The Jacobson Radicals of Second Dual Algebras

June 2018
Jared White

- A paper: White, J. T. , The radical of the bidual of a Beurling algebra, Quarterly Journal of Mathematics, to appear.
- A paper: White, J. T. , The radical of the bidual of a Beurling algebra, Quarterly Journal of Mathematics, to appear.
- A memoire: Dales, H. G. and Lau, A. T. -M. , The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (2005), no. 836.
- A paper: White, J. T. , The radical of the bidual of a Beurling algebra, Quarterly Journal of Mathematics, to appear.
- A memoire: Dales, H. G. and Lau, A. T. -M. , The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (2005), no. 836.
- Some notation: given a Banach space E write E^{\prime} for the dual of E. Hence $E^{\prime \prime}$ is its bidual.

Arens Products

Arens Products

- Let A be a Banach algebra. Let $\Phi, \Psi \in A^{\prime \prime}$. Then there exist nets $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ in A such that, in the weak*-topology,

$$
\Phi=\lim _{\alpha} a_{\alpha}, \quad \Psi=\lim _{\beta} b_{\beta} .
$$

Then

$$
\Phi \square \Psi=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta},
$$

Arens Products

- Let A be a Banach algebra. Let $\Phi, \Psi \in A^{\prime \prime}$. Then there exist nets $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ in A such that, in the weak*-topology,

$$
\Phi=\lim _{\alpha} a_{\alpha}, \quad \Psi=\lim _{\beta} b_{\beta} .
$$

Then

$$
\Phi \square \Psi=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}, \quad \Phi \diamond \psi=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta} .
$$

Arens Products

- Let A be a Banach algebra. Let $\Phi, \Psi \in A^{\prime \prime}$. Then there exist nets $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ in A such that, in the weak*-topology,

$$
\Phi=\lim _{\alpha} a_{\alpha}, \quad \Psi=\lim _{\beta} b_{\beta} .
$$

Then

$$
\Phi \square \Psi=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}, \quad \Phi \diamond \psi=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta} .
$$

- Better definition:

$$
\begin{aligned}
& \langle\lambda \cdot a, b\rangle=\langle\lambda, a b\rangle, \\
& \langle a \cdot \lambda, b\rangle=\langle\lambda, b a\rangle, \\
& \langle\Phi \cdot \lambda, a\rangle=\langle\Phi, \lambda \cdot a\rangle, \\
& \langle\lambda \cdot \Psi, a\rangle=\langle\Psi, a \cdot \lambda\rangle, \\
& \langle\Psi \square \Phi, \lambda\rangle=\langle\Psi, \Phi \cdot \lambda\rangle, \quad\langle\Psi \diamond \Phi, \lambda\rangle=\langle\Phi, \lambda \cdot \Psi\rangle,
\end{aligned}
$$

for $\Phi, \Psi \in A^{\prime \prime}, \lambda \in A^{\prime}, a, b \in A$.

The Jacobson Radical

The Jacobson Radical

- $\mathcal{Q}(A)=\{a \in A: \sigma(a)=\{0\}\}$ - the quasinilpotent elements of A.

The Jacobson Radical

- $\mathcal{Q}(A)=\{a \in A: \sigma(a)=\{0\}\}$ - the quasinilpotent elements of A.
- In particular, nilpotent elements are quasinilpotent:
$\exists n \in \mathbb{N}, a^{n}=0 \Rightarrow a \in \mathcal{Q}(A)$.

The Jacobson Radical

- $\mathcal{Q}(A)=\{a \in A: \sigma(a)=\{0\}\}$ - the quasinilpotent elements of A.
- In particular, nilpotent elements are quasinilpotent:
$\exists n \in \mathbb{N}, a^{n}=0 \Rightarrow a \in \mathcal{Q}(A)$.
- $\operatorname{rad}(A)=\{a \in A: b a \in \mathcal{Q}(A), b \in A\}$ - the Jacobson radical of A.

