Introduction to multi-norms

H. G. Dales (Lancaster)

Abstract Harmonic Analysis 2018

National Sun Yat-Sen University, Kaohsiung, Taiwan

Congratulations to Antony To-Ming Lau on his upcoming 75th birthday and on the 2018 David Borwein Distinguished Career Award

29 June 2018

References

BDP: O. Blasco, H. G. Dales, and H. L. Pham, Equivalences involving (p,q)-multi-norms, *Studia Math.*, 225 (2014), 29–59.

DP1: H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, *PLMS*, 89 (2004), 390–426.

DP2: H. G. Dales and M. E. Polyakov, Multi-normed spaces, *Diss. Math.*, 488 (2012), 1–165.

DDPR1: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Multi-norms and injectivity of $L^p(G)$, *JLMS* (2), 86 (2012), 779–809.

DDPR2: H. G. Dales, M. Daws, H. L. Pham, and P. Ramsden, Equivalence of multi-norms, *Diss. Math.*, 498 (2014), 1–53.

D: H. G. Dales, Multi-norms, *Acta et Comment. Uni. Tartu. de Mathematica*, 18 (2014), 159–184.

DLOT: H. G. Dales, N. J. Laustsen, T. Oikhberg, and V. Troitsky, Multi-norms and Banach lattices, *Diss. Math.*, 524 (2017), 1–115.

Basic definitions

Let $(E, \|\cdot\|)$ be a normed space. The closed unit ball is $E_{[1]}$ and the dual space is E'.

A multi-norm on $\{E^n : n \in \mathbb{N}\}$ is a sequence $(\|\cdot\|_n)$ such that each $\|\cdot\|_n$ is a norm on E^n , such that $\|x\|_1 = \|x\|$ for each $x \in E$, and such that the following hold for all $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in E$:

(A1)
$$\|(x_{\sigma(1)}, \dots, x_{\sigma(n)})\|_n = \|(x_1, \dots, x_n)\|_n$$

for each permutation σ of $\{1, \dots, n\}$;

(A2)
$$\|(\alpha_1 x_1, \dots, \alpha_n x_n)\|_n$$

 $\leq (\max_{i \in \mathbb{N}_n} |\alpha_i|) \|(x_1, \dots, x_n)\|_n$
for each $\alpha_1, \dots, \alpha_n \in \mathbb{C}$;
(A3) $\|(x_1, \dots, x_n, 0)\|_{n+1} = \|(x_1, \dots, x_n)\|_n$;
(A4) $\|(x_1, \dots, x_n, x_n)\|_{n+1} = \|(x_1, \dots, x_n)\|_n$.

See [DP2].

Dual multi-norms

For a **dual multi-norm**, replace (A4) by:

(B4) $||(x_1,...,x_n,x_n)||_{n+1} = ||(x_1,...,x_{n-1},2x_n)||_n$

Let $(\|\cdot\|_n)$ be a multi-norm or dual multi-norm based on a space E. Then we have a **multinormed space** and a **dual multi-normed space**, respectively. They are **multi-Banach spaces** and **dual multi-Banach spaces** when E is complete.

Let $\|\cdot\|_n$ be a norm on E^n . Then $\|\cdot\|'_n$ is the dual norm on $(E^n)'$, identified with $(E')^n$.

The **dual** of $(E^n, \|\cdot\|_n)$ is $((E')^n, \|\cdot\|'_n)$. The dual of a multi-normed space is a dual multi-Banach space; the dual of a dual multi-normed space is a multi-Banach space. See **[DP2]**.

What are multi-norms good for?

1) Solving some specific questions - for example, characterizing when some modules over group algebras are injective [**DDPR1 and sec-ond talk**].

2) Understanding the geometry of Banach spaces that goes beyond the shape of the unit ball.

3) Throwing light on absolutely summing operators

4) Giving a theory [**DP2**, **DLOT**] of 'multibounded linear operators' between Banach spaces.

