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Basic definitions

Let (E, ‖ · ‖) be a normed space. The closed
unit ball is E[1] and the dual space is E′.

A multi-norm on {En : n ∈ N} is a sequence
(‖ · ‖n) such that each ‖ · ‖n is a norm on En,
such that ‖x‖1 = ‖x‖ for each x ∈ E, and such
that the following hold for all n ∈ N and all
x1, . . . , xn ∈ E:

(A1)
∥∥∥(xσ(1), . . . , xσ(n))

∥∥∥
n

= ‖(x1, . . . , xn)‖n
for each permutation σ of {1, . . . , n};

(A2) ‖(α1x1, . . . , αnxn)‖n

≤ (maxi∈Nn |αi|) ‖(x1, . . . , xn)‖n

for each α1, . . . , αn ∈ C ;

(A3) ‖(x1, . . . , xn,0)‖n+1 = ‖(x1, . . . , xn)‖n ;

(A4) ‖(x1, . . . , xn, xn)‖n+1 = ‖(x1, . . . , xn)‖n.

See [DP2].
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Dual multi-norms

For a dual multi-norm, replace (A4) by:

(B4) ‖(x1, . . . , xn, xn)‖n+1 = ‖(x1, . . . , xn−1,2xn)‖n.

Let (‖ · ‖n) be a multi-norm or dual multi-norm

based on a space E. Then we have a multi-

normed space and a dual multi-normed space,

respectively. They are multi-Banach spaces

and dual multi-Banach spaces when E is

complete.

Let ‖ · ‖n be a norm on En. Then ‖ · ‖′n is the

dual norm on (En)′, identified with (E′)n.

The dual of (En, ‖ · ‖n) is ((E′)n, ‖ · ‖′n). The

dual of a multi-normed space is a dual multi-

Banach space; the dual of a dual multi-normed

space is a multi-Banach space. See [DP2].
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What are multi-norms good for?

1) Solving some specific questions - for exam-
ple, characterizing when some modules over
group algebras are injective [DDPR1 and sec-
ond talk].

2) Understanding the geometry of Banach spaces
that goes beyond the shape of the unit ball.

3) Throwing light on absolutely summing op-
erators

4) Giving a theory [DP2, DLOT] of ‘multi-
bounded linear operators’ between Banach spaces.

5) Giving results about Banach lattices [DP2,
DLOT].

6) Giving a theory of decompositions [DP2] of
Banach spaces generalizing known theories.

7) Possible generalizations to ‘Multi-Banach
algebras’; L1(G) is a good example.
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Minimum and maximum multi-norms

Let (En, ‖ · ‖n) be a multi-normed space or a

dual multi-normed space. Then

max ‖xi‖ ≤ ‖(x1, . . . , xn)‖n ≤
n∑
i=1

‖xi‖ (∗)

for all x1, . . . , xn ∈ E and n ∈ N.

Example 1 Set ‖(x1, . . . , xn)‖min
n = max ‖xi‖.

This gives the minimum multi-norm.

Example 2 It follows from (*) that there is

also a maximum multi-norm, which we call

(‖ · ‖max
n : n ∈ N).

Note that it is not true that
∑n
i=1 ‖xi‖ gives

the maximum multi-norm — because it is not

a multi-norm. (It is a dual multi-norm.)
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A characterization of multi-norms

Give Mm,n a norm by identifying it with B(`∞n , `∞m ).

Let E be a normed space. Then Mm,n acts

from En to Em in the obvious way.

Consider a sequence (‖ · ‖n) such that each

‖ · ‖n is a norm on En and such that ‖x‖1 = ‖x‖
for each x ∈ E.

Theorem [DP2] This sequence of norms is a

multi-norm if and only if

‖a · x‖m ≤ ‖a : `∞n → `∞m ‖ ‖x‖n
and a dual multi-norm if and only if

‖a · x‖m ≤
∥∥∥a : `1

n → `1
m

∥∥∥ ‖x‖n
for all m,n ∈ N, a ∈ Mm,n, and x ∈ En. 2
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p -multi-norms

We could calculate ‖a‖ in different ways - for

example, by identifying Mm,n with B(` pn, `
p
m) for

other values of p. Thus a sequence of norms

(‖ · ‖n) is a p -multi-norm if

‖a · x‖m ≤ ‖a : ` pn → ` pm‖ ‖x‖n
for all m,n ∈ N, a ∈ Mm,n, and x ∈ En.