The Jacobson Radical

- $\mathcal{Q}(A)=\{a \in A: \sigma(a)=\{0\}\}$ - the quasinilpotent elements of A.
- In particular, nilpotent elements are quasinilpotent:
$\exists n \in \mathbb{N}, a^{n}=0 \Rightarrow a \in \mathcal{Q}(A)$.
- $\operatorname{rad}(A)=\{a \in A: b a \in \mathcal{Q}(A), b \in A\}$ - the Jacobson radical of A.
- In particular if I is a left ideal of A such that $I^{n}=\{0\}$ for some $n \in \mathbb{N}$ (i.e. I is nilpotent), then $I \subset \operatorname{rad}(A)$.

Semisimplicity

Semisimplicity

- We say that a Banach algebra A is semisimple if $\operatorname{rad}(A)=\{0\}$.

Semisimplicity

- We say that a Banach algebra A is semisimple if $\operatorname{rad}(A)=\{0\}$.
- Examples of semisimple Banach algebras include: C^{*}-algebras, $L^{1}(G)$ and $M(G)$ for G a locally compact group.

Semisimplicity

- We say that a Banach algebra A is semisimple if $\operatorname{rad}(A)=\{0\}$.
- Examples of semisimple Banach algebras include: C^{*}-algebras, $L^{1}(G)$ and $M(G)$ for G a locally compact group.

Question

Given a Banach algebra A, is $\left(A^{\prime \prime}, \square\right)$ semisimple? If not, what can we say about $\operatorname{rad}\left(A^{\prime \prime}\right)$?

Historical Results

Historical Results

Of course, $A^{\prime \prime}$ is semisimple whenever A is a C^{*}-algebra.

Historical Results

Of course, $A^{\prime \prime}$ is semisimple whenever A is a C^{*}-algebra.

Theorem (Daws, Read, 2004)

For $1<p<\infty$ the algebra $\mathcal{B}\left(\ell^{p}\right)^{\prime \prime}$ is semisimple if and only if $p=2$.

Historical Results

Theorem (Civin \& Yood; Granirer; Gulick)

Let G be a locally compact group. Then $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)$ is non-seperable if either:

- G is non-discrete;
- G is discrete, infinite, and amenable.

Some New Results

Some New Results

Theorem
Let ω be a weight on \mathbb{Z}. Then $\ell^{1}(\mathbb{Z}, \omega)^{\prime \prime}$ is not semisimple.

Some New Results

Theorem
Let ω be a weight on \mathbb{Z}. Then $\ell^{1}(\mathbb{Z}, \omega)^{\prime \prime}$ is not semisimple.
Theorem
There are groups G for which $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ is non-nilpotent.

Some New Results

Theorem

Let ω be a weight on \mathbb{Z}. Then $\ell^{1}(\mathbb{Z}, \omega)^{\prime \prime}$ is not semisimple.

Theorem

There are groups G for which $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ is non-nilpotent.

Theorem

There exists a weight ω on \mathbb{Z} for which $\operatorname{rad}\left(\ell^{1}(\mathbb{Z}, \omega)^{\prime \prime}\right)$ is non-nilpotent.

Method of Invariant Means

Method of Invariant Means

Let G be a discrete group, write $A=\ell^{1}(G)$, and define $\varphi_{0}: \ell^{1}(G) \rightarrow \mathbb{C}$ by

$$
\varphi_{0}(f)=\sum_{s \in G} f(s) \quad\left(f \in \ell^{1}(G)\right)
$$

Define $J=\left\{\Phi \in A^{\prime \prime}: \delta_{s} \square \Phi=\Phi(s \in G), \varphi_{0}^{\prime \prime}(\Phi)=0\right\}$. Then we have

$$
J^{\square 2}=\{0\} .
$$

Method of Invariant Means

$J=\left\{\Phi \in A^{\prime \prime}: \delta_{s} \square \Phi=\Phi(s \in G), \varphi_{0}^{\prime \prime}(\Phi)=0\right\}$.
Claim: $J^{\square 2}=\{0\}$.
Proof
Let $\Phi \in J$. Notice that $\delta_{s} \square \Phi=\varphi_{0}\left(\delta_{s}\right) \Phi(s \in G)$. This implies that

$$
\Psi \square \Phi=\varphi_{0}^{\prime \prime}(\Psi) \Phi \quad \Psi \in A^{\prime \prime}
$$

