On Ordinal Ranks of Baire Class Functions

Hong-Wai Ng 1 (joint work with Denny Ho-Hon Leung 2 and Wee-Kee Tang 1)

¹Nanyang Technological University, Singapore ²National University of Singapore

Abstract Harmonic Analysis June 2018 National Sun Yat-sen University

Outline

- Baire Class Functions
- Ordinal Ranks

2 Main Results

- $\bullet \ \beta_2^* \approx \gamma_2^*$
- β_2^* is not essentially multiplicative

3 Open Problem

A ►

→ 三→

Outline

- Baire Class Functions
- Ordinal Ranks

2 Main Results

- $\beta_2^* \approx \gamma_2^*$
- β_2^* is not essentially multiplicative

3 Open Problem

- 4 回 2 - 4 □ 2 - 4 □

Baire Class Functions

X Polish space (separable and completely metrizable).

Definition.

 $f: X \to \mathbb{R}$ is said to be **Baire Class** 1 if it is a pointwise limit of a sequence of continuous functions.

 $\xi \geq 1$ countable ordinal

Definition.

 $f : X \to \mathbb{R}$ is said to be **Baire Class** ξ if it is a pointwise limit of a sequence of Baire Class ζ functions where $\zeta < \xi$

A (1) > A (1) > A

Review	
00	
0000000000	

Main Results

Baire Hierarchy

Baire Class 4

Baire Class 3

Baire Class 2

Baire Class 1

On Ordinal Ranks of Baire Class Functions

Hong-Wai Ng

Ordinal Ranks

Settings:

- X Polish space
- 2 $\xi \ge 1$ countable ordinal
- $\mathfrak{B}_{\xi} = \{ f : X \to \mathbb{R} : f \text{ Baire Class } \xi \}$

Definition.

 $\rho:\mathfrak{B}_{\xi}\to\omega_1$ ordinal rank

Purpose: measure complexity

イロト イヨト イヨト イヨト

Equivalent Definitions of Baire Class 1 functions

X Polish

Theorem.

- $f: X \to \mathbb{R}$ is **Baire Class** 1 if it satisfies one of the following.
 - $f_{|F}$ has a point of continuity for every non-empty closed subset $F \subseteq X$ (oscillation rank)
 - f is a pointwise limit of continuous functions (convergence rank)
 - $f^{-1}(U)$ is F_{σ} for every open $U \subseteq X$ (separation rank)

(1) \Leftrightarrow (2): Baire (2) \Leftrightarrow (3): Lebesgue, Hausdorff and Banach

Review	Main Results	Open Probler
00 00●0000000	0000 0000	

Oscillation Rank β

 $\begin{array}{l} \underline{\operatorname{Recall}}: \ \beta: \mathfrak{B}_1 \to \omega_1 \ \text{ordinal rank} \\ f: X \to \mathbb{R} \ \text{is a Baire Class 1 function and} \ \varepsilon > 0. \ \text{Recall that} \end{array}$

$$osc_{lpha}(f,x) = \inf_{\substack{x \in U \\ U \text{ open }}} \sup_{y,z \in U \cap D^{lpha}} |f(y) - f(z)|.$$

$$D^{0} = X$$

$$D^{1} = \{x \in X : osc_{0}(f, x) \ge \varepsilon\}$$

$$D^{2} = \{x \in D^{1} : osc_{1}(f, x) \ge \varepsilon\}$$
(limit points of ε - discontinuities)
$$D^{3} = \{x \in D^{2} : osc_{2}(f, x) \ge \varepsilon\}$$
(limit points of D^{2})
$$\vdots$$

$$D^{\omega} = \bigcap_{n=1}^{\infty} D^{n}$$

$$\beta(f, \varepsilon) = \min\{\eta : D^{\eta} = \emptyset\}$$

$$\beta(f) = \sup\{\beta(f, \varepsilon) : \varepsilon > 0\}$$

≣ >

Review	
00	
000000000000	

Main Results

Picture of D^{lpha} sets

Э

Review	Main Results	Open Problem
00 00000000	0000 0000	
Examples of β		

Recall that

$$\beta(f,\varepsilon) = \min\{\eta: D^{\eta} = \emptyset\} \qquad \beta(f) = \sup\{\beta(f,\varepsilon): \varepsilon > 0\}$$

