Applications of multi-norms to group algebras

H. G. Dales (Lancaster)

Abstract Harmonic Analysis 2018

National Sun Yat-Sen University, Kaohsiung, Taiwan

29 June 2018

Banach modules

Let A be a Banach algebra. Then a **Banach left** A-module is a left A-module E such that $(E, \|\cdot\|)$ is a Banach space and

 $||a \cdot x|| \le ||a|| ||x|| \quad (a \in A, x \in E).$

This is denoted by: $E \in A$ -mod. Similarly for $E \in \text{mod}-A$ and $E \in A$ -mod-A

Thus $E \in A$ —mod iff there is a continuous homomorphism $\rho : A \to \mathcal{B}(E)$.

Examples

1) E is a closed left ideal in A; A itself is an A-bimodule.

2) E is a Banach algebra containing A as a closed subalgebra.

3) $A \otimes E$ for a Banach space E.

28

Morphisms

Let E and F be Banach spaces. Then an operator $T \in \mathcal{B}(E, F)$ is **admissible** if ker T and T(E) are complemented in E and F, respectively.

Let E and F be left A-modules. Then a **mor**-**phism** is a linear map such that

 $T(a \cdot x) = a \cdot Tx \quad (a \in A, x \in E).$

Let A be a Banach algebra, and $E, F \in A \mod$. Then $_A \mathcal{B}(E, F)$ is the closed linear subspace of $\mathcal{B}(E, F)$ consisting of the left A-module morphisms

Example There exists $\pi \in \mathcal{B}(A \otimes E, E)$ with

 $\pi(a\otimes x)=a\cdot x\quad (a\in A,\,x\in E)\,.$

Then $\pi \in {}_{A}\mathcal{B}(A \widehat{\otimes} E, E)$.

29

Operators as modules

Let *E* be any Banach space, and let *A* be a Banach algebra. For $a, b \in A$, and $T \in \mathcal{B}(A, E)$, define

 $(a \cdot T)(b) = T(ba), \quad (T \cdot a)(b) = T(ab)$ Then $\mathcal{B}(A, E) \in A$ -mod-A.

Define $\Pi: E \to \mathcal{B}(A, E)$ by

$$\Pi(x)(a) = a \cdot x \quad (a \in A, x \in E).$$

Then $\Pi \in {}_{A}\mathcal{B}(E, \mathcal{B}(A, E)).$

Connection: Let $E \in A - \text{mod}$, so that the dual $E' \in \text{mod}-A$. Then the dual module of $A \otimes E$ is $\mathcal{B}(A, E')$ with the prescribed module operations, and the dual of $\pi \in \mathcal{B}(A \otimes E, E)$ is

$$\pi' = \Pi \in \mathcal{B}(E', \mathcal{B}(A, E')).$$

Projectivity

Let $P \in A$ -mod. Then P is **projective** if, for each $E, F \in A$ -mod, for each admissible epimorphism $T \in {}_{A}\mathcal{B}(E, F)$, and for each $S \in {}_{A}\mathcal{B}(P, F)$, there exists $R \in {}_{A}\mathcal{B}(P, E)$ with $T \circ R = S$. Thus R lifts S.

Example: Set $P = A \otimes E$. Then *P* is a **free** Banach left *A*-module. Easy: *P* is projective in *A*-mod.

Test: Let $E \in A$ -mod. Then E is projective if and only if there exists $\rho \in {}_{A}\mathcal{B}(E, A \otimes E)$ with $\pi \circ \rho = I_E$ (so that π is a **retraction**).

Eg: A unital. Then take $\rho(a) = a \otimes e_A$. So A is projective in A-mod.

Injectivity

Let $J \in A$ -mod. Then J is **injective** if, for each $E, F \in A$ -mod, for each admissible monomorphism $T \in {}_{A}\mathcal{B}(E, F)$, and for each $S \in {}_{A}\mathcal{B}(E, J)$, there exists $R \in {}_{A}\mathcal{B}(F, J)$ with $R \circ T = S$.

Example: Let *E* be a Banach space. Then $\mathcal{B}(A, E)$ is a **cofree** Banach left *A*-module. Easy: $\mathcal{B}(A, E)$ is injective in *A*-mod.

Test: Let $E \in A$ -mod, and suppose that $\{x \in E : A \cdot x = \{0\}\} = \{0\}$. Then *E* is injective if and only if there exists $\rho \in {}_{A}\mathcal{B}(\mathcal{B}(A, E), E)$ with $\rho \circ \Pi = I_E$ (so that Π is a **coretraction**).

Flat modules

Suppose that E is projective - so that there exists $\rho \in {}_{A}\mathcal{B}(E, A \otimes E)$ with $\pi \circ \rho = I_{E}$. Then

 $\rho' \in \mathcal{B}_A((A \otimes E)', E') = \mathcal{B}_A(\mathcal{B}(A, E'), E')$ with $\rho' \circ \Pi = I_{E'}$.