5) Giving results about Banach lattices [**DP2**, **DLOT**].

6) Giving a theory of decompositions [**DP2**] of Banach spaces generalizing known theories.

7) Possible generalizations to 'Multi-Banach algebras'; $L^1(G)$ is a good example.

Minimum and maximum multi-norms

Let $(E^n, \|\cdot\|_n)$ be a multi-normed space or a dual multi-normed space. Then

$$\max \|x_i\| \le \|(x_1, \dots, x_n)\|_n \le \sum_{i=1}^n \|x_i\| \quad (*)$$

for all $x_1, \ldots, x_n \in E$ and $n \in \mathbb{N}$.

Example 1 Set $||(x_1, ..., x_n)||_n^{\min} = \max ||x_i||$. This gives the **minimum** multi-norm.

Example 2 It follows from (*) that there is also a **maximum** multi-norm, which we call $(\|\cdot\|_n^{\max} : n \in \mathbb{N}).$

Note that it is **not** true that $\sum_{i=1}^{n} ||x_i||$ gives the maximum multi-norm — because it is not a multi-norm. (It is a dual multi-norm.)

A characterization of multi-norms

Give $\mathbb{M}_{m,n}$ a norm by identifying it with $\mathcal{B}(\ell_n^{\infty}, \ell_m^{\infty})$.

Let E be a normed space. Then $\mathbb{M}_{m,n}$ acts from E^n to E^m in the obvious way.

Consider a sequence $(\|\cdot\|_n)$ such that each $\|\cdot\|_n$ is a norm on E^n and such that $\|x\|_1 = \|x\|$ for each $x \in E$.

Theorem [DP2] This sequence of norms is a multi-norm if and only if

$$\|a \cdot x\|_m \le \|a : \ell_n^\infty \to \ell_m^\infty\| \, \|x\|_n$$

and a dual multi-norm if and only if

$$\|a \cdot x\|_m \leq \left\|a : \ell_n^1 \to \ell_m^1\right\| \|x\|_n$$
 for all $m, n \in \mathbb{N}$, $a \in \mathbb{M}_{m,n}$, and $x \in E^n$.

7

 \square

p-multi-norms

We could calculate ||a|| in different ways - for example, by identifying $\mathbb{M}_{m,n}$ with $\mathcal{B}(\ell_n^p, \ell_m^p)$ for other values of p. Thus a sequence of norms $(||\cdot||_n)$ is a p-multi-norm if

 $\|a \cdot x\|_m \le \|a : \ell_n^p \to \ell_m^p\| \, \|x\|_n$

for all $m, n \in \mathbb{N}$, $a \in \mathbb{M}_{m,n}$, and $x \in E^n$.

The sequence $(\|\cdot\|_n)$ is a **strong** p-multi-norm if $\|\mathbf{y}\|_n \leq \|\mathbf{x}\|_m$ whenever $m, n \in \mathbb{N}$, $\mathbf{x} \in E^m$, $\mathbf{y} \in E^n$, and $\|\langle \mathbf{y}, \lambda \rangle\|_{\ell_n^p} \leq \|\langle \mathbf{x}, \lambda \rangle\|_{\ell_m^p}$ for all $\lambda \in E'$.

A strong *p*-multi-norm is a *p*-multi-norm; they are the same iff p = 2 or $p = \infty$.

See the memoir **[DLOT]**, which generalizes much of the earlier material.

Another characterization

This is taken from [**DDPR1**]. It gives a 'coordinate-free' characterization.

Let $(E, \|\cdot\|)$ be a normed space. Then a c_0 -norm on $c_0 \otimes E$ is a norm $\|\cdot\|$ such that:

1) $||a \otimes x|| \le ||a|| ||x||$ $(a \in c_0, x \in E);$

2) $T \otimes I_E$ is bounded on $(c_0 \otimes E, \|\cdot\|)$ with $\|T \otimes I_E\| = \|T\|$ whenever T is a compact operator on c_0 ;

3) $\|\delta_1 \otimes x\| = \|x\| \ (x \in E).$

Each c_0 -norm is a reasonable cross-norm; we can replace 'T is compact' by 'T is bounded'.