Examples

•
$$f$$
 is continuous $\Rightarrow \beta(f) = 1$
• $X = \mathbb{R}$

$$A = \{0\} \qquad \Rightarrow \beta(\chi_A) = 2$$

$$A = \{0\} \cup \bigcup_{n=1}^{\infty} \left\{\frac{1}{n}\right\} \qquad \Rightarrow \beta(\chi_A) = 3$$

$$A = \{0\} \cup \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \left(\left\{\frac{1}{n}\right\} \cup \left\{\frac{1}{n} + \frac{1}{m}\right\}\right) \qquad \Rightarrow \beta(\chi_A) = 4$$

$$f \text{ is Baire Class } 1 \Rightarrow \beta(f) < \omega_1$$

3

Review	Main Results	Open Problem
00 00000●0000	0000 0000	

Convergence Rank γ

Assume that $(f_n)_{n\in\mathbb{N}}$ sequence of functions on X and $\varepsilon > 0$

$$NUC_{\alpha}((f_n), x) = \inf_{\substack{x \in U \\ U \text{ open}}} \inf_{N \in \mathbb{N}} \sup\{|f_m(y) - f_n(y)| : y \in U \cap D^{\alpha}, n, m \ge N\}$$

$$D^{0} = X$$

$$D^{1} = \{x \in X : NUC_{0}((f_{n}), x) \ge \varepsilon\} \quad (\text{non } \varepsilon\text{-uniformly convergent})$$

$$D^{2} = \{x \in D^{1} : NUC_{1}((f_{n}), x) \ge \varepsilon\}$$

$$D^{3} = \{x \in D^{2} : NUC_{2}((f_{n}), x) \ge \varepsilon\}$$

$$\vdots$$

$$D^{\omega} = \bigcap_{n=1}^{\infty} D^{n}$$

$$\gamma((f_{n}), \varepsilon) = \min\{\eta : D^{\eta} = \emptyset\}$$

$$\gamma(f) = \min\{\sup_{\varepsilon > 0} \gamma((f_{n}), \varepsilon) : f_{n} \text{ continuous, } f_{n} \to f \text{ pointwise}\}$$

Review	Main Results	Open Problem
°° 000000●000	0000 0000	

Examples of
$$\gamma$$

$$NUC_{\alpha}((f_n), x) = \inf_{\substack{x \in U \\ U \text{ open}}} \inf_{N \in \mathbb{N}} \sup\{|f_m(y) - f_n(y)| : y \in U \cap D^{\alpha}, n, m \ge N\}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Main Results

Generalized β_2^* and γ_2^* Ranks

<u>Recall</u>: $\mathcal{F}_{\sigma}(\tau)$ is a collection of all F_{σ} sets with respect to τ (X, τ) is a Polish space, $f : X \to \mathbb{R}$ Baire Class 2 function Define

$$\mathcal{T}_{f,2} = \{ au' : au' ext{ is Polish }, au \subseteq au' \subseteq \mathcal{F}_{\sigma}(au), f \in \mathfrak{B}_1(au') \}$$

Definition (Elekes, Kiss, Vidnyánszky 16').

$$\beta_2^*(f) = \min\{\beta_{\tau'}(f) : \tau' \in T_{f,2}\} \gamma_2^*(f) = \min\{\gamma_{\tau'}(f) : \tau' \in T_{f,2}\}$$

where $\beta_{\tau'}(f)$ and $\gamma_{\tau'}(f)$ are $\beta(f)$ and $\gamma(f)$ in τ' topology.

On Ordinal Ranks of Baire Class Functions

Kuratowski's Theorem

$$T_{f,2} = \{\tau': \tau' \text{ is Polish }, \tau \subseteq \tau' \subseteq \mathcal{F}_{\sigma}(\tau), f \in \mathfrak{B}_1(\tau')\} \neq \emptyset?$$

Theorem (Kuratowski).

