Local convexity in the space of measurable functions

Denny H. Leung

National University of Singapore

Abstract Harmonic Analysis National Sun Yat-sen University June 2018

Joint work with Niushan Gao and Foivos Xanthos, Ryerson University

 $(\Omega, \Sigma, \mathbb{P})$: atomless probability space. $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $(\Omega, \Sigma, \mathbb{P})$: atomless probability space.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

 $(\Omega, \Sigma, \mathbb{P})$: atomless probability space.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

It is not locally convex; in fact, $L^0(\mathbb{P})^* = \{0\}$.

 $(\Omega, \Sigma, \mathbb{P})$: atomless probability space.

 $L^0(\mathbb{P})$: the space of all real-valued measurable functions, endowed with the topology of convergence in probability.

 $L^0(\mathbb{P})$ is a completely metrizable TVS.

It is not locally convex; in fact, $L^0(\mathbb{P})^* = \{0\}$.

General Question: What does local convexity on a subset do?

A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).

A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).

• $\mathbb{Q} \sim \mathbb{P}$ if $\mathbb{Q} \ll \mathbb{P}$ and $\mathbb{P} \ll \mathbb{Q}$.

A subset S of L⁰(ℙ) is bounded in probability if it is a bounded subset of the TVS L⁰(ℙ). Same as

$$\lim_{n\to\infty}\sup\{\mathbb{P}(|f|>n):f\in S\}=0.$$

If (f_n) is a sequence in L⁰(ℙ), and g_k ∈ co(f_n)[∞]_{n=k} for all k, then (g_n) is a sequence of forward convex combinations (FCCs) of (f_n).

•
$$\mathbb{Q} \sim \mathbb{P}$$
 if $\mathbb{Q} \ll \mathbb{P}$ and $\mathbb{P} \ll \mathbb{Q}$.

Theorem. [Kadaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- 1. All FCCs of (f_n) converges to f in probability.
- 2. The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0$.

Theorem. [Kadaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that *K* is \mathbb{Q} -uniform integrable.

Theorem. [Kadaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Theorem. [Kadaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

- Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?
- Q2 Are (2) and (3) equivalent for closed convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Theorem. [Kadaras. JFA 2014] Let K be a convex positive solid subset of $L^0_+(\mathbb{P})$ that is bounded in probability. TFAE.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Questions:

- Q1 Are (1) and (2) equivalent for convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?
- Q2 Are (2) and (3) equivalent for closed convex sets in $L^0_+(\mathbb{P})$ that are bounded in probability?

Example. Let $K = \{ f \in L^1_+(\mathbb{P}) : \int f d\mathbb{P} = 1 \}$. Then K satisfies (2) but not (3).

Nonpositive sets & "de-switching"

[Branath-Schachermayer. LNM 1999] Let K be a convex set in $L^0_+(\mathbb{P})$ that is bounded in probability. Then there exists $\mathbb{Q} \sim \mathbb{P}$ so that K is a bounded set in $L^1(\mathbb{Q})$.

Nonpositive sets & "de-switching"

[Branath-Schachermayer. LNM 1999] Let K be a convex set in $L^0_+(\mathbb{P})$ that is bounded in probability. Then there exists $\mathbb{Q} \sim \mathbb{P}$ so that K is a bounded set in $L^1(\mathbb{Q})$.

We generalize the questions above to *bounded* convex sets in $L^1(\mathbb{P})$.

It is also convenient to eliminate the switching of probabilities. **Proposition**. Let K be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 2. For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that *K* is \mathbb{Q} -uniform integrable.
- For any ε > 0, there is a measurable set A with P(A) > 1 − ε so that K_A = {f χ_A : f ∈ K} is P-uniformly integrable.

It is also convenient to eliminate the switching of probabilities. **Proposition**. Let K be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 2. For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.
- 4. For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that $K_A = \{f\chi_A : f \in K\}$ is \mathbb{P} -uniformly integrable.

Then (1) \iff (2) and (3) \iff (4).

