Introduction to multi-norms

H. G. Dales (Lancaster)

Abstract Harmonic Analysis 2018

National Sun Yat-Sen University, Kaohsiung, Taiwan

Congratulations to Antony To-Ming Lau on

his upcoming $75^{\text {th }}$ birthday
and on the
2018 David Borwein Distinguished Career Award

29 June 2018

References

BDP: O. Blasco, H. G. Dales, and H. L. Pham, Equivalences involving (p, q)-multi-norms, Studia Math., 225 (2014), 29-59.

DP1: H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, PLMS, 89 (2004), 390-426.

DP2: H. G. Dales and M. E. Polyakov, Multi-normed spaces, Diss. Math., 488 (2012), 1-165.

DDPR1: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Multi-norms and injectivity of $L^{p}(G)$, JLMS (2), 86 (2012), 779-809.

DDPR2: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Equivalence of multi-norms, Diss. Math., 498 (2014), 1-53.

D: H. G. Dales, Multi-norms, Acta et Comment. Uni. Tartu. de Mathematica, 18 (2014), 159-184.

DLOT: H. G. Dales, N. J. Laustsen, T. Oikhberg, and V. Troitsky, Multi-norms and Banach lattices, Diss. Math., 524 (2017), 1-115.

Basic definitions

Let $(E,\|\cdot\|)$ be a normed space. The closed unit ball is $E_{[1]}$ and the dual space is E^{\prime}.

A multi-norm on $\left\{E^{n}: n \in \mathbb{N}\right\}$ is a sequence $\left(\|\cdot\|_{n}\right)$ such that each $\|\cdot\|_{n}$ is a norm on E^{n}, such that $\|x\|_{1}=\|x\|$ for each $x \in E$, and such that the following hold for all $n \in \mathbb{N}$ and all $x_{1}, \ldots, x_{n} \in E$:
(A1) $\left\|\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)\right\|_{n}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}$
for each permutation σ of $\{1, \ldots, n\}$;
(A2) $\left\|\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)\right\|_{n}$

$$
\leq\left(\max _{i \in \mathbb{N}_{n}}\left|\alpha_{i}\right|\right)\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}
$$

for each $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$;
(A3) $\left\|\left(x_{1}, \ldots, x_{n}, 0\right)\right\|_{n+1}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}$;
(A4) $\left\|\left(x_{1}, \ldots, x_{n}, x_{n}\right)\right\|_{n+1}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}$.
See [DP2].

Dual multi-norms

For a dual multi-norm, replace (A4) by:
(B4) $\left\|\left(x_{1}, \ldots, x_{n}, x_{n}\right)\right\|_{n+1}=\left\|\left(x_{1}, \ldots, x_{n-1}, 2 x_{n}\right)\right\|_{n}$.

Let $\left(\|\cdot\|_{n}\right)$ be a multi-norm or dual multi-norm based on a space E. Then we have a multinormed space and a dual multi-normed space, respectively. They are multi-Banach spaces and dual multi-Banach spaces when E is complete.

Let $\|\cdot\|_{n}$ be a norm on E^{n}. Then $\|\cdot\|_{n}^{\prime}$ is the dual norm on $\left(E^{n}\right)^{\prime}$, identified with $\left(E^{\prime}\right)^{n}$.

The dual of $\left(E^{n},\|\cdot\|_{n}\right)$ is $\left(\left(E^{\prime}\right)^{n},\|\cdot\|_{n}^{\prime}\right)$. The dual of a multi-normed space is a dual multiBanach space; the dual of a dual multi-normed space is a multi-Banach space. See [DP2].

What are multi-norms good for?

1) Solving some specific questions - for example, characterizing when some modules over group algebras are injective [DDPR1 and second talk].
2) Understanding the geometry of Banach spaces that goes beyond the shape of the unit ball.
3) Throwing light on absolutely summing operators
4) Giving a theory [DP2, DLOT] of 'multibounded linear operators' between Banach spaces.
5) Giving results about Banach lattices [DP2, DLOT].
6) Giving a theory of decompositions [DP2] of Banach spaces generalizing known theories.
7) Possible generalizations to 'Multi-Banach algebras'; $L^{1}(G)$ is a good example.