Assume that

(
$$X, \tau$$
) Polish space

 $A \in \mathcal{F}_{\sigma}(\tau) \cap \mathcal{G}_{\delta}(\tau)$

Then there is a Polish topology au' such that

$$\ \, \tau \subseteq \tau' \subseteq \mathcal{F}_{\sigma}(\tau)$$

2 A is clopen in τ'

Recall that

- $\ \ \, {\cal F}_{\sigma}(\tau) \ \, {\rm is \ a \ collection \ of \ all \ } {\cal F}_{\sigma} \ {\rm sets \ with \ respect \ to \ } \tau \ \ \,$
- 2 $\mathcal{G}_{\delta}(\tau)$ is a collection of all \mathcal{G}_{δ} sets with respect to τ_{\pm}

eview	Main Results	Open Problem
⊃ ⊃00000000	0000 0000	

Solved Problems

For any $f, g \in \mathfrak{B}_2$,

 $\ \ \, { 0 } \ \ \, \beta_2^* \approx \gamma_2^* \ ({ essentially \ \ equivalent}) \ if \ \ \,$

 $eta_2^*(f) \lesssim \gamma_2^*(f) \quad ext{and} \quad \gamma_2^*(f) \lesssim eta_2^*(f)$

2 β_2^* is essentially multiplicative if

 $eta_2^*(\mathit{fg}) \leq \max\{eta_2^*(\mathit{f}),eta_2^*(\mathit{g})\}$

Problem (Elekes, Kiss, Vidnyánszky 16').

• $\beta_2^* \approx \gamma_2^*$ on \mathfrak{B}_2 ?

2 Are the ranks β_2^* and γ_2^* essentially multiplicative?

MÁRTON ELEKES, VIKTOR KISS AND ZOLTÁN VIDNYÁNSZKY, Ranks on the Baire class ξ functions, Trans. Amer. Math. Soc. 368(2016), 8111-8143.

On Ordinal Ranks of Baire Class Functions

Outline

1 Review

- Baire Class Functions
- Ordinal Ranks

2 Main Results

- $\bullet \ \beta_2^* \approx \gamma_2^*$
- β_2^* is not essentially multiplicative

3 Open Problem

▲冊▶ ▲屋▶ ▲屋≯

Main results

Theorem (Leung, N., Tang 18').

 $\beta_2^* pprox \gamma_2^*$ on \mathfrak{B}_2

Theorem (Leung, N., Tang 18').

Both β_2^* and γ_2^* are not essentially multiplicative.

イロン イ部ン イヨン イヨン 三日

Motivation: $\beta_2^* \approx \gamma_2^*$ on \mathfrak{B}_2

Recall that $\beta_2^* \approx \gamma_2^*$ if

$$eta_2^*(f) \lesssim \gamma_2^*(f) \quad ext{and} \quad \gamma_2^*(f) \lesssim eta_2^*(f)$$

Corollary (Elekes, Kiss, Vidnyánszky 16').

 $\beta_2^* \leq \gamma_2^*$ on \mathfrak{B}_2

Proposition (Elekes, Kiss, Vidnyánszky 16').

If $(f_n)_{n \in \mathbb{N}}$ is a sequence of Baire Class 1 functions converging uniformly to f, then $\gamma(f) \leq \sup_n \gamma(f_n)$.

(ロ) (同) (E) (E) (E)

Key Proposition: $\beta_2^* \approx \gamma_2^*$ on \mathfrak{B}_2

Key Proposition: $\beta_2^* \approx \gamma_2^*$ on \mathfrak{B}_2

Proposition.

Assume that

- 2 ε > 0

Then there exists $g: X \to \mathbb{R}$ such that

$$2 \gamma(g) \leq \beta(f)$$

3
$$|f(x) - g(x)| < \varepsilon$$
 for all $x \in X$

<u>Trick</u>: For each 'piece', perform 'gluing' to obtain g.

イロン イヨン イヨン イヨン

3

Review	
00	

Main Result: $\beta_2^* \approx \gamma_2^*$ on \mathfrak{B}_2

g Baire Class 1, $|f - g| < \varepsilon$ on X and $\gamma(g) \le \beta(f)$

Motivation: β_2^* is not essentially multiplicative

<u>Recall</u>: β_2^* is essentially multiplicative if for any $f, g \in \mathfrak{B}_2$,

 $\beta_2^*(\mathit{fg}) \leq \max\{\beta_2^*(\mathit{f}), \beta_2^*(\mathit{g})\}$

Theorem (Elekes, Kiss, Vidnyánszky 16').