The connection

Theorem Multi-norms on $\{E^n : n \in \mathbb{N}\}$ correspond to c_0 -norms on $c_0 \otimes E$. The injective tensor product norm gives the minimum multi-norm, and the projective tensor product norm gives the maximum multi-norm

The recipe is: given a $c_0\text{-norm}\parallel\cdot\parallel,$ set

$$\|(x_1,\ldots,x_n)\|_n = \left\|\sum_{j=1}^n \delta_j \otimes x_j\right\| \quad (x_1,\ldots,x_n \in E).$$

Thus the theory of multi-norms could be a theory of norms on tensor products.

There is a similar identification of p-multi-norms with $\ell^p \otimes E$ in **[DLOT]**.

Helemski has a generalization to $L^p(\Omega) \otimes E$.

Banach lattice multi-norms

Let $(E, \|\cdot\|)$ be a complex Banach lattice.

Examples $L^p(\Omega)$, $L^{\infty}(\Omega)$, or C(K) with the usual norms and the obvious lattice operations are all (complex) Banach lattices.

Definition [**DP2**] Let $(E, \|\cdot\|)$ be a Banach lattice. For $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in E$, set

$$||(x_1,\ldots,x_n)||_n^L = |||x_1| \vee \cdots \vee |x_n|||$$

and

$$||(x_1,\ldots,x_n)||_n^{DL} = |||x_1| + \cdots + |x_n|||$$
.

Then $(E^n, \|\cdot\|_n^L)$ is a multi-Banach space. It is the **Banach lattice multi-norm**. Also $(E^n, \|\cdot\|_n^{DL})$ is a dual multi-Banach space. It is the **dual Banach lattice multi-norm**.

Each is the dual of the other.

The canonical lattice *p*-multi-norm

Let E be a Banach lattice, and take p with $1 \leq p \leq \infty.$ Set

$$\|(x_1,\ldots,x_n)\|_n^{L,p} = \left\|\left(\sum_{i=1}^n |x_i|^p\right)^{1/p}\right\|$$

for $x_1, \ldots, x_n \in E$. Then the sequence $(\|\cdot\|_n^{L,p})$ is a strong *p*-multi-norm.

We recover lattice multi-norms with $p = \infty$ and dual lattice multi-norms with p = 1.

A representation theorem

Clause (1) below is basically a theorem of **Pisier**, as given in a thesis of a student, **Marcolino Nhani**. Our approach is different. The main theorem of **[DLOT]** is a similar representation theorem for strong p-multi-norms; the word 'strong' is essential.

Theorem

(1) Let $(E^n, \|\cdot\|_n)$ be a multi-Banach space. Then there is a Banach lattice X such that $(E^n, \|\cdot\|_n)$ is multi-isometric to $(Y^n, \|\cdot\|_n^L)$ for a closed subspace Y of X.

(2) Let $(E^n, \|\cdot\|_n)$ be a dual multi-Banach space. Then there is a Banach lattice X such that $(E^n, \|\cdot\|_n)$ is multi-isometric to $((X/Y)^n, \|\cdot\|_n^{DL})$ for a closed subspace Y of X.

