雙週一題網路數學問題徵答 103 年度第 2 學期

主辦單位: 中山大學應用數學系

補助單位: 教育部暨中山大學研究發展處

第四題:

104.04.17 公佈, 104.05.01 中午 12 點截止

設平面坐標上有一點 $P(a,a^2)$,令 $\ell(P)$ 代表通過 P 且斜率為 2a 的直線。考慮任意 三角形頂點 $P_1=(a_1,a_1^2)$, $P_2=(a_2,a_2^2)$, $P_3=(a_3,a_3^2)$,使得通過 P_1 , P_2 , P_3 之直線 $\ell(P_1)$, $\ell(P_2)$, $\ell(P_3)$ 的三個交點形成一個正三角形 Δ 。試求:所有滿足此性質 Δ 的中心 點軌跡。

解答: 所有點 $P=(a,a^2)$ 皆落在拋物線 $y=x^2$ 上,此拋物線的焦點 $F=\left(0,\frac{1}{4}\right)$ 且準線 $d:y=-\frac{1}{4}$,我們要證明軌跡爲 $d\circ$

假設任意點 P 在 p ,則直線 $\ell(P)$ 是在 P 到 p 的切線,這是因爲 $\ell(P)$ 包含點 P 且 $\left\lceil \frac{d}{dx} \right\rceil x^2 = 2x$ 。

對任意點 P 在 p 設 P' 是從 P 到 d 的垂足,因此 $\overline{PP'}=\overline{PF}$ 。假設 q 是 $\overline{P'F}$ 的垂直平分線,因爲 $\overline{PP'}=\overline{PF}$ 且 q 通過 P 。假設 K 是 q 上的任意點且令 K' 是 K 到 d 的垂足,因此直角三角形 KK'P', $\overline{KK'}$ 爲股且 $\overline{KK'}<\overline{KP'}=\overline{KF}$,因此 K 不落在 p 上。這可推得 q 是在點 P 上對 p 的切線,即 $q=\ell(P)$ 。

Lemma 1: 若點 P 在 p 上,則 $\ell(P)$ 是 $\overline{P'F}$ 的垂直平分線。

Lemma 2: 若 F 落在 $\triangle XYZ$ 的外接圓上,其垂心爲 H,則 F 對 \overrightarrow{XY} , \overrightarrow{XZ} , \overrightarrow{YZ} 的對稱點會與 H 共線。

【證明】

假設 F, H 對 \overrightarrow{YZ} 的對稱點爲 C', J, 對 \overrightarrow{XY} 的對稱點爲 A', I, 則 $\angle JYZ = \angle HYZ = \angle HXZ = \angle JXZ = m(JZ)/2$, 其中 m(JZ) 爲 \overrightarrow{JZ} 的圓心角。這可推得 J 落在 $\triangle XYZ$ 的外接圓上,同樣地,I 也落在外接圓上。因此 $\angle C'HJ = \angle FJH = m(XF)/2$, $\angle A'HX = \angle FIX = m(FX)/2$,得到 $\angle C'HJ = \angle A'HX$ 。因爲 J, H, X 共線,所以推得 C', H, A' 亦共線,同樣地,F 對 \overrightarrow{XZ} 的對稱點亦落在此直線上,故得證。

假設 A, B, C 爲 p 上的三點,令 $\ell(A)\cap\ell(B)=X, \ell(A)\cap\ell(C)=Y, \ell(B)\cap\ell(C)=Z$,且令 A'', B'', C'' 分別是 $\overline{A'F}$, $\overline{B'F}$, $\overline{C'F}$ 的中點。因爲 $\overline{A''B''}\parallel \overline{A'B'}=d$,所以 A'', B'', C''' 共線。

由 Lemma 1,我們可以得到 A'', B'', C'' 是 F 分別對 \overline{XY} , \overline{XZ} , \overline{YZ} 的垂足,因此由西姆松定理 (Simson Line Theorem) 得到 F 落在 $\triangle XYZ$ 的外接圓上。若 H 爲 $\triangle XYZ$ 的垂心,則由 Lemma 2 得到 H 落在 $\overrightarrow{A'C'}=d$ 上,推得軌跡是 d 的一個子集。

因爲我們宣稱此軌跡爲 d,因此我們仍然需要證明對於任意在 d 上的 H 存在一個正三角形其中心爲 H 使得直線包含三角形的邊且在 p 相切,因此設 H 是任意在 d 上的點且令中心爲 H 且通過 F 的圓 O,則 A 是一個 d 與 O 的交點。假設 $\angle HFA=3\theta$,且構造在相同半平面通過 F 的 HF 與 HF 夾 2θ 。

可以說射線相交 O 於 B 非 F 且設 q 是 \overline{HB} 的垂直平分線。因爲 $\angle HFB=2\theta$, $\angle HFA=3\theta$,所以 $\angle BFA=\theta$,推得 $\angle AHB=2\theta$ 。因爲 \overline{HF} , \overline{HB} 有共同半徑,所以 $\triangle HFB$ 爲等腰三角形及 $\angle HBF=\angle HFB=2\theta$ 。令 P_1' 是 F 對 q 的對稱點,因此 $2\theta=\angle FBH=\angle C'HB$,推得 $\angle C'HB=\angle AHB$ 。因此得到 P_1' 落在 $\overline{AH}=d$ 上,其代表 q 是 $\overline{FP_1'}$ 的垂直平分線。

假設 q 交 O 於 Y, Z 且設 X 是 O 上相對 B 的點,令 \overline{HB} 交 q 於 M,因此 HM=HB/2=HZ/2,推得 $\triangle HMZ$ 是 30-60-90 的直角三角形且 $\angle ZHB=60^\circ$ 。因此 $\angle ZHY=120^\circ$, $\angle ZXY=60^\circ$,因爲 $\overline{ZX}=\overline{ZY}$,所以 $\triangle ZXY$ 是中 心爲 H 的正三角形。

由 Lemma 2, 得到 F 分別對 \overrightarrow{XY} , \overrightarrow{XZ} 的對稱點爲 P_2' , P_3' 落在 d 上,設 \overrightarrow{YZ} 交通過 P_1' 與 d 垂直的線於 P_1 ,且 \overrightarrow{XY} 交通過 P_2' 與 d 垂直的線於 P_2 ,且 \overrightarrow{XZ} 交通過 P_3' 與 d 垂直的線於 P_3 ,因此 P_1' , P_2' , P_3' 有 $\overline{FP_i} = \overline{P_iP_i'}$, i=1,2,3 及 P_1 , P_2 , P_3 在 P 上。

由 lemma 1, $\ell(P_1) = \overleftrightarrow{YZ}$, $\ell(P_2) = \overleftrightarrow{XY}$, $\ell(P_3) = \overleftrightarrow{XZ}$, 故得證。

答案請寄至—高雄市中山大學應數系圖書館的『雙週一題』信箱,或傳真 07-5253809,或利用電子郵件信箱 nsysu.problem@gmail.com (主旨爲「104 年春季第 X 題解答」)。解答上請註明姓名、校名、校址縣市、系所、年級、班級、學號和 E-mail。