Hence, if $\Psi, \Phi \in J$ we have

$$
\Psi \square \Phi=\varphi_{0}^{\prime \prime}(\Psi) \Phi=0 .
$$

Method of Invariant Means

$J=\left\{\Phi \in A^{\prime \prime}: \delta_{s} \square \Phi=\Phi(s \in G), \varphi_{0}^{\prime \prime}(\Phi)=0\right\}$.
Now suppose that G is amenable. Given two invariant means
$M_{1} \neq M_{2}$ on G, we have $M_{1}-M_{2} \in J$, using
$\varphi_{0}^{\prime \prime}\left(M_{i}\right)=\left\langle M_{i}, 1\right\rangle=1(i=1,2)$.
Hence $J \neq\{0\}$.

A Generalization

A Generalization

Given an ideal $K \triangleleft \ell^{1}(G)^{\prime \prime}$ and an algebra homomorphism $\theta: \ell^{1}(G) \rightarrow \ell^{1}(G)$, define

$$
J(\theta, K)=\left\{\Phi \in \ell^{1}(G)^{\prime \prime}: \delta_{s} \square \Phi=\theta\left(\delta_{s}\right) \square \Phi(s \in G), \theta^{\prime \prime}(\Phi) \in K\right\} .
$$

Then, by a similar argument to that given above, $J(\theta, K)^{\square 2} \subset K$. Hence

$$
K^{\square n}=\{0\} \Rightarrow J(\theta, K)^{\square(n+1)}=\{0\} .
$$

Above, we had $J=J\left(\varphi_{0},\{0\}\right)$.
$\operatorname{rad}\left(\ell^{1}\left(\bigoplus_{\mathbb{N}} \mathbb{Z}\right)^{\prime \prime}\right)$ is non-nilpotent

$\operatorname{rad}\left(\ell^{1}\left(\bigoplus_{\mathbb{N}} \mathbb{Z}\right)^{\prime \prime}\right)$ is non-nilpotent

Let $G=\bigoplus_{\mathbb{N}} \mathbb{Z}$, and define $\pi_{i}: G \rightarrow G$ to be the map that deletes the $i^{\text {th }}$ coordinate:

$$
\pi_{i}:\left(n_{1}, n_{2}, \ldots\right) \mapsto\left(n_{1}, \ldots, n_{i-1}, 0, n_{i+1}, \ldots\right)
$$

$\operatorname{rad}\left(\ell^{1}\left(\bigoplus_{\mathbb{N}} \mathbb{Z}\right)^{\prime \prime}\right)$ is non-nilpotent

Let $G=\bigoplus_{\mathbb{N}} \mathbb{Z}$, and define $\pi_{i}: G \rightarrow G$ to be the map that deletes the $i^{\text {th }}$ coordinate:

$$
\pi_{i}:\left(n_{1}, n_{2}, \ldots\right) \mapsto\left(n_{1}, \ldots, n_{i-1}, 0, n_{i+1}, \ldots\right)
$$

Inductively define a sequence of ideals $I_{n} \triangleleft \ell^{1}(G)^{\prime \prime}$ by

$$
I_{0}=\{0\}
$$

and

$$
I_{n}=J\left(\pi_{n}, I_{n-1}\right)
$$

We see that $I_{n}^{\square n}=\{0\}(n \in \mathbb{N})$.