 β_2^* is unbounded on the set of characteristics functions.

<u>Recall</u>: $\beta_2^* : \mathfrak{B}_2 \to \omega_1$

イロト イヨト イヨト イヨト

Key Propositions: β_2^* is not essentially multiplicative

Proposition.

Let (X, τ) be an uncountable Polish space. Then there exists a subset $A \subseteq X$ such that $\chi_A \in \mathfrak{B}_2(\tau)$ and $\omega < \beta_2^*(\chi_A) \le \omega + 2$.

イロト イポト イヨト イヨト

Key Propositions: β_2^* is not essentially multiplicative

Proposition.

Assume that

- **(** X, τ **)** Polish space
- **2** au' is a Polish topology on X such that $au \subseteq au' \subseteq \mathcal{F}_{\sigma}(au)$
- **3** $\chi_A \in \mathfrak{B}_1(\tau')$ such that $\beta_{\tau'}(\chi_A) \leq \omega \cdot 2$

Then there exist

- Polish topology τ'' on X such that $\tau' \subseteq \tau'' \subseteq \mathcal{F}_{\sigma}(\tau)$
- 3 function $g: X \to \mathbb{N}$ such that $\beta_{\tau''}\left(\frac{\chi_A}{g}\right) \leq \omega$ and $\beta_{\tau''}(g) \leq 2$.

<u>Main trick</u>: $\mathcal{F}_{\sigma}(\tau)$ has generalized reduction property.

イロト イヨト イヨト イヨト

Main result

Theorem (Leung, N., Tang 18').

 β_2^* is not essentially multiplicative. Particularly, if (X, τ) is an uncountable Polish space, then there exist

$${f 0} \hspace{0.1 in} {f \in {\mathfrak B}_2(au)}$$
 such that $eta_2^*({f}) \leq \omega$ and

2
$$g \in \mathfrak{B}_2(au)$$
 such that $eta_2^*(g) \leq \omega$

but $\beta_2^*(fg) > \omega$.

Theorem (Leung, N., Tang 18').

 γ_2^* is not essentially multiplicative.

イロト イヨト イヨト イヨト

Outline

Review

- Baire Class Functions
- Ordinal Ranks

2 Main Results

- $\beta_2^* \approx \gamma_2^*$
- β_2^* is not essentially multiplicative

3 Open Problem

(4回) (4回) (4回)

Open Problem

(X, τ) uncountable Polish space

Proposition.

Assume that

$$\bullet \quad \zeta \geq 1 \text{ ordinal}$$

Then

- ζ countable ordinal ⇒ there exists χ_A ∈ 𝔅_ξ(τ) such that ζ < β^{*}_ξ(χ_A) ≤ ζ + 2.
- **2** ζ limit ordinal \Rightarrow there exists $f \in \mathfrak{B}_{\xi}(\tau)$ such that $\beta_{\xi}^{*}(f) = \zeta$.

<ロ> (日) (日) (日) (日) (日)

Open Problem

Problem.

Assume that

- **(** (X, τ) be an uncountable Polish space
- **2** $\xi \ge 2$ be a countable ordinal.

Is it true that for any nonzero countable ordinal ζ , there exists $f \in \mathfrak{B}_{\xi}(\tau)$ such that $\beta_{\xi}^{*}(f) = \zeta$?

- < ∃ >

References

- D. H. LEUNG, H,-W, NG AND W.-K. TANG, On Ordinal Ranks of Baire Class Functions, preprint, arXiv: 1701.05649v1
- MÁRTON ELEKES, VIKTOR KISS AND ZOLTÁN VIDNYÁNSZKY, Ranks on the Baire class ξ functions, Trans. Amer. Math. Soc. 368(2016), 8111-8143.
- D. H. LEUNG AND W.-K. TANG, Functions of Baire class one, Fund. Math. **179**(2003), 225-247.

Thank you for your time.

On Ordinal Ranks of Baire Class Functions

イロン イヨン イヨン イヨン