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The setting

(Ω,Σ,P): atomless probability space.
L0(P): the space of all real-valued measurable functions, endowed
with the topology of convergence in probability.

L0(P) is a completely metrizable TVS.

It is not locally convex; in fact, L0(P)∗ = {0}.

General Question: What does local convexity on a subset do?
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Local convexity for subsets of L0(P)
I A subset S of L0(P) is bounded in probability if it is a

bounded subset of the TVS L0(P). Same as

lim
n→∞

sup{P(|f | > n) : f ∈ S} = 0.

I If (fn) is a sequence in L0(P), and gk ∈ co(fn)∞n=k for all k,
then (gn) is a sequence of forward convex combinations
(FCCs) of (fn).

I Q ∼ P if Q� P and P� Q.

Theorem. [Kadaras-Zitkovic. PAMS 2013] Let fn, f ∈ L0+(P),
where (fn) converges to f in probability. TFAE

1. All FCCs of (fn) converges to f in probability.

2. The L0(P)-topology is locally convex on co((fn) ∪ {f }).

3. There exists Q ∼ P such that (fn) is L1(Q)-bounded and that
‖fn − f ‖L1(Q) → 0.
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A subset S in L0+(P) is positive solid if 0 ≤ g ≤ f and f ∈ S imply
g ∈ S .

Theorem. [Kadaras. JFA 2014] Let K be a convex positive solid
subset of L0+(P) that is bounded in probability. TFAE.

1. The L0(P)-topology is locally convex on K .

2. There exists Q ∼ P such that K is bounded in L1(Q) and that
the L0(Q)- and L1(Q)-topologies agree on K .

3. There exists Q ∼ P such that K is Q-uniform integrable.

Questions:

Q1 Are (1) and (2) equivalent for convex sets in L0+(P) that are
bounded in probability?

Q2 Are (2) and (3) equivalent for closed convex sets in L0+(P)
that are bounded in probability?

Example. Let K = {f ∈ L1+(P) :
∫
f dP = 1}. Then K satisfies (2)

but not (3).
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Nonpositive sets & “de-switching”

[Branath-Schachermayer. LNM 1999] Let K be a convex set in
L0+(P) that is bounded in probability. Then there exists Q ∼ P so
that K is a bounded set in L1(Q).

We generalize the questions above to bounded convex sets in
L1(P).
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It is also convenient to eliminate the switching of probabilities.
Proposition. Let K be a convex bounded set in L1(P). Consider
the following conditions.

1. There exists Q ∼ P such that K is bounded in L1(Q) and that
the L0(Q)- and L1(Q)-topologies agree on K .

2. For any ε > 0, there is a measurable set A with P(A) > 1− ε
so that ‖(fn − f )χA‖L1(P) → 0 for any fn, f ∈ K so that
fn → f in probability.

3. There exists Q ∼ P such that K is Q-uniform integrable.

4. For any ε > 0, there is a measurable set A with P(A) > 1− ε
so that KA = {f χA : f ∈ K} is P-uniformly integrable.

Then (1) ⇐⇒ (2) and (3) ⇐⇒ (4).
Remark. To get (2), it suffices to obtain the following:
For any measurable A with P(A) > 0, there exists measurable
B ⊆ A with P(B) > 0 so that ‖(fn − f )χB‖L1(P) → 0 for any
fn, f ∈ K so that fn → f in probability.
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An application of Komlos’ Theorem

Theorem. [Komlos. Acta MAS Hung. 1967] Let (fn) be a
bounded sequence in L1(P), there is a subsequence (fnk ) and a
function f ∈ L1(P) so that ( 1

m

∑m
k=1 fnk )m converges a.e. to f .

A subset S in L0(P) is solid if |g | ≤ |f | and f ∈ S imply g ∈ S .

One can use Komlos’ Theorem to show that
Theorem. Let K be a convex bounded set in L1(P). Assume that
either K is L0(P)-closed or solid. TFAE

1. There exists Q ∼ P such that K is bounded in L1(Q) and that
the L0(Q)- and L1(Q)-topologies agree on K .

2. There exists Q ∼ P such that K is Q-uniform integrable.

In particular, “Yes” for Q2.
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Locally convex solid

Aim: To characterize the condition that there exists Q ∼ P such
that the L0(Q)- and L1(Q)-topologies agree on K , where K is
convex bounded in L1(P).

Definition. Let S be a nonempty subset of K . We say that the
L0(P)-topology is uniformly locally convex solid on S if for each
L0(P)-neighborhood U of 0, there is a convex solid set W ⊆ U
such that for each f ∈ S , (f + W ) ∩ K is a neighborhood of f for
the restriction of the L0(P)-topology to K .
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A separation theorem and its consequence

Theorem. Let K be a convex bounded set in L1(P) and let S be a
nonempty subset of K . Assume that the L0(P)-topology is
uniformly locally convex solid on S . If A is a measurable set with
P(A) > 0, then there exists 0 6= g ∈ L∞+ (P), supp g ⊆ A such that∫

|fn − f |g dP→ 0 if fn, f ∈ K and fn → f in probability.