Minimum and maximum multi-norms

Let $\left(E^{n},\|\cdot\|_{n}\right)$ be a multi-normed space or a dual multi-normed space. Then

$$
\begin{equation*}
\max \left\|x_{i}\right\| \leq\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n} \leq \sum_{i=1}^{n}\left\|x_{i}\right\| \tag{*}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in E$ and $n \in \mathbb{N}$.

Example 1 Set $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}^{\min }=\max \left\|x_{i}\right\|$. This gives the minimum multi-norm.

Example 2 It follows from (*) that there is also a maximum multi-norm, which we call $\left(\|\cdot\|_{n}^{\max }: n \in \mathbb{N}\right)$.

Note that it is not true that $\sum_{i=1}^{n}\left\|x_{i}\right\|$ gives the maximum multi-norm - because it is not a multi-norm. (It is a dual multi-norm.)

A characterization of multi-norms

Give $\mathbb{M}_{m, n}$ a norm by identifying it with $\mathcal{B}\left(\ell_{n}^{\infty}, \ell_{m}^{\infty}\right)$.

Let E be a normed space. Then $\mathbb{M}_{m, n}$ acts from E^{n} to E^{m} in the obvious way.

Consider a sequence $\left(\|\cdot\|_{n}\right)$ such that each $\|\cdot\|_{n}$ is a norm on E^{n} and such that $\|x\|_{1}=\|x\|$ for each $x \in E$.

Theorem [DP2] This sequence of norms is a multi-norm if and only if

$$
\|a \cdot x\|_{m} \leq\left\|a: \ell_{n}^{\infty} \rightarrow \ell_{m}^{\infty}\right\|\|x\|_{n}
$$

and a dual multi-norm if and only if

$$
\|a \cdot x\|_{m} \leq\left\|a: \ell_{n}^{1} \rightarrow \ell_{m}^{1}\right\|\|x\|_{n}
$$

for all $m, n \in \mathbb{N}, a \in \mathbb{M}_{m, n}$, and $x \in E^{n}$.

p-multi-norms

We could calculate $\|a\|$ in different ways - for example, by identifying $\mathbb{M}_{m, n}$ with $\mathcal{B}\left(\ell_{n}^{p}, \ell_{m}^{p}\right)$ for other values of p. Thus a sequence of norms ($\|\cdot\|_{n}$) is a p-multi-norm if

$$
\|a \cdot x\|_{m} \leq\left\|a: \ell_{n}^{p} \rightarrow \ell_{m}^{p}\right\|\|x\|_{n}
$$

for all $m, n \in \mathbb{N}, a \in \mathbb{M}_{m, n}$, and $x \in E^{n}$.

The sequence ($\|\cdot\|_{n}$) is a strong p-multi-norm if $\|\mathbf{y}\|_{n} \leq\|\mathbf{x}\|_{m}$ whenever $m, n \in \mathbb{N}, \mathbf{x} \in E^{m}$, $\mathbf{y} \in E^{n}$, and $\|\langle\mathbf{y}, \lambda\rangle\|_{\ell_{n}^{p}} \leq\|\langle\mathbf{x}, \lambda\rangle\|_{\ell_{m}^{p}}$ for all $\lambda \in E^{\prime}$.

A strong p-multi-norm is a p-multi-norm; they are the same iff $p=2$ or $p=\infty$.

See the memoir [DLOT], which generalizes much of the earlier material.

Another characterization

This is taken from [DDPR1]. It gives a 'coordinate-free' characterization.

Let $(E,\|\cdot\|)$ be a normed space. Then a c_{0}-norm on $c_{0} \otimes E$ is a norm $\|\cdot\|$ such that:

1) $\|a \otimes x\| \leq\|a\|\|x\|\left(a \in c_{0}, x \in E\right)$;
2) $T \otimes I_{E}$ is bounded on $\left(c_{0} \otimes E,\|\cdot\|\right)$ with $\left\|T \otimes I_{E}\right\|=\|T\|$ whenever T is a compact operator on c_{0};
3) $\left\|\delta_{1} \otimes x\right\|=\|x\|(x \in E)$.