Summing norms - I

Take $p \in [1, \infty)$. For $x_1, \ldots, x_n \in E$, set

$$\mu_{p,n}(x_1,\ldots,x_n) = \sup_{\lambda \in E'_{[1]}} \left\{ \left(\sum_{j=1}^n \left| \langle x_j,\lambda \rangle \right|^p \right)^{1/p} \right\}$$

This is the weak p-summing norm. For example, we can see that

$$\mu_{1,n}(x_1,\ldots,x_n) = \sup\left\{ \left\| \sum_{j=1}^n \zeta_j x_j \right\| : \zeta_1,\ldots,\zeta_n \in \mathbb{T} \right\}$$

For $\lambda_1, \ldots, \lambda_n \in E'$, we have

$$\mu_{1,n}(\lambda_1,\ldots,\lambda_n) = \sup\left\{\sum_{j=1}^n \left|\langle x,\lambda_j\rangle\right| : x \in E_{[1]}\right\}.$$

Theorem [DP2] The dual of $\|\cdot\|_n^{\max}$ is $\mu_{1,n}$. \Box

The (p,q)-multi-norm

Let E be a Banach space, and take p,q with $1\leq p\leq q<\infty.$ Define

$$\|(x_1,\ldots,x_n)\|_n^{(p,q)} = \sup\left\{\left(\sum_{j=1}^n \left|\langle x_j,\lambda_j\rangle\right|^q\right)^{1/q}\right\},\$$

taking the sup over all $\lambda_1, \ldots, \lambda_n \in E'$ with $\mu_{p,n}(\lambda_1, \ldots, \lambda_n) \leq 1$.

Fact [DP2]: $\{(E^n, \|\cdot\|_n^{(p,q)}) : n \in \mathbb{N}\}$ is a multi-Banach space.

Then $(\|\cdot\|_n^{(p,q)})$ is the (p,q)-multi-norm based on E.

Remarks (1) The (1, 1)-multi-norm is the maximum multi-norm based on E.

(2) The (p,q)-multi-norm over E'', when restricted to E, is the (p,q)-multi-norm over E.

The standard *t*-multi-norm on $L^r(\Omega)$

Let Ω be a measure space, and take r, t with $1 \leq r \leq t < \infty$. We consider the Banach space $L^{r}(\Omega)$, with the usual L^{r} -norm $\|\cdot\|$. (Think of ℓ^{r} .)

For each family $\mathbf{X} = \{X_1, \ldots, X_n\}$ of pairwisedisjoint measurable subsets of Ω such that $X_1 \cup \cdots \cup X_n = \Omega$, we set

$$r_{\mathbf{X}}((f_1,\ldots,f_n)) = \left(\left\| P_{X_1} f_1 \right\|^t + \cdots + \left\| P_{X_n} f_n \right\|^t \right)^{1/t},$$

where $P_X : L^r(\Omega) \to L^r(X)$ is the natural projection.

Finally, $||(f_1, ..., f_n)||_n^{[t]} = \sup_{\mathbf{X}} r_{\mathbf{X}}((f_1, ..., f_n)).$

This is the **standard** *t*-**multi-norm** (on $L^r(\Omega)$) from [**DP2**].

Remark Let t = r. Then

 $\|(f_1,\ldots,f_n)\|_n^{[r]} = \||f_1| \vee \cdots \vee |f_n|\|$, which is the lattice multi-norm on $L^r(\Omega)$.

Summing norms - II

Again $1 \le p \le q < \infty$, and E and F are Banach spaces. For $T \in \mathcal{B}(E, F)$, $\pi_{q,p}^{(n)}(T)$ is

$$\sup\left\{\left(\sum_{j=1}^{n} \left\|Tx_{j}\right\|^{q}\right)^{1/q} : \mu_{p,n}(x_{1},\ldots,x_{n}) \leq 1\right\}$$

Definition Let $T \in \mathcal{B}(E, F)$. Suppose that

$$\pi_{q,p}(T) := \lim_{n \to \infty} \pi_{q,p}^{(n)}(T) < \infty$$
.

Then T is (q, p)-summing; the set of these is $\Pi_{q,p}(E, F)$. This gives a Banach space.

The much-studied space $\Pi_{q,p}(E,F)$ is a component of an **operator ideal**: see the book of Pietsch.