It is also convenient to eliminate the switching of probabilities. **Proposition**. Let K be a convex bounded set in $L^1(\mathbb{P})$. Consider the following conditions.

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 2. For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.
- 4. For any $\varepsilon > 0$, there is a measurable set A with $\mathbb{P}(A) > 1 \varepsilon$ so that $K_A = \{f\chi_A : f \in K\}$ is \mathbb{P} -uniformly integrable.

Then (1) \iff (2) and (3) \iff (4). Remark. To get (2), it suffices to obtain the following: For any measurable A with $\mathbb{P}(A) > 0$, there exists measurable $B \subseteq A$ with $\mathbb{P}(B) > 0$ so that $||(f_n - f)\chi_B||_{L^1(\mathbb{P})} \to 0$ for any $f_n, f \in K$ so that $f_n \to f$ in probability.

Theorem. [Komlos. Acta MAS Hung. 1967] Let (f_n) be a bounded sequence in $L^1(\mathbb{P})$, there is a subsequence (f_{n_k}) and a function $f \in L^1(\mathbb{P})$ so that $(\frac{1}{m} \sum_{k=1}^m f_{n_k})_m$ converges a.e. to f.

Theorem. [Komlos. Acta MAS Hung. 1967] Let (f_n) be a bounded sequence in $L^1(\mathbb{P})$, there is a subsequence (f_{n_k}) and a function $f \in L^1(\mathbb{P})$ so that $(\frac{1}{m} \sum_{k=1}^m f_{n_k})_m$ converges a.e. to f. A subset S in $L^0(\mathbb{P})$ is *solid* if $|g| \leq |f|$ and $f \in S$ imply $g \in S$.

Theorem. [Komlos. Acta MAS Hung. 1967] Let (f_n) be a bounded sequence in $L^1(\mathbb{P})$, there is a subsequence (f_{n_k}) and a function $f \in L^1(\mathbb{P})$ so that $(\frac{1}{m} \sum_{k=1}^m f_{n_k})_m$ converges a.e. to f.

A subset S in $L^0(\mathbb{P})$ is *solid* if $|g| \le |f|$ and $f \in S$ imply $g \in S$.

One can use Komlos' Theorem to show that **Theorem**. Let K be a convex bounded set in $L^1(\mathbb{P})$. Assume that either K is $L^0(\mathbb{P})$ -closed or solid. TFAE

- There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable.

Theorem. [Komlos. Acta MAS Hung. 1967] Let (f_n) be a bounded sequence in $L^1(\mathbb{P})$, there is a subsequence (f_{n_k}) and a function $f \in L^1(\mathbb{P})$ so that $(\frac{1}{m} \sum_{k=1}^m f_{n_k})_m$ converges a.e. to f.

A subset S in $L^0(\mathbb{P})$ is *solid* if $|g| \le |f|$ and $f \in S$ imply $g \in S$.

One can use Komlos' Theorem to show that **Theorem**. Let K be a convex bounded set in $L^1(\mathbb{P})$. Assume that either K is $L^0(\mathbb{P})$ -closed or solid. TFAE

 There exists Q ~ P such that K is bounded in L¹(Q) and that the L⁰(Q)- and L¹(Q)-topologies agree on K.

2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniform integrable. In particular, "Yes" for Q2. Aim: To characterize the condition that there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K, where K is convex bounded in $L^1(\mathbb{P})$.

Aim: To characterize the condition that there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K, where K is convex bounded in $L^1(\mathbb{P})$.

Definition. Let *S* be a nonempty subset of *K*. We say that the $L^0(\mathbb{P})$ -topology is *uniformly locally convex solid* on *S* if for each $L^0(\mathbb{P})$ -neighborhood *U* of 0, there is a convex solid set $W \subseteq U$ such that for each $f \in S$, $(f + W) \cap K$ is a neighborhood of *f* for the restriction of the $L^0(\mathbb{P})$ -topology to *K*.