Each c_{0}-norm is a reasonable cross-norm; we can replace ' T is compact' by ' T is bounded'.

The connection

Theorem Multi-norms on $\left\{E^{n}: n \in \mathbb{N}\right\}$ correspond to c_{0}-norms on $c_{0} \otimes E$. The injective tensor product norm gives the minimum multi-norm, and the projective tensor product norm gives the maximum multi-norm

The recipe is: given a c_{0}-norm $\|\cdot\|$, set $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}=\left\|\sum_{j=1}^{n} \delta_{j} \otimes x_{j}\right\| \quad\left(x_{1}, \ldots, x_{n} \in E\right)$.

Thus the theory of multi-norms could be a theory of norms on tensor products.

There is a similar identification of p-multi-norms with $\ell^{p} \otimes E$ in [DLOT].

Helemski has a generalization to $L^{p}(\Omega) \otimes E$.

Banach lattice multi-norms

Let $(E,\|\cdot\|)$ be a complex Banach lattice.
Examples $L^{p}(\Omega), L^{\infty}(\Omega)$, or $C(K)$ with the usual norms and the obvious lattice operations are all (complex) Banach lattices.

Definition [DP2] Let $(E,\|\cdot\|)$ be a Banach lattice. For $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in E$, set

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}^{L}=\left\|\left|x_{1}\right| \vee \cdots \vee\left|x_{n}\right|\right\|
$$

and

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}^{D L}=\left\|\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right\| .
$$

Then ($E^{n},\|\cdot\|_{n}^{L}$) is a multi-Banach space. It is the Banach lattice multi-norm. Also
($E^{n},\|\cdot\|_{n}^{D L}$) is a dual multi-Banach space. It is the dual Banach lattice multi-norm.

Each is the dual of the other.

The canonical lattice p-multi-norm

Let E be a Banach lattice, and take p with $1 \leq p \leq \infty$. Set

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}^{L, p}=\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\right\|
$$

for $x_{1}, \ldots, x_{n} \in E$. Then the sequence $\left(\|\cdot\|_{n}^{L, p}\right)$ is a strong p-multi-norm.

We recover lattice multi-norms with $p=\infty$ and dual lattice multi-norms with $p=1$.

A representation theorem

Clause (1) below is basically a theorem of Pisier, as given in a thesis of a student, Marcolino Nhani. Our approach is different. The main theorem of [DLOT] is a similar representation theorem for strong p-multi-norms; the word 'strong' is essential.

Theorem

(1) Let ($E^{n},\|\cdot\|_{n}$) be a multi-Banach space. Then there is a Banach lattice X such that ($E^{n},\|\cdot\|_{n}$) is multi-isometric to ($Y^{n},\|\cdot\|_{n}^{L}$) for a closed subspace Y of X.
(2) Let $\left(E^{n},\|\cdot\|_{n}\right)$ be a dual multi-Banach space. Then there is a Banach lattice X such that ($E^{n},\|\cdot\|_{n}$) is multi-isometric to $\left((X / Y)^{n},\|\cdot\|_{n}^{D L}\right)$ for a closed subspace Y of X.

Summing norms - I

Take $p \in[1, \infty)$. For $x_{1}, \ldots, x_{n} \in E$, set

$$
\mu_{p, n}\left(x_{1}, \ldots, x_{n}\right)=\sup _{\lambda \in E_{[1]}^{\prime}}\left\{\left(\sum_{j=1}^{n}\left|\left\langle x_{j}, \lambda\right\rangle\right|^{p}\right)^{1 / p}\right\}
$$

This is the weak p-summing norm. For example, we can see that
$\mu_{1, n}\left(x_{1}, \ldots, x_{n}\right)=\sup \left\{\left\|\sum_{j=1}^{n} \zeta_{j} x_{j}\right\|: \zeta_{1}, \ldots, \zeta_{n} \in \mathbb{T}\right\}$.
For $\lambda_{1}, \ldots, \lambda_{n} \in E^{\prime}$, we have

$$
\mu_{1, n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sup \left\{\sum_{j=1}^{n}\left|\left\langle x, \lambda_{j}\right\rangle\right|: x \in E_{[1]}\right\} .
$$