The sequence (‖ · ‖n) is a strong p -multi-norm

if ‖y‖n ≤ ‖x‖m whenever m,n ∈ N, x ∈ Em,

y ∈ En, and ‖〈y, λ〉‖`pn ≤ ‖〈x, λ〉‖`pm for all λ ∈ E′.

A strong p -multi-norm is a p -multi-norm; they

are the same iff p = 2 or p =∞.

See the memoir [DLOT], which generalizes

much of the earlier material.
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Another characterization

This is taken from [DDPR1]. It gives a

‘coordinate-free’ characterization.

Let (E, ‖ · ‖) be a normed space. Then a

c0-norm on c0 ⊗ E is a norm ‖ · ‖ such that:

1) ‖a⊗ x‖ ≤ ‖a‖ ‖x‖ (a ∈ c0, x ∈ E);

2) T ⊗ IE is bounded on (c0 ⊗ E, ‖ · ‖) with

‖T ⊗ IE‖ = ‖T‖ whenever T is a compact

operator on c0;

3) ‖δ1 ⊗ x‖ = ‖x‖ (x ∈ E).

Each c0-norm is a reasonable cross-norm; we

can replace ‘T is compact’ by ‘T is bounded’.

.
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The connection

Theorem Multi-norms on {En : n ∈ N}
correspond to c0-norms on c0 ⊗E. The injec-

tive tensor product norm gives the minimum

multi-norm, and the projective tensor product

norm gives the maximum multi-norm 2

The recipe is: given a c0-norm ‖ · ‖, set

‖(x1, . . . , xn)‖n =

∥∥∥∥∥∥
n∑

j=1

δj ⊗ xj

∥∥∥∥∥∥ (x1, . . . , xn ∈ E) .

Thus the theory of multi-norms could be a

theory of norms on tensor products.

There is a similar identification of p -multi-norms

with ` p ⊗ E in [DLOT].

Helemski has a generalization to Lp(Ω)⊗ E.
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Banach lattice multi-norms

Let (E, ‖ · ‖) be a complex Banach lattice.

Examples Lp(Ω), L∞(Ω), or C(K) with the

usual norms and the obvious lattice operations

are all (complex) Banach lattices.

Definition [DP2] Let (E, ‖ · ‖) be a Banach

lattice. For n ∈ N and x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |xn| ‖

and

‖(x1, . . . , xn)‖DLn = ‖ |x1|+ · · ·+ |xn| ‖ .

Then (En, ‖ · ‖Ln) is a multi-Banach space. It is

the Banach lattice multi-norm. Also

(En, ‖ · ‖DLn ) is a dual multi-Banach space. It is

the dual Banach lattice multi-norm.

Each is the dual of the other.
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The canonical lattice p -multi-norm

Let E be a Banach lattice, and take p with

1 ≤ p ≤ ∞. Set

‖(x1, . . . , xn)‖L,pn =

∥∥∥∥∥∥∥
 n∑
i=1

|xi|p
1/p

∥∥∥∥∥∥∥
for x1, . . . , xn ∈ E. Then the sequence (‖ · ‖L,pn )

is a strong p -multi-norm.

We recover lattice multi-norms with p =∞ and

dual lattice multi-norms with p = 1.
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A representation theorem

Clause (1) below is basically a theorem of Pisier,

as given in a thesis of a student, Marcolino

Nhani. Our approach is different. The main

theorem of [DLOT] is a similar representation

theorem for strong p -multi-norms; the word

‘strong’ is essential.

Theorem

(1) Let (En, ‖ · ‖n) be a multi-Banach space.

Then there is a Banach lattice X such that

(En, ‖ · ‖n) is multi-isometric to (Y n, ‖ · ‖Ln) for

a closed subspace Y of X.

(2) Let (En, ‖ · ‖n) be a dual multi-Banach space.

Then there is a Banach lattice X such that

(En, ‖ · ‖n) is multi-isometric to ((X/Y )n, ‖ · ‖DLn )

for a closed subspace Y of X. 2
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Summing norms - I

Take p ∈ [1,∞). For x1, . . . , xn ∈ E, set

µp,n(x1, . . . , xn) = sup
λ∈E′

[1]


 n∑
j=1

∣∣∣〈xj, λ〉∣∣∣p
1/p

 .

This is the weak p -summing norm. For

example, we can see that

µ1,n(x1, . . . , xn) = sup


∥∥∥∥∥∥
n∑

j=1

ζjxj

∥∥∥∥∥∥ : ζ1, . . . , ζn ∈ T

 .

For λ1, . . . , λn ∈ E′, we have

µ1,n(λ1, . . . , λn) = sup


n∑

j=1

∣∣∣〈x, λj〉∣∣∣ : x ∈ E[1]

 .

