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Arens Products

• Let A be a Banach algebra. Let Φ,Ψ ∈ A′′. Then there exist
nets (aα) and (bβ) in A such that, in the weak*-topology,
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α

aα, Ψ = lim
β

bβ.

Then

Φ2Ψ = lim
α
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β
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β
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α

aαbβ.

• Better definition:

〈λ · a,b〉 = 〈λ,ab〉, 〈a · λ,b〉 = 〈λ,ba〉,
〈Φ · λ,a〉 = 〈Φ, λ · a〉, 〈λ ·Ψ,a〉 = 〈Ψ,a · λ〉,
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The Jacobson Radical

• Q(A) = {a ∈ A : σ(a) = {0}} - the quasinilpotent elements of
A.

• In particular, nilpotent elements are quasinilpotent:
∃n ∈ N,an = 0 ⇒ a ∈ Q(A).

• rad (A) = {a ∈ A : ba ∈ Q(A), b ∈ A} - the Jacobson radical
of A.

• In particular if I is a left ideal of A such that In = {0} for some
n ∈ N (i.e. I is nilpotent), then I ⊂ rad (A).
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Of course, A′′ is semisimple whenever A is a C*-algebra.

Theorem (Daws, Read, 2004)

For 1 < p <∞ the algebra B(`p)′′ is semisimple if and only if
p = 2.
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Historical Results

Theorem (Civin & Yood; Granirer; Gulick)

Let G be a locally compact group. Then rad (L1(G)′′) is
non-seperable if either:
• G is non-discrete;
• G is discrete, infinite, and amenable.
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Let G be a discrete group, write A = `1(G), and define
ϕ0 : `1(G)→ C by
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s∈G

f (s) (f ∈ `1(G)).

Define J = {Φ ∈ A′′ : δs2Φ = Φ (s ∈ G), ϕ′′0(Φ) = 0}. Then we
have

J22 = {0}.
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Method of Invariant Means

J = {Φ ∈ A′′ : δs2Φ = Φ (s ∈ G), ϕ′′0(Φ) = 0}.

Now suppose that G is amenable. Given two invariant means
M1 6= M2 on G, we have M1 −M2 ∈ J, using
ϕ′′0(Mi) = 〈Mi ,1〉 = 1 (i = 1,2).
Hence J 6= {0}.
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Given an ideal K / `1(G)′′ and an algebra homomorphism
θ : `1(G)→ `1(G), define

J(θ,K ) = {Φ ∈ `1(G)′′ : δs2Φ = θ(δs)2Φ (s ∈ G), θ′′(Φ) ∈ K}.

Then, by a similar argument to that given above, J(θ,K )22 ⊂ K .
Hence
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Above, we had J = J(ϕ0, {0}).
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Branch Groups

• Branch groups are certain group of automorphisms of rooted
trees.

• They have proven to be a rich source of (counter)examples,
exhibiting many interesting properties.

• Famous examples include: the Grigorchuk group, the
Gupta-Sidki p-groups, the Basilica group.

• The latter examples are all finitely-generated and amenable.
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Branch Groups

Theorem
Let G be an amenable Branch group. Then rad (`1(G)′′) is not
nilpotent.

The idea: A given branch group G has a sequence of finite-index
normal subgroups (Hi)i∈N, each of which admits a direct product
decomposition

Hi = L(1)
i × · · · × L(ki )

i ,

in which the factors are isomorphic. We use invariant means
coming from the subgroups L(j)

i to build nilpotent left ideals of
arbitrarily large index in a similar fashion to what we did on

⊕
N Z.
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Thank you!