Theorem [DP2] The dual of $\|\cdot\|_{n}^{\max }$ is $\mu_{1, n} . \quad \square$

The (p, q)-multi-norm

Let E be a Banach space, and take p, q with $1 \leq p \leq q<\infty$. Define
$\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}^{(p, q)}=\sup \left\{\left(\sum_{j=1}^{n}\left|\left\langle x_{j}, \lambda_{j}\right\rangle\right|^{q}\right)^{1 / q}\right\}$,
taking the sup over all $\lambda_{1}, \ldots, \lambda_{n} \in E^{\prime}$ with $\mu_{p, n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \leq 1$.

Fact [DP2]: $\left\{\left(E^{n},\|\cdot\|_{n}^{(p, q)}\right): n \in \mathbb{N}\right\}$ is a multiBanach space.

Then $\left(\|\cdot\|_{n}^{(p, q)}\right)$ is the (p, q)-multi-norm based on E.

Remarks (1) The (1,1)-multi-norm is the maximum multi-norm based on E.
(2) The (p, q)-multi-norm over $E^{\prime \prime}$, when restricted to E, is the (p, q)-multi-norm over E.

The standard t-multi-norm on $L^{r}(\Omega)$

Let Ω be a measure space, and take r, t with $1 \leq r \leq t<\infty$. We consider the Banach space $L^{r}(\Omega)$, with the usual L^{r}-norm $\|\cdot\|$. (Think of ℓ^{r}.)

For each family $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ of pairwisedisjoint measurable subsets of Ω such that $X_{1} \cup \cdots \cup X_{n}=\Omega$, we set
$r_{\mathbf{X}}\left(\left(f_{1}, \ldots, f_{n}\right)\right)=\left(\left\|P_{X_{1}} f_{1}\right\|^{t}+\cdots+\left\|P_{X_{n}} f_{n}\right\|^{t}\right)^{1 / t}$, where $P_{X}: L^{r}(\Omega) \rightarrow L^{r}(X)$ is the natural projection.

Finally, $\left\|\left(f_{1}, \ldots, f_{n}\right)\right\|_{n}^{[t]}=\sup _{\mathbf{X}} r_{\mathbf{X}}\left(\left(f_{1}, \ldots, f_{n}\right)\right)$.
This is the standard t-multi-norm (on $L^{r}(\Omega)$) from [DP2].

Remark Let $t=r$. Then

$$
\left\|\left(f_{1}, \ldots, f_{n}\right)\right\|_{n}^{[r]}=\left\|\left|f_{1}\right| \vee \cdots \vee\left|f_{n}\right|\right\|
$$

which is the lattice multi-norm on $L^{r}(\Omega)$.

Summing norms - II

Again $1 \leq p \leq q<\infty$, and E and F are Banach spaces. For $T \in \mathcal{B}(E, F), \pi_{q, p}^{(n)}(T)$ is

$$
\sup \left\{\left(\sum_{j=1}^{n}\left\|T x_{j}\right\|^{q}\right)^{1 / q}: \mu_{p, n}\left(x_{1}, \ldots, x_{n}\right) \leq 1\right\}
$$

Definition Let $T \in \mathcal{B}(E, F)$. Suppose that

$$
\pi_{q, p}(T):=\lim _{n \rightarrow \infty} \pi_{q, p}^{(n)}(T)<\infty
$$

Then T is (q, p)-summing; the set of these is $\Pi_{q, p}(E, F)$. This gives a Banach space.

The much-studied space $\Pi_{q, p}(E, F)$ is a component of an operator ideal: see the book of Pietsch.

A connection

Let E be a normed space. Take $n \in \mathbb{N}$ and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$, and define

$$
T_{\boldsymbol{x}}:\left(\zeta_{1}, \ldots, \zeta_{n}\right) \mapsto \sum_{j=1}^{n} \zeta_{j} x_{j}, \quad \mathbb{C}^{n} \rightarrow E
$$

Then $\mu_{p, n}(\boldsymbol{x})=\left\|T_{\boldsymbol{x}}: \ell_{n}^{p^{\prime}} \rightarrow E\right\|$ for $p \geq 1$.