Theorem [DP2] The dual of ‖ · ‖max
n is µ1,n. 2
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The (p, q) –multi-norm

Let E be a Banach space, and take p, q with

1 ≤ p ≤ q <∞. Define

‖(x1, . . . , xn)‖(p,q)n = sup


 n∑
j=1

∣∣∣〈xj, λj〉∣∣∣q
1/q

 ,

taking the sup over all λ1, . . . , λn ∈ E′ with

µp,n(λ1, . . . , λn) ≤ 1.

Fact [DP2]: {(En, ‖ · ‖(p,q)n ) : n ∈ N} is a multi-

Banach space.

Then (‖ · ‖(p,q)n ) is the (p, q) –multi-norm based

on E.

Remarks (1) The (1,1)-multi-norm is the

maximum multi-norm based on E.

(2) The (p, q) –multi-norm over E′′, when re-

stricted to E, is the (p, q) –multi-norm over E.

15



The standard t-multi-norm on Lr(Ω)

Let Ω be a measure space, and take r, t with
1 ≤ r ≤ t <∞. We consider the Banach space
Lr(Ω), with the usual Lr-norm ‖ · ‖. (Think of
` r.)

For each family X = {X1, . . . , Xn} of pairwise-
disjoint measurable subsets of Ω such that
X1 ∪ · · · ∪Xn = Ω, we set

rX((f1, . . . , fn)) =
(∥∥∥PX1

f1

∥∥∥t + · · ·+
∥∥∥PXnfn∥∥∥t)1/t

,

where PX : Lr(Ω)→ Lr(X) is the natural
projection.

Finally, ‖(f1, . . . , fn)‖[t]n = supX rX((f1, . . . , fn)).

This is the standard t-multi-norm (on Lr(Ω))
from [DP2].

Remark Let t = r.Then

‖(f1, . . . , fn)‖[r]n = ‖ |f1| ∨ · · · ∨ |fn| ‖ ,
which is the lattice multi-norm on Lr(Ω).
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Summing norms - II

Again 1 ≤ p ≤ q <∞, and E and F are Banach

spaces. For T ∈ B(E,F ), π(n)
q,p (T ) is

sup


 n∑
j=1

∥∥∥Txj∥∥∥q
1/q

: µp,n(x1, . . . , xn) ≤ 1

 .

Definition Let T ∈ B(E,F ). Suppose that

πq,p(T ) := lim
n→∞π

(n)
q,p (T ) <∞ .

Then T is (q, p)-summing; the set of these is

Πq,p(E,F ). This gives a Banach space.

The much-studied space Πq,p(E,F ) is a com-

ponent of an operator ideal: see the book of

Pietsch.
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A connection

Let E be a normed space. Take n ∈ N and

x = (x1, . . . , xn) ∈ En, and define

Tx : (ζ1, . . . , ζn) 7→
n∑

j=1

ζjxj , Cn → E .

Then µp,n(x) =
∥∥∥∥Tx : `p

′
n → E

∥∥∥∥ for p ≥ 1.

It follows that

‖x‖(p,q)n = πq,p(T
′
x : E′ → c0) .

This leads to:

Theorem Let E be a normed space, and sup-

pose that 1 ≤ p ≤ q < ∞. Then the (p, q)-

multi-norm induces the norm on c0 ⊗ E given

by embedding c0 ⊗ E into Πq,p(E′, c0). 2
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Multi-bounded sets and operators

Let (En, ‖ · ‖n) be a multi-normed space. A
subset B of E is multi-bounded if

cB := sup
n∈N
{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B} <∞ .

Let (En, ‖ · ‖n) and (Fn, ‖ · ‖n) be multi-Banach
spaces. An operator T ∈ B(E,F ) is multi-
bounded if T (B) is multi-bounded in F when-
ever B is multi-bounded in E. The set of these
is a linear subspaceM(E,F ) of B(E,F ); M(E)
is a Banach algebra.

Theorem An operator T ∈ B(E,F ) is multi-
bounded iff it is ‘multi-continuous’. 2

For T1, . . . , Tn ∈M(E,F ), set

‖(T1, . . . , Tn)‖mb,n = sup{cT1(B)∪···∪Tn(B) : cB ≤ 1} .

Theorem Now (M(E,F )n, ‖ · ‖mb,n) is a multi-
Banach space, and (M(E)n, ‖ · ‖mb,n) is a ‘multi-
Banach algebra’. 2
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Regular operators

An operator between Banach lattices is reg-

ular if it is a linear combination of positive

operators.