It follows that the dual E' of a projective left A-module E is an injective right A-module.

Let $E \in A$ -mod. Then E is **flat** if E' is injective in mod-A.

(The original definition was different; we say **biflat** in the category A-mod-A.)

Basic Theorem [B. E. Johnson] Let A be an amenable Banach algebra, and $E \in A$ —mod or $E \in \text{mod}$ —A. Then E' is injective, equivalently E is flat.

Group algebras

Let G be a locally compact group, with left Haar measure m, and let $L^1(G) = L^1(G,m)$ be the group algebra of G (with convolution product). The dual space of $L^1(G)$ is $L^{\infty}(G)$, the Banach space of essentially bounded functions on G. This space contains the constant function 1. For $\lambda \in L^{\infty}(G)$ and $s \in G$, define a translate $s \cdot \lambda \in L^{\infty}(G)$ by

$$\langle f, s \cdot \lambda \rangle = \langle L_s f, \lambda \rangle,$$

where $(L_s f)(t) = f(st)$ $(s, t \in G)$.

An element $\Lambda \in L^{\infty}(G)' = L^{1}(G)''$ is a **left** translation-invariant mean if $||\Lambda|| = \langle \Lambda, 1 \rangle = 1$, and $\langle \Lambda, s \cdot \lambda \rangle = \langle \Lambda, \lambda \rangle$ $(s \in G, \lambda \in L^{\infty}(G))$.

Definition The group G is **amenable** if there is a left translation-invariant mean on $L^{\infty}(G)$.

Amenability of group algebras

There is always one character on the algebra $L^1(G)$; this is the **augmentation character** φ_G , defined by

$$\varphi_G: f \mapsto \int_G f(t) \, \mathrm{d}m(t), \quad L^1(G) \to \mathbb{C}.$$

Theorem [B. E. Johnson] Let G be a locally compact group. Then the following are equivalent:

(a) the Banach algebra $L^1(G)$ is amenable;

(b) the locally compact group G is amenable;

(c) the module \mathbb{C}_{φ_G} is flat in $L^1(G)$ -mod;

(d) the closed ideal ker φ_G has a bounded approximate identity.

35

Modules over $L^1(G)$

Set $A = L^1(G)$. We can take the following in the category A-mod:

• E = A;

• $E = L^p(G)$ for 1 and convolution product, so that <math>E is a dual module [eg, p = 2];

• $E = A' = L^{\infty}(G)$, with dual module operation given by

$$(f \cdot \lambda)(t) = \int_G f(s)\lambda(ts) \,\mathrm{d}m(s);$$

• E = M(G), the measure algebra on G, with product

$$(\mu \star \nu)(B) = \int_G \nu(s^{-1}B) \,\mathrm{d}\mu(s)$$

for each Borel subset B of G, so that A is a closed ideal in M(G), and $M(G) = C_0(G)'$ in A-mod-A.

When are they projective/injective/flat?

Partial answers (mainly [DP1])

Set $A = L^1(G)$.

Case 1 E = A is always projective.

Note that $A \otimes A = L^1(G \times G)$. Take a compact K in G with m(K) = 1, and define a map $\rho \in {}_A\mathcal{B}(A, A \otimes A)$ by

$$\rho(f)(s,t) = \chi_K(t^{-1})f(st)$$

for $f \in A$ and $s, t \in G$. Then $\pi \circ \rho = I_A$.

Case 2 E = M(G). Then M(G) is projective iff G is discrete. We can also prove that M(G) is flat whenever G is discrete or amenable.

I guess that M(G) is always flat in A-mod.

More partial answers

Case 3 $E = L^{\infty}(G) = A'$

Theorem Suppose that $L^{\infty}(G)$ is projective in *A*-mod. Then *G* is finite.

Proof Use the fact that π is a retraction to show that $C_0(G)$ is complemented in $L^{\infty}(G)$. By a theorem of Lau–Losert, the space $C_0(G)$ is complemented in $L^{\infty}(G)$ only when G is finite.

Case 4 $E = L^{\infty}(G)' = A''$.

Theorem Suppose that $L^{\infty}(G)'$ is projective in *A*—mod. Then *G* is discrete and contains no infinite, amenable subgroup.

Guess: In fact, G must be finite.

Case 5 Take p with $1 . Then <math>L^p(G)$ is projective in A-mod if and only if G is compact.

Amenability and injectivity

We aim for a converse to the statement:

'A amenable implies each $E \in A$ -mod is flat'.