$\operatorname{rad}\left(\ell^{1}\left(\bigoplus_{\mathbb{N}} \mathbb{Z}\right)^{\prime \prime}\right)$ is non-nilpotent

By using invariant means coming from the factors to build new elements of the radical, we can inductively define elements $\Lambda_{j} \in I_{j}$ such that $\Lambda_{j}^{\square(j-1)} \neq 0$. Hence $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ contains nilpotent elements of every index, and in particular itself not a nilpotent ideal.

$\operatorname{rad}\left(\ell^{1}\left(\bigoplus_{\mathbb{N}} \mathbb{Z}\right)^{\prime \prime}\right)$ is non-nilpotent

By using invariant means coming from the factors to build new elements of the radical, we can inductively define elements $\Lambda_{j} \in I_{j}$ such that $\Lambda_{j}^{\square(j-1)} \neq 0$. Hence $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ contains nilpotent elements of every index, and in particular itself not a nilpotent ideal.

Question

Is there a finitely-generated example?

Branch Groups

Branch Groups

- Branch groups are certain group of automorphisms of rooted trees.
- They have proven to be a rich source of (counter)examples, exhibiting many interesting properties.

Branch Groups

- Branch groups are certain group of automorphisms of rooted trees.
- They have proven to be a rich source of (counter)examples, exhibiting many interesting properties.
- Famous examples include: the Grigorchuk group, the Gupta-Sidki p-groups, the Basilica group.
- The latter examples are all finitely-generated and amenable.

Branch Groups

Theorem

Let G be an amenable Branch group. Then $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ is not nilpotent.

Branch Groups

Theorem

Let G be an amenable Branch group. Then $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ is not nilpotent.

The idea: A given branch group G has a sequence of finite-index normal subgroups $\left(H_{i}\right)_{i \in \mathbb{N}}$, each of which admits a direct product decomposition

$$
H_{i}=L_{i}^{(1)} \times \cdots \times L_{i}^{\left(k_{i}\right)}
$$

in which the factors are isomorphic.

Branch Groups

Theorem

Let G be an amenable Branch group. Then $\operatorname{rad}\left(\ell^{1}(G)^{\prime \prime}\right)$ is not nilpotent.

The idea: A given branch group G has a sequence of finite-index normal subgroups $\left(H_{i}\right)_{i \in \mathbb{N}}$, each of which admits a direct product decomposition

$$
H_{i}=L_{i}^{(1)} \times \cdots \times L_{i}^{\left(k_{i}\right)}
$$

in which the factors are isomorphic. We use invariant means coming from the subgroups $L_{i}^{(j)}$ to build nilpotent left ideals of arbitrarily large index in a similar fashion to what we did on $\bigoplus_{\mathbb{N}} \mathbb{Z}$.

Open Questions

Open Questions

- Does there exist a locally compact group G for which $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)^{\square 2}=0$?
- Is $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)$ nilpotent for any locally compact group G ?

Open Questions

- Does there exist a locally compact group G for which $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)^{\square 2}=0$?
- Is $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)$ nilpotent for any locally compact group G ?
- Is $\operatorname{rad}\left(\ell^{1}\left(F_{2}\right)^{\prime \prime}\right) \neq\{0\}$?

Open Questions

- Does there exist a locally compact group G for which $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)^{\square 2}=0 ?$
- Is $\operatorname{rad}\left(L^{1}(G)^{\prime \prime}\right)$ nilpotent for any locally compact group G ?
- Is $\operatorname{rad}\left(\ell^{1}\left(F_{2}\right)^{\prime \prime}\right) \neq\{0\}$?
- Does there exist a locally G, and a weight ω on G, for which $\operatorname{rad}\left(L^{1}(G, \omega)^{\prime \prime}, \square\right) \neq \operatorname{rad}\left(L^{1}(G, \omega)^{\prime \prime}, \diamond\right) ?$

Thank you!