It follows that

$$
\|\boldsymbol{x}\|_{n}^{(p, q)}=\pi_{q, p}\left(T_{\boldsymbol{x}}^{\prime}: E^{\prime} \rightarrow c_{0}\right)
$$

This leads to:

Theorem Let E be a normed space, and suppose that $1 \leq p \leq q<\infty$. Then the (p, q) -multi-norm induces the norm on $c_{0} \otimes E$ given by embedding $c_{0} \otimes E$ into $\Pi_{q, p}\left(E^{\prime}, c_{0}\right)$.

Multi-bounded sets and operators

Let ($E^{n},\|\cdot\|_{n}$) be a multi-normed space. A subset B of E is multi-bounded if
$c_{B}:=\sup _{n \in \mathbb{N}}\left\{\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}: x_{1}, \ldots, x_{n} \in B\right\}<\infty$.
Let ($E^{n},\|\cdot\|_{n}$) and ($F^{n},\|\cdot\|_{n}$) be multi-Banach spaces. An operator $T \in \mathcal{B}(E, F)$ is multibounded if $T(B)$ is multi-bounded in F whenever B is multi-bounded in E. The set of these is a linear subspace $\mathcal{M}(E, F)$ of $\mathcal{B}(E, F) ; \mathcal{M}(E)$ is a Banach algebra.

Theorem An operator $T \in \mathcal{B}(E, F)$ is multibounded iff it is 'multi-continuous'.

For $T_{1}, \ldots, T_{n} \in \mathcal{M}(E, F)$, set

$$
\left\|\left(T_{1}, \ldots, T_{n}\right)\right\|_{m b, n}=\sup \left\{c_{T_{1}(B) \cup \ldots \cup T_{n}(B)}: c_{B} \leq 1\right\}
$$

Theorem Now $\left(\mathcal{M}(E, F)^{n},\|\cdot\|_{m b, n}\right)$ is a multiBanach space, and $\left(\mathcal{M}(E)^{n},\|\cdot\|_{m b, n}\right)$ is a 'multiBanach algebra'.

Regular operators

An operator between Banach lattices is regular if it is a linear combination of positive operators.

Theorem Let $E=\ell^{p}$ and $F=\ell^{q}$, where $p, q \geq 1$. Regard them as multi-normed spaces with the standard (p, p)- and (q, q)-multi-norms, respectively. Then $\mathcal{M}(E, F)$ consists exactly of the regular operators.

There are several other theorems in [DLOT] relating multi-bounded operators to known classes of operators between Banach lattices.

(p, q)-multi-bounded sets

Suppose that $1 \leq p \leq q<\infty$, and take a Banach space E.

Definition The space $\mathcal{B}_{p, q}\left(\ell^{1}, E\right)$ is the subspace of $\mathcal{B}\left(\ell^{1}, E\right)$ consisting of the operators T such that $\left\{T\left(\delta_{k}\right): k \in \mathbb{N}\right\}$ is (p, q)-multibounded in E.

It is a Banach space with respect to the multibounded norm.

Theorem Take $T \in \mathcal{B}\left(\ell^{1}, E\right)$. Then $T \in \mathcal{B}_{p, q}\left(\ell^{1}, E\right)$ iff $T^{\prime} \in \Pi_{q, p}\left(E^{\prime}, \ell^{\infty}\right)$.

Proof Calculations using the definitions.
Theorem Each (p, q)-multi-bounded set in E is relatively weakly compact.

Proof Use the above theorem. By the Pietsch factorization theorem, every p-summing operator is weakly compact, so T^{\prime}, and hence T, are weakly compact. Then use Eberlein-Šmulian.

Equivalences of multi-norms

Definition [DP2] Let $(E,\|\cdot\|)$ be a normed space. Suppose that both $\left(\|\cdot\|_{n}^{1}\right)$ and $\left(\|\cdot\|_{n}^{2}\right)$ are multi-norms on E. Then $\left(\|\cdot\|_{n}^{2}\right)$ dominates $\left(\|\cdot\|_{n}^{1}\right)$, written $\left(\|\cdot\|_{n}^{1}\right) \preccurlyeq\left(\|\cdot\|_{n}^{2}\right)$, if there is a constant $C>0$ such that

$$
\|\boldsymbol{x}\|_{n}^{1} \leq C\|\boldsymbol{x}\|_{n}^{2} \quad\left(\boldsymbol{x} \in E^{n}, n \in \mathbb{N}\right)
$$

The two multi-norms are equivalent, written

$$
\left(\|\cdot\|_{n}^{1}\right) \cong\left(\|\cdot\|_{n}^{2}\right)
$$

if each dominates the other.