A separation theorem and its consequence

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$ and let S be a nonempty subset of K. Assume that the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on S. If A is a measurable set with $\mathbb{P}(A) > 0$, then there exists $0 \neq g \in L^{\infty}_{+}(\mathbb{P})$, supp $g \subseteq A$ such that

$$\int |f_n - f|g \ d\mathbb{P} \to 0 \text{ if } f_n, f \in K \text{ and } f_n \to f \text{ in probability.}$$

A separation theorem and its consequence

Theorem. Let K be a convex bounded set in $L^1(\mathbb{P})$ and let S be a nonempty subset of K. Assume that the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on S. If A is a measurable set with $\mathbb{P}(A) > 0$, then there exists $0 \neq g \in L^{\infty}_{+}(\mathbb{P})$, supp $g \subseteq A$ such that

$$\int |f_n - f| g \ d\mathbb{P} \to 0 \text{ if } f_n, f \in K \text{ and } f_n \to f \text{ in probability.}$$

Idea: Find a sequence of convex solid sets W_k and r > 0 so that

- For each f ∈ S, (f + W_k) ∩ K is a neighborhood of f for the restriction of the L⁰(P)-topology to K.
- 2. g is a linear functional that separates $rB_{L^1(\mathbb{P})}$ and kW_k on one side and χ_A on the other.

The same ideas can be used to prove the following:

Theorem. Let (X, τ) be a real Hausdorff TVS. Let K be a convex circled set in X. Suppose that the restriction of τ to K is locally convex (at 0). The set of all linear functionals on X that are τ -continuous on K separates points of K.

A characterization

Theorem. Let K be a bounded convex set in $L^1(\mathbb{P})$. TFAE

- 1. The $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.

A characterization

Theorem. Let K be a bounded convex set in $L^1(\mathbb{P})$. TFAE

- 1. The $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K.
- There exists Q ~ P such that the L⁰(Q)- and L¹(Q)-topologies agree on K.

Remark. If K is also circled, then the $L^0(\mathbb{P})$ -topology is uniformly locally convex solid on K if and only if it is locally convex solid at 0.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ and $L^1(\mathbb{Q})$ -topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ and $L^1(\mathbb{Q})$ -topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ and $L^1(\mathbb{Q})$ -topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ and $L^1(\mathbb{Q})$ -topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K. Choose a solid neighborhood of 0 in $L^0(\mathbb{P})$, V, so that $V \cap K \subseteq C \cap K$.

- 1. The $L^0(\mathbb{P})$ -topology is locally convex on K.
- 2. There exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ and $L^1(\mathbb{Q})$ -topologies agree on K.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that K is \mathbb{Q} -uniformly integrable.

Assume (1). Let U be an $L^0(\mathbb{P})$ -neighborhood of 0. There is a convex set $C \subseteq U$ so that $C \cap K$ is an $L^0(\mathbb{P})$ -neighborhood of 0 in K. Choose a solid neighborhood of 0 in $L^0(\mathbb{P})$, V, so that $V \cap K \subseteq C \cap K$. Since $V \cap K$ is solid, $W = \operatorname{co}(V \cap K)$ is a solid convex set

contained in $C \subseteq U$ and $W \cap K$ is a neighborhood of 0 in K.

A counterexample

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded convex circled set K in $L^1(0,1)$ that is $L^0(\mathbb{P})$ -compact so that the $L^0(\mathbb{P})$ -topology is locally convex on K, but there does not exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded convex circled set K in $L^1(0,1)$ that is $L^0(\mathbb{P})$ -compact so that the $L^0(\mathbb{P})$ -topology is locally convex on K, but there does not exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$.

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded convex circled set K in $L^1(0,1)$ that is $L^0(\mathbb{P})$ -compact so that the $L^0(\mathbb{P})$ -topology is locally convex on K, but there does not exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$.

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded convex circled set K in $L^1(0, 1)$ that is $L^0(\mathbb{P})$ -compact so that the $L^0(\mathbb{P})$ -topology is locally convex on K, but there does not exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$. Define F_n on \mathbb{R} by $F_n(x) = \frac{1}{\beta_n} I_{[-k_n,k_n]}(x)$.