Definition

Let *E* be a Banach left $L^1(G)$ -module. An element $\lambda \in E'$ is an **augmentation-invariant** functional if

 $\langle f \cdot x, \lambda \rangle = \varphi_G(f) \langle x, \lambda \rangle \quad (f \in L^1(G), x \in E).$

The module E is **augmentation-invariant** if there is a non-zero, augmentation-invariant functional on E.

Examples (i) $E = L^{\infty}(G)$ is augmentationinvariant if and only if G is amenable.

(ii) M(G) is always augmentation-invariant. (Take $\lambda = \varphi_G : \mu \mapsto \mu(G)$.)

(iii) $L^{\infty}(G)'$ is always augmentation-invariant. (Take λ to be the constant function $1 \in L^{\infty}(G)$.)

Some injectivity results

Theorem Let E be the dual of a Banach right $L^1(G)$ -module. Suppose that E is faithful and augmentation-invariant. Then E is injective if and only if G is amenable.

Proof Suppose that E = F' is injective. Start with an augmentation-invariant functional $\lambda_0 \in E'$ and $x_0 \in E$ with $\langle x_0, \lambda \rangle = 1$, set $T_0 = \Pi(x_0)$, and note that $\rho(T_0) = x_0$. Use weak toplogies, dualities, Mazur to find a net (h_α) in P(G) that satisfies Reiter's condition for amenability. \Box

Corollary Let G be a locally compact group. (1) The following are equivalent:

(a) M(G) is injective;

- (b) $L^{\infty}(G)$ is flat;
- (c) G is amenable.

(2) $L^1(G)$ is injective iff G is discrete and amenable.

40

(p,q)-multi-norms

Now G is a locally compact group, and we take p,q with $1 \le p \le q < \infty$.

Definition Let *G* be a locally compact group, and take p,q with $1 \le p \le q < \infty$. A functional $\Lambda \in L^{\infty}(G)'$ is **left** (p,q)-**multi-invariant** if the set $\{s \cdot \Lambda : s \in G\}$ is multi-bounded with respect to the (p,q)-multi-norm.

The group G is **left** (p,q)-**amenable** if there exists a left (p,q)-multi-invariant mean in $L^{\infty}(G)'$.

Using results about dominance of (p,q)-multinorms on $L^1(\Omega,\mu)$, we see that, for a mean $\Lambda \in L^{\infty}(G)'$, we have

left-invariant \Rightarrow left (q,q)-invariant

 \Rightarrow left (p,q)-invariant

 \Leftrightarrow left (1,q)-invariant.

We need a converse.

A first theorem

Theorem Let G be a locally compact group, and take p,q with $1 \le p \le q < \infty$. Then G is amenable if and only if G is left (p,q)-amenable.

Proof Take Λ to be a left (p,q)-multi-invariant mean on $L^{\infty}(G)$. Then $\{s \cdot \Lambda : s \in G\}$ is (p,q)multi-bounded. By an earlier theorem, it is weakly compact. So its closed convex hull, say K, is weakly compact. For each $s \in G$, the map $L_s : \Phi \mapsto s \cdot \Phi$ is an isometric affine map on K, and these maps form a group. By Ryll–Nardzewski, the family has common fixed point. This is an invariant mean on $L^{\infty}(G)$. So G is amenable. \Box

Another $L^1(G)$ -module

Let G be a locally compact group, and take p with 1 Define

$$J = \mathcal{B}(L^1(G), L^p(G)).$$

Define an action of G on J by

$$(t * U) (f) = t \cdot U(t^{-1} \cdot f) \quad (f \in L^1(G), U \in J).$$

The map $t \mapsto (t * U)(f)$ is continuous, and $J \in L^1(G)$ -mod for the operation

$$(g * U)(f) = \int_G g(t)(t * U)(f) dm(t)$$

for $f, g \in L^1(G)$ and $U \in J$.

An embedding

Define an embedding $\Pi: L^p(G) \to J$ by

 $(\Pi(g)(f) = \varphi_G(f)g \quad (f \in L^1(G), g \in L^p(G)).$

This is a left $L^1(G)$ -module morphism, and it is admissible. (A left inverse is $U \mapsto U(f_0)$ for any $f_0 \in L^1(G)$ with $\varphi_G(f_0) = 1$.)

Theorem Let G be a locally compact group, and take p with 1 . Suppose that $<math>L^p(G)$ is injective in $L^1(G)$ -mod. Then the morphism Π is a coretraction: that is, there is $R \in_{L^1(G)} \mathcal{B}(J, L^p(G))$ with $R \circ \Pi$ the identity on $L^p(G)$.

Proof Easy from the definition of injectivity. \Box

Two technical lemmas

Let Ω be a measure space. To give a flavour of the calculations; recall that $\|\cdot\|_n^{[q]}$ is the standard *q*-multi-norm on $L^q(\Omega)$.