Theorem Let E = ` p and F = ` q, where

p, q ≥ 1. Regard them as multi-normed spaces

with the standard (p, p)- and (q, q)-multi-norms,

respectively. ThenM(E,F ) consists exactly of

the regular operators. 2

There are several other theorems in [DLOT]

relating multi-bounded operators to known

classes of operators between Banach lattices.
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(p, q)-multi-bounded sets

Suppose that 1 ≤ p ≤ q < ∞, and take a Ba-
nach space E.

Definition The space Bp,q(`1, E) is the sub-
space of B(`1, E) consisting of the operators
T such that {T (δk) : k ∈ N} is (p, q)-multi-
bounded in E.

It is a Banach space with respect to the multi-
bounded norm.

Theorem Take T ∈ B(`1, E). Then T ∈ Bp,q(`1, E)
iff T ′ ∈ Πq,p(E′, `∞).

Proof Calculations using the definitions. 2

Theorem Each (p, q)-multi-bounded set in E
is relatively weakly compact.

Proof Use the above theorem. By the Pietsch
factorization theorem, every p -summing oper-
ator is weakly compact, so T ′, and hence T , are
weakly compact. Then use Eberlein-Šmulian. 2
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Equivalences of multi-norms

Definition [DP2] Let (E, ‖ · ‖) be a normed

space. Suppose that both (‖ · ‖1n) and (‖ · ‖2n)

are multi-norms on E. Then (‖ · ‖2n) domi-

nates (‖ · ‖1n), written (‖ · ‖1n) 4 (‖ · ‖2n), if there

is a constant C > 0 such that

‖x‖1n ≤ C ‖x‖
2
n (x ∈ E n, n ∈ N) .

The two multi-norms are equivalent, written

(‖ · ‖1n) ∼= (‖ · ‖2n)

if each dominates the other.
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Interpretation in terms of summing

operators

Theorem (DDPR2) Let E be a normed space.

Then (‖ · ‖(p1,q1)
n ) ∼= (‖ · ‖(p2,q2)

n ) if and only if

Πq1,p1(E′, c0) = Πq2,p2(E′, c0) as subsets of

B(E′, c0). 2

Thus the theory of equivalence of these multi-

norms could be a theory of (q, p)-summing op-

erators.

We wish to decide when various pairs of multi-

norms are mutually equivalent - for example,

what about (p, q)-multi-norms on ` r?

For detailed calculations which give an almost

complete solution, see [BDP].
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A triangle with curves

Look at the ‘triangle’

T = {(p, q) : 1 ≤ p ≤ q <∞} .

For c ∈ [0,1), look at the curve Cc:

Cc =

{
(p, q) ∈ T :

1

p
−

1

q
= c

}
.

Take r ∈ (1,∞). Then the curve C1/r meets

the line p = 1 at the point (1, r′). The union

of these curves is T .
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Sample solution: The case where r ≥ 2

Theorem [BDP] Take r ≥ 2 and E = ` r.

Then the triangle T decomposes into the fol-

lowing (mutually disjoint) equivalence classes:

• Tmin := Ar = {(p, q) ∈ T : 1/p− 1/q ≥ 1/2};

• the curves Tc := {(p, q) ∈ Cc : 1 ≤ p ≤ 2}, for

c ∈ [0,1/2);

• the singletons T(p,q) := {(p, q)} for (p, q) ∈ T
with p > 2.

The solutions are not quite complete in the

case where 1 < r < 2.

Key inequalities: generalized Hölder, Khinchine,

Grothendieck; Rademacher functions.
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Multi-Banach algebras

Let (A, ‖ · ‖) be a Banach algebra, and let

((An, ‖ · ‖n) : n ∈ N)

be a multi-normed space. Then (An, ‖ · ‖n) is
a multi-Banach algebra if multiplication is a
multi-bounded bilinear operator, and so

‖(a1b1, . . . , anbn)‖n ≤ ‖(a1, . . . , an)‖n ‖(b1, . . . , bn)‖n .

Examples (1) Each Banach algebra is a multi-
Banach algebra with respect to both the min-
imum and maximum multi-norms.

(2) Take 1 ≤ p ≤ q < ∞. Then (` p, · ) is a
multi-Banach algebra with respect to the stan-
dard (p, q)-multi-norm.

(3) Let G be a locally compact group. Then
the group algebra (L1(G), ?) with the standard
(1,1)-multi-norm is a multi-Banach algebra.

(4) For each multi-Banach space (En, ‖ · ‖n),
(M(E)n, ‖ · ‖mb,n) is a multi-Banach algebra. 2
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