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded convex circled set K in $L^1(0, 1)$ that is $L^0(\mathbb{P})$ -compact so that the $L^0(\mathbb{P})$ -topology is locally convex on K, but there does not exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Let (X_n) be a sequence of independent RVs with the Cauchy distribution $(\sim \frac{1}{\pi(1+x^2)})$. Let $1 , <math>k_n = n(\log(n+2))^p$ and $\beta_n = \log((1+k_n^2))$. Define F_n on \mathbb{R} by $F_n(x) = \frac{1}{\beta_n} I_{[-k_n,k_n]}(x)$. Set $Y_n = F_n(X_n)$ and

$$K = \{\sum a_n Y_n : \sum |a_n| \le 1\}.$$

୍ର ବ୍ 13 / 17

Back to the positive case

Theorem. [Kadaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- 1. All FCCs of (f_n) converges to f in probability.
- 2. The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0.$

Back to the positive case

Theorem. [Kadaras-Zitkovic. PAMS 2013] Let $f_n, f \in L^0_+(\mathbb{P})$, where (f_n) converges to f in probability. TFAE

- 1. All FCCs of (f_n) converges to f in probability.
- 2. The $L^0(\mathbb{P})$ -topology is locally convex on $co((f_n) \cup \{f\})$.
- 3. There exists $\mathbb{Q} \sim \mathbb{P}$ such that (f_n) is $L^1(\mathbb{Q})$ -bounded and that $\|f_n f\|_{L^1(\mathbb{Q})} \to 0$.

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Then for any $f \in K$ and any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $\|(f_n - f)\chi_A\|_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to *f* in probability.

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Let *S* be a countable set in *K*. Then for any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $||(f_n - f)\chi_A||_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to some $f \in S$ in probability.

Corollary. Let *K* be a bounded convex set in $L^1_+(\mathbb{P})$. Assume that the $L^0(\mathbb{P})$ -topology is locally convex on *K*. Let *S* be a countable set in *K*. Then for any $\varepsilon > 0$, there is a measurable set *A* with $\mathbb{P}(A) > 1 - \varepsilon$ so that $||(f_n - f)\chi_A||_{L^1(\mathbb{P})} \to 0$ for any sequence (f_n) in *K* that converges to some $f \in S$ in probability.

The following is a sort of generalization of [Kadaras-Zitkovic].

Proposition. Let (f_n) be a bounded sequence in $L^1_+(\mathbb{P})$ and let $K = co(f_n)$. If the $L^0(\mathbb{P})$ -topology is locally convex on K, then there exists $\mathbb{Q} \sim \mathbb{P}$ such that the $L^0(\mathbb{Q})$ - and $L^1(\mathbb{Q})$ -topologies agree on K.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

$$h_k \rightarrow \frac{1}{2}g + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} = \sum_{n=1}^m b_n f_n + (1-b)f_{m+1} \in S.$$

うへで 16/17

Let

$$S = \{\sum b_n f_n : (b_n) \in c_{00}, b_n \in \mathbb{Q}_+, \sum b_n = 1\}.$$

Given $\varepsilon > 0$, choose A as in the Corollary for set S. Say $g_k \in K$, $g_k \to g = \sum_{n=1}^m c_n f_n \in K$ in probability. Choose $b_n \in \mathbb{Q}$, $b_n \ge \frac{c_n}{2}$, $1 \le n \le m$, and $b = \sum b_n \le 1$.

$$h_k = \frac{1}{2}g_k + \sum_{n=1}^m (b_n - \frac{c_n}{2})f_n + (1-b)f_{m+1} \in K,$$

$$h_k \to rac{1}{2}g + \sum_{n=1}^m (b_n - rac{c_n}{2})f_n + (1-b)f_{m+1} = \sum_{n=1}^m b_n f_n + (1-b)f_{m+1} \in S.$$

Thus $\|(g_k - g)\chi_A\|_{L^1(\mathbb{P})} \to 0.$

Thank You