Idea: Find a sequence of convex solid sets Wk and r > 0 so that

1. For each f ∈ S , (f + Wk) ∩ K is a a neighborhood of f for
the restriction of the L0(P)-topology to K .

2. g is a linear functional that separates rBL1(P) and kWk on one
side and χA on the other.
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A local Hahn-Banach Theorem

The same ideas can be used to prove the following:

Theorem. Let (X , τ) be a real Hausdorff TVS. Let K be a convex
circled set in X . Suppose that the restriction of τ to K is locally
convex (at 0). The set of all linear functionals on X that are
τ -continuous on K separates points of K .
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A characterization

Theorem. Let K be a bounded convex set in L1(P). TFAE

1. The L0(P)-topology is uniformly locally convex solid on K .

2. There exists Q ∼ P such that the L0(Q)- and
L1(Q)-topologies agree on K .

Remark. If K is also circled, then the L0(P)-topology is uniformly
locally convex solid on K if and only if it is locally convex solid at
0.
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Corollary. Let K be convex solid and bounded in L1(P). TFAE.

1. The L0(P)-topology is locally convex on K .

2. There exists Q ∼ P such that the L0(Q)- and
L1(Q)-topologies agree on K .

3. There exists Q ∼ P such that K is Q-uniformly integrable.

Assume (1). Let U be an L0(P)-neighborhood of 0.
There is a convex set C ⊆ U so that C ∩ K is an
L0(P)-neighborhood of 0 in K .
Choose a solid neighborhood of 0 in L0(P), V , so that
V ∩ K ⊆ C ∩ K .
Since V ∩ K is solid, W = co(V ∩ K ) is a solid convex set
contained in C ⊆ U and W ∩ K is a neigborhood of 0 in K .
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A counterexample

Example. (Based on [Pryce, P Edin MS, 1972]) There is a bounded
convex circled set K in L1(0, 1) that is L0(P)-compact so that the
L0(P)-topology is locally convex on K , but there does not exists
Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K .

Let (Xn) be a sequence of independent RVs with the Cauchy
distribution (∼ 1

π(1+x2)
).

Let 1 < p < 2, kn = n(log(n + 2))p and βn = log((1 + k2n).
Define Fn on R by Fn(x) = 1

βn
I[−kn,kn](x).

Set Yn = Fn(Xn) and

K = {
∑

anYn :
∑
|an| ≤ 1}.
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Define Fn on R by Fn(x) = 1

βn
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Set Yn = Fn(Xn) and

K = {
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anYn :
∑
|an| ≤ 1}.
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Back to the positive case

Theorem. [Kadaras-Zitkovic. PAMS 2013] Let fn, f ∈ L0+(P),
where (fn) converges to f in probability. TFAE

1. All FCCs of (fn) converges to f in probability.

2. The L0(P)-topology is locally convex on co((fn) ∪ {f }).

3. There exists Q ∼ P such that (fn) is L1(Q)-bounded and that
‖fn − f ‖L1(Q) → 0.

Corollary. Let K be a bounded convex set in L1+(P). Assume that
the L0(P)-topology is locally convex on K . Then for any f ∈ K
and any ε > 0, there is a measurable set A with P(A) > 1− ε so
that ‖(fn − f )χA‖L1(P) → 0 for any sequence (fn) in K that
converges to f in probability.
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Corollary. Let K be a bounded convex set in L1+(P). Assume that
the L0(P)-topology is locally convex on K . Let S be a countable
set in K . Then for any ε > 0, there is a measurable set A with
P(A) > 1− ε so that ‖(fn − f )χA‖L1(P) → 0 for any sequence (fn)
in K that converges to some f ∈ S in probability.

The following is a sort of generalization of [Kadaras-Zitkovic].

Proposition. Let (fn) be a bounded sequence in L1+(P) and let
K = co(fn). If the L0(P)-topology is locally convex on K , then
there exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies
agree on K .
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Proposition. Let (fn) be a bounded sequence in L1+(P) and let
K = co(fn). If the L0(P)-topology is locally convex on K , then
there exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies
agree on K .

Let
S = {

∑
bnfn : (bn) ∈ c00, bn ∈ Q+,

∑
bn = 1}.

Given ε > 0, choose A as in the Corollary for set S .
Say gk ∈ K , gk → g =

∑m
n=1 cnfn ∈ K in probability.

Choose bn ∈ Q, bn ≥ cn
2 , 1 ≤ n ≤ m, and b =

∑
bn ≤ 1.

hk =
1

2
gk +

m∑
n=1

(bn −
cn
2

)fn + (1− b)fm+1 ∈ K ,

hk →
1

2
g+

m∑
n=1

(bn−
cn
2

)fn+(1−b)fm+1 =
m∑

n=1

bnfn+(1−b)fm+1 ∈ S .

Thus ‖(gk − g)χA‖L1(P) → 0.
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Thank You