Lemma 1 Let E be a Banach space and take p, q with $1 \leq p \leq q < \infty$. Then, for each $\Phi_1, \ldots, \Phi_n \in E''$, we have

 $\|(\Phi_1, \dots, \Phi_n)\|_n^{(p,q)} = \sup \|(T''(\Phi_1), \dots, T''(\Phi_n))\|_n^{[q]},$ where the supremum is taken over all operators $T \in \mathcal{B}(E, L^p(\Omega))_{[1]}.$ \Box

Lemma 2 Take $U \in B(L^1(\Omega), L^p(\Omega))$, and set q = p'. Suppose that $f_1, \ldots, f_n \in L^q(\Omega)$ have disjoint supports and $g_1, \ldots, g_n \in L^p(\Omega)$ have disjoint supports. Set

$$T = \sum_{i=1}^{n} U'(f_i) \otimes g_i, \quad L^1(\Omega) \to L^p(\Omega).$$

Then

$$||T|| \le ||U|| \max\{||f_i||_q ||g_i||_p : i = 1, ..., n\}.$$

The main theorem

Theorem Let G be a locally compact group, and take p with $1 . Then <math>L^p(G)$ is injective in $L^1(G)$ -mod if and only if G is amenable.

Proof Take J and R as above. For each compact V in G with m(V) > 0, define Λ_V by

$$\langle \lambda, \Lambda_V \rangle = \frac{1}{m(V)} \int_V (R(\lambda \otimes \chi_V))(t) \, \mathrm{d}m(t)$$

for $\lambda \in L^{\infty}(G)$. Then $\Lambda_V \in L^{\infty}(G)'$ and
 $\|\Lambda_V\| \leq \|R\|.$

We can suppose that (Λ_V) converges weak-* in $L^{\infty}(G)'$, say to Λ . Since $\langle 1, \Lambda \rangle = 1$, Λ is non-zero.

We *claim* that (a multiple of) Λ is left (p, p)multi-invariant. If so, G is amenable by an earlier theorem.

Proof continued

Take distinct $s_1, \ldots, s_n \in G$. Choose V so that s_1V, \ldots, s_nV are pairwise-disjoint. Take $U \in J$, and let $\{X_1, \ldots, X_n\}$ be a measurable partition of G. Take $f_1, \ldots, f_n \in L^q(G)_{[1]}$, where q = p', such that $supp f_i \subset X_i$, and set

$$T = \sum_{i=1}^{n} U'(f_i) \otimes \chi_{s_i V}, \quad L^1(G) \to L^p(G).$$

By Lemma 2, $||T|| \le ||U|| m(V)^{1/p}$.

More calculations show that

$$\left(\sum_{i=1}^{n} \left\|\chi_{X_i} U''(s_i \cdot \Lambda)\right\|_n^{(p,q)}\right)^{1/p} \le \|R\|$$

By Lemma 1,

$$\|(s_1 \cdot \Lambda, \ldots, s_n \cdot \Lambda)\|_n^{(p,p)} \leq \|R\|.$$

This gives the claim.

47

Summary

Theorem Let G be a locally compact group, and take p with 1 . Then the followingare equivalent:

(a) G is amenable;

(b) $L^1(G)$ is an amenable Banach algebra;

(c) $L^p(G)$ is injective;

(d) $L^p(G)$ is flat;

(e) G is left (p,q)-amenable for all $q \ge p$;

(f) G is left (p,q)-amenable for some $q \ge p$;

(g) G is left (1,q)-amenable for all $q \ge 1$. \Box

Further comments

The specific theorem was also proved by
G. Racher by more direct methods.

2) Let S be a left-cancellative semigroup, and take $p \ge 1$. Then $\ell^p(S)$ is injective in $\ell^1(S)$ -mod iff S is an amenable group.

References

BDP: O. Blasco, H. G. Dales, and H. L. Pham, Equivalences involving (p,q)-multi-norms, *Studia Math.*, 225 (2014), 29–59.

DP1: H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, *PLMS*, 89 (2004), 390–426.

DP2: H. G. Dales and M. E. Polyakov, Multi-normed spaces, *Diss. Math.*, 488 (2012), 1–165.

DDPR1: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Multi-norms and injectivity of $L^p(G)$, *JLMS* (2), 86 (2012), 779–809.

DDPR2: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Equivalence of multi-norms, *Diss. Math.*, 498 (2014), 1–53.

D: H. G. Dales, Multi-norms, *Acta et Comment. Uni. Tartu. de Mathematica*, 18 (2014), 159–184.

DLOT: H. G. Dales, N. J. Laustsen, T. Oikhberg, and V. Troitsky, Multi-norms and Banach lattices, *Diss. Math.*, 524 (2017), 1–115.