Interpretation in terms of summing operators

Theorem (DDPR2) Let E be a normed space. Then $\left(\|\cdot\|_{n}^{\left(p_{1}, q_{1}\right)}\right) \cong\left(\|\cdot\|_{n}^{\left(p_{2}, q_{2}\right)}\right)$ if and only if $\Pi_{q_{1}, p_{1}}\left(E^{\prime}, c_{0}\right)=\Pi_{q_{2}, p_{2}}\left(E^{\prime}, c_{0}\right)$ as subsets of $\mathcal{B}\left(E^{\prime}, c_{0}\right)$.

Thus the theory of equivalence of these multinorms could be a theory of (q, p)-summing operators.

We wish to decide when various pairs of multinorms are mutually equivalent - for example, what about (p, q)-multi-norms on ℓ^{r} ?

For detailed calculations which give an almost complete solution, see [BDP].

A triangle with curves

Look at the 'triangle'

$$
\mathcal{T}=\{(p, q): 1 \leq p \leq q<\infty\}
$$

For $c \in[0,1)$, look at the curve \mathcal{C}_{c} :

$$
\mathcal{C}_{c}=\left\{(p, q) \in \mathcal{T}: \frac{1}{p}-\frac{1}{q}=c\right\}
$$

Take $r \in(1, \infty)$. Then the curve $\mathcal{C}_{1 / r}$ meets the line $p=1$ at the point $\left(1, r^{\prime}\right)$. The union of these curves is \mathcal{T}.

Sample solution: The case where $r \geq 2$

Theorem [BDP] Take $r \geq 2$ and $E=\ell^{r}$. Then the triangle \mathcal{T} decomposes into the following (mutually disjoint) equivalence classes:

- $\mathcal{T}_{\text {min }}:=A_{r}=\{(p, q) \in \mathcal{T}: 1 / p-1 / q \geq 1 / 2\} ;$
- the curves $\mathcal{T}_{c}:=\left\{(p, q) \in \mathcal{C}_{c}: 1 \leq p \leq 2\right\}$, for $c \in[0,1 / 2)$;
- the singletons $\mathcal{T}_{(p, q)}:=\{(p, q)\}$ for $(p, q) \in \mathcal{T}$ with $p>2$.

The solutions are not quite complete in the case where $1<r<2$.

Key inequalities: generalized Hölder, Khinchine, Grothendieck; Rademacher functions.

Multi-Banach algebras

Let $(A,\|\cdot\|)$ be a Banach algebra, and let

$$
\left(\left(A^{n},\|\cdot\|_{n}\right): n \in \mathbb{N}\right)
$$

be a multi-normed space. Then $\left(A^{n},\|\cdot\|_{n}\right)$ is a multi-Banach algebra if multiplication is a multi-bounded bilinear operator, and so

$$
\left\|\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)\right\|_{n} \leq\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{n}\left\|\left(b_{1}, \ldots, b_{n}\right)\right\|_{n}
$$

Examples (1) Each Banach algebra is a multiBanach algebra with respect to both the minimum and maximum multi-norms.
(2) Take $1 \leq p \leq q<\infty$. Then $\left(\ell^{p}, \cdot\right)$ is a multi-Banach algebra with respect to the standard (p, q)-multi-norm.
(3) Let G be a locally compact group. Then the group algebra ($L^{1}(G), \star$) with the standard $(1,1)$-multi-norm is a multi-Banach algebra.
(4) For each multi-Banach space ($E^{n},\|\cdot\|_{n}$), $\left(\mathcal{M}(E)^{n},\|\cdot\|_{\mathrm{mb}, n}\right)$ is a multi-Banach algebra.