A connection

Let E be a normed space. Take $n \in \mathbb{N}$ and $x = (x_1, \ldots, x_n) \in E^n$, and define

$$T_{\boldsymbol{x}} : (\zeta_1, \dots, \zeta_n) \mapsto \sum_{j=1}^n \zeta_j x_j, \quad \mathbb{C}^n \to E.$$

Then $\mu_{p,n}(\boldsymbol{x}) = \left\| T_{\boldsymbol{x}} : \ell_n^{p'} \to E \right\|$ for $p \ge 1.$

It follows that

$$||x||_n^{(p,q)} = \pi_{q,p}(T'_x : E' \to c_0).$$

This leads to:

Theorem Let E be a normed space, and suppose that $1 \leq p \leq q < \infty$. Then the (p,q)-multi-norm induces the norm on $c_0 \otimes E$ given by embedding $c_0 \otimes E$ into $\prod_{q,p}(E',c_0)$.

Multi-bounded sets and operators

Let $(E^n, \|\cdot\|_n)$ be a multi-normed space. A subset *B* of *E* is **multi-bounded** if

 $c_B := \sup_{n \in \mathbb{N}} \{ \| (x_1, \ldots, x_n) \|_n : x_1, \ldots, x_n \in B \} < \infty.$

Let $(E^n, \|\cdot\|_n)$ and $(F^n, \|\cdot\|_n)$ be multi-Banach spaces. An operator $T \in \mathcal{B}(E, F)$ is **multibounded** if T(B) is multi-bounded in F whenever B is multi-bounded in E. The set of these is a linear subspace $\mathcal{M}(E, F)$ of $\mathcal{B}(E, F)$; $\mathcal{M}(E)$ is a Banach algebra.

Theorem An operator $T \in \mathcal{B}(E, F)$ is multibounded iff it is 'multi-continuous'.

For $T_1, ..., T_n \in \mathcal{M}(E, F)$, set $\|(T_1, ..., T_n)\|_{mb,n} = \sup\{c_{T_1(B)\cup \cdots \cup T_n(B)} : c_B \leq 1\}.$

Theorem Now $(\mathcal{M}(E, F)^n, \|\cdot\|_{mb,n})$ is a multi-Banach space, and $(\mathcal{M}(E)^n, \|\cdot\|_{mb,n})$ is a 'multi-Banach algebra'.

Regular operators

An operator between Banach lattices is **regular** if it is a linear combination of positive operators.

Theorem Let $E = \ell^p$ and $F = \ell^q$, where $p, q \ge 1$. Regard them as multi-normed spaces with the standard (p, p)- and (q, q)-multi-norms, respectively. Then $\mathcal{M}(E, F)$ consists exactly of the regular operators.

There are several other theorems in **[DLOT]** relating multi-bounded operators to known classes of operators between Banach lattices.

(p,q)-multi-bounded sets

Suppose that $1 \le p \le q < \infty$, and take a Banach space E.

Definition The space $\mathcal{B}_{p,q}(\ell^1, E)$ is the subspace of $\mathcal{B}(\ell^1, E)$ consisting of the operators T such that $\{T(\delta_k) : k \in \mathbb{N}\}$ is (p,q)-multibounded in E.

It is a Banach space with respect to the multibounded norm.

Theorem Take $T \in \mathcal{B}(\ell^1, E)$. Then $T \in \mathcal{B}_{p,q}(\ell^1, E)$ iff $T' \in \prod_{q,p}(E', \ell^\infty)$.

Proof Calculations using the definitions. \Box

Theorem Each (p,q)-multi-bounded set in E is relatively weakly compact.

Proof Use the above theorem. By the Pietsch factorization theorem, every p-summing operator is weakly compact, so T', and hence T, are weakly compact. Then use Eberlein-Šmulian.

