}{r^{4}}}{v^{2}+1}\right)^{\frac{s+1}{2}}\left(\frac{1}{1+\frac{v^{2}}{r^{4}}}\right) d v$
Hence, if $\operatorname{Re} s>1$, we see that

$$
\lim _{r \rightarrow \infty} \frac{\phi_{s, l}\left(a_{r}\right)}{r^{s-1}}=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{s+1}{2}} d v
$$

and if $\operatorname{Re} s<-1$ then

$$
\lim _{r \rightarrow 0} \frac{\phi_{s, /}\left(a_{r}\right)}{r^{s+1}}=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{-s+1}{2}} d v .
$$

Therefore, if $\operatorname{Re}(s)>1$, a necessary condition for $\phi_{s, /}$ to be bounded is that the number
(0.19)

$$
I_{s, l}:=\int_{-\infty}^{\infty} e^{-i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{s+1}{2}} d v
$$

is equal to 0 and

Therefore, if $\operatorname{Re}(s)>1$, a necessary condition for $\phi_{s, /}$ to be bounded is that the number
(0.19)

$$
I_{s, l}:=\int_{-\infty}^{\infty} e^{-i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{s+1}{2}} d v
$$

is equal to 0 and
similarly for $\operatorname{Re} s<-1$ the number
(0.20)

$$
I_{s, l}:=\int_{-\infty}^{\infty} e^{i \operatorname{larctan}(v)}\left(\frac{1}{v^{2}+1}\right)^{\frac{-s+1}{2}} d v
$$

must be 0 .

Proposition

For every $s \in \mathbb{C} \backslash \mathbb{Z}$ with $\operatorname{Re}(s)>1$ or $\operatorname{Re}(s)<-1$, the integral $I_{s, I}$ is nonzero. In particular the functions $\phi_{s, l}$ are not bounded if $\operatorname{Re}(s)>1$ or $\operatorname{Re}(s)<-1$ and $s \notin \mathbb{Z}$.

We can now formulate the main theorem.
Theorem
Every simple module of the Banach algebra $L^{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right)$ is equivalent to one of the simple modules listed in Proposition 24. Two simple modules with the parameters (s, ε) resp. $\left(s^{\prime}, \varepsilon^{\prime}\right)$ are equivalent if and only if $\varepsilon=\varepsilon^{\prime}$ and $s^{\prime}=s$ or $s^{\prime}=-s$.

Mautner's group, a question

Mautner's group, a question

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
\begin{aligned}
M=M_{\theta} & =\mathbb{R} \ltimes \mathbb{C}^{2} \\
(t, u, v) \cdot\left(t^{\prime}, u^{\prime}, v^{\prime}\right) & \left.=\left(t+t^{\prime}\right), e^{-i t^{\prime}} u+u^{\prime}, e^{-i \theta t^{\prime}} v+v^{\prime}\right)
\end{aligned}
$$

Mautner's group, a question

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
\begin{aligned}
M=M_{\theta} & =\mathbb{R} \ltimes \mathbb{C}^{2} \\
(t, u, v) \cdot\left(t^{\prime}, u^{\prime}, v^{\prime}\right) & \left.=\left(t+t^{\prime}\right), e^{-i t^{\prime}} u+u^{\prime}, e^{-i \theta t^{\prime}} v+v^{\prime}\right)
\end{aligned}
$$

Proposition

The group M is connected and has polynomial growth. Hence $L^{1}(M)$ is symmetric, every simple module is unitarizable.

Mautner's group, a question

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
\begin{aligned}
M=M_{\theta} & =\mathbb{R} \ltimes \mathbb{C}^{2} \\
(t, u, v) \cdot\left(t^{\prime}, u^{\prime}, v^{\prime}\right) & \left.=\left(t+t^{\prime}\right), e^{-i t^{\prime}} u+u^{\prime}, e^{-i \theta t^{\prime}} v+v^{\prime}\right)
\end{aligned}
$$

Proposition

The group M is connected and has polynomial growth. Hence $L^{1}(M)$ is symmetric, every simple module is unitarizable.

Remark

Mautner's group is not type I.

Mautner's group, a question

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
\begin{aligned}
M=M_{\theta} & =\mathbb{R} \ltimes \mathbb{C}^{2} \\
(t, u, v) \cdot\left(t^{\prime}, u^{\prime}, v^{\prime}\right) & \left.=\left(t+t^{\prime}\right), e^{-i t^{\prime}} u+u^{\prime}, e^{-i \theta t^{\prime}} v+v^{\prime}\right)
\end{aligned}
$$

Proposition

The group M is connected and has polynomial growth. Hence $L^{1}(M)$ is symmetric, every simple module is unitarizable.

Remark

Mautner's group is not type I.

Question: What is Simple(M)?

Thank you

．H．Barker，L^{p} harmonic analysis on $\mathrm{SL}(2, \mathbb{R})$ ．Memoires of the Amer．Math．Soc．76，no．393， 1988.
嗇 J．Dixmier，Opérateurs de rang fini dans les représentations unitaires． Publ．Math．，Inst．Hautes Etud．Sci．6，305－317（1960）．
围 J．Dixmier，C＊－algebras．North－Holland Mathematical Library，Vol． 15．North－Holland（Elsevier），Amsterdam， 1983.
R．Gangolli and V．S．Varadarajan．Harmonic analysis of spherical functions on real reductive groups．Springer－Verlag， 1988.
圊 R．Godement，A Theory of Spherical Functions．Trans．Amer．Math． Soc．73，No．3，496－556（1952）．
A．A．Kirillov，Unitary representations of nilpotent Lie groups．Sov． Math．，Dokl．2，588－590（1961）．
T．T．H．Koornwinder，A global approach to the representation theory of SL（2， $\mathbb{R})$ ，Math．Centrum Report TW 186，Amsterdam， 1978.
囯 S．Lang，$S L_{2}(\mathbb{R})$ ．Graduate Texts in Mathematics， 105. Springer－Verlag．

戈 J．Ludwig，E．Mint and C．Molitor－Braun，Characterization of the simple $L^{1}(G)$－modules for exponential Lie groups．Pac．J．Math．212， No．1，133－156（2003）
國 J．Ludwig；C，Molitor－Braun，Représentations irréductibles bornées des groupes de Lie exponentiels．Can．J．Math．53，No．5，944－973 （2001）．
（ D．Poguntke，Algebraically irreducible representations of L^{1}－algebras of exponential Lie groups．Duke Math．J．50，1077－1106（1983）．
目 D．Poguntke，Unitary representations of Lie groups and operators of finite rank．Ann．Math．（2）140，No．3，503－556（1994）．
图 G．Warner，Harmonic analysis on semi－simple Lie groups．I．Die Grundlehren der mathematischen Wissenschaften，Band 188. Springer－Verlag，New York， 1972.