 \square

Equivalences of multi-norms

Definition [**DP2**] Let $(E, \|\cdot\|)$ be a normed space. Suppose that both $(\|\cdot\|_n^1)$ and $(\|\cdot\|_n^2)$ are multi-norms on E. Then $(\|\cdot\|_n^2)$ **dominates** $(\|\cdot\|_n^1)$, written $(\|\cdot\|_n^1) \preccurlyeq (\|\cdot\|_n^2)$, if there is a constant C > 0 such that

$$\|\boldsymbol{x}\|_n^1 \leq C \, \|\boldsymbol{x}\|_n^2 \quad (\boldsymbol{x} \in E^n, \, n \in \mathbb{N}) \, .$$

The two multi-norms are **equivalent**, written

$$(\|\cdot\|_n^1) \cong (\|\cdot\|_n^2)$$

if each dominates the other.

Interpretation in terms of summing operators

Theorem (DDPR2) Let E be a normed space. Then $(\|\cdot\|_n^{(p_1,q_1)}) \cong (\|\cdot\|_n^{(p_2,q_2)})$ if and only if $\Pi_{q_1,p_1}(E',c_0) = \Pi_{q_2,p_2}(E',c_0)$ as subsets of $\mathcal{B}(E',c_0)$.

Thus the theory of equivalence of these multinorms could be a theory of (q, p)-summing operators.

We wish to decide when various pairs of multinorms are mutually equivalent - for example, what about (p,q)-multi-norms on ℓ^r ?

For detailed calculations which give an almost complete solution, see **[BDP]**.

A triangle with curves

Look at the 'triangle'

$$\mathcal{T} = \{(p,q) : 1 \le p \le q < \infty\}.$$

For $c \in [0, 1)$, look at the curve C_c :

$$\mathcal{C}_c = \left\{ (p,q) \in \mathcal{T} : \frac{1}{p} - \frac{1}{q} = c \right\}.$$

Take $r \in (1, \infty)$. Then the curve $C_{1/r}$ meets the line p = 1 at the point (1, r'). The union of these curves is \mathcal{T} .

Sample solution: The case where $r \ge 2$

Theorem [BDP] Take $r \ge 2$ and $E = \ell^r$. Then the triangle \mathcal{T} decomposes into the following (mutually disjoint) equivalence classes:

•
$$\mathcal{T}_{\min} := A_r = \{(p,q) \in \mathcal{T} : 1/p - 1/q \ge 1/2\};$$

• the curves $\mathcal{T}_c := \{(p,q) \in \mathcal{C}_c \colon 1 \leq p \leq 2\}$, for $c \in [0,1/2);$

• the singletons $\mathcal{T}_{(p,q)} := \{(p,q)\}$ for $(p,q) \in \mathcal{T}$ with p > 2.

The solutions are not quite complete in the case where 1 < r < 2.

Key inequalities: generalized Hölder, Khinchine, Grothendieck; Rademacher functions.

Multi-Banach algebras

Let $(A, \|\cdot\|)$ be a Banach algebra, and let

 $((A^n, \|\cdot\|_n) : n \in \mathbb{N})$

be a multi-normed space. Then $(A^n, \|\cdot\|_n)$ is a **multi-Banach algebra** if multiplication is a multi-bounded bilinear operator, and so

 $\|(a_1b_1,\ldots,a_nb_n)\|_n \leq \|(a_1,\ldots,a_n)\|_n \|(b_1,\ldots,b_n)\|_n.$

Examples (1) Each Banach algebra is a multi-Banach algebra with respect to both the minimum and maximum multi-norms.

(2) Take $1 \le p \le q < \infty$. Then (ℓ^p, \cdot) is a multi-Banach algebra with respect to the standard (p,q)-multi-norm.

(3) Let G be a locally compact group. Then the group algebra $(L^1(G), \star)$ with the standard (1, 1)-multi-norm is a multi-Banach algebra.

(4) For each multi-Banach space $(E^n, \|\cdot\|_n)$, $(\mathcal{M}(E)^n, \|\cdot\|_{mb,n})$ is a multi-Banach algebra. \Box