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Abstract

The D-optimal design problems in polynomial regression models with a one-dimensional

control variable and k-dimensional response variable Y = (Y1, · · · , Yk) where there are

some common unknown parameters are discussed. The approximate D-optimal designs

are shown to be independent of the covariance structure between the k responses when

the degrees of the k responses are of the same order. Then, the exact n-point D-optimal

designs are also discussed. Krafft and Schaefer (1992) and Imhof (2000) are useful in ob-

taining our results. We extend the proof of symmetric cases for k ≥ 2.

Keywords and phrases: parallel line assay, D-optimal design, multiple response, exact

design.
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1 Introduction

In Finney (1978), statistical methods in biological assay are introduced and illus-

trated. To be more explicit, a biological assay is an experiment for estimating the potency

of a material, by means of the reaction that follows its application to living matter. A

typical comparative experiment in biology involves applying known treatments to sub-

jects, measuring the subjects, and then estimating the differences between the effects of

the treatments. The aim of a biological assay is to use the measurements as a foundation

for comparing the potencies of the treatments. This new aim affects both the optimal

experimental design and statistical analysis.

Biological assay seeks to estimate equally effective doses of the standard and test

preparations, that is to say doses whose inverse ratio will estimate the potency of the

test preparation relative to the standard. Suppose that a subject receives a dose z of a

particular stimulus, and that the response subsequently measured is u. The average or

expected response to the dose may be written

F (z) = E(u|z)

Let S denote indicator of the standard preparation and T denote indicator of the test

preparation. If two preparations contain the same effective constituent in fixed proportions

and all other constituents are without effect on F (z). The two regression functions must

be related by

FT (z) = FS(ρz)

where for all z, ρ is constant, the potency of T relative to S. A response, Y , may be

assumed to have linear effect

E(YS|z) = α + βx,

where x = log(z). Similarity ensures that the same metameters linearized both the S and

T regression functions. Moreover, T may have{
E(YT |z) = α + βρλx, λ 6= 0;
E(YT |z) = α + β log ρ + βx, λ = 0.
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where the most common values of λ are 0 and 1. If λ = 0, the lines are parallel, the assay

is then called parallel line assays.

If the dose-response regression can not be put into the form of α + βx, or of some

simple modification involving perhaps an extra parameter as in logistic function, the assay

problem is more complicated. When S has a quadratic regression

E(YS|z) = α + βx + γx2,

that for T it may take the troublesome form{
E(YT |z) = α + βρλx + γρ2λx2, λ 6= 0;
E(YT |z) = α + β(log ρ + x) + γ(log ρ + x)2, λ = 0.

We will discuss the design problems model for parameter estimation in parallel line

assay. The general k dose-response regression models of degree m extended from parallel

line assays can be expressed as
E(Y1|z) = θ0,1 + θ1,1x + · · ·+ θm−1,1x

m−1 + θmxm

E(Y2|z) = θ0,2 + θ1,2x + · · ·+ θm−1,2x
m−1 + θmxm

...
E(Yk|z) = θ0,k + θ1,kx + · · ·+ θm−1,kx

m−1 + θmxm

where x = log(z), with Cov(Y ) = Σ.
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2 Preliminary

Consider the general multiresponse models of degree m with some common parameters
y1j = η1(xj, ϑ) + ε1j

y2j = η2(xj, ϑ) + ε2j
...

ykj = ηk(xj, ϑ) + εkj, j = 1, · · · , n

where yij reprsents the jth observation on the ith response function defined on the design

space Ω = [a, b]. The response function ηi(x, ϑ), i = 1, · · · , k, are assumed to be known

but with unknown parameter vector ϑ = (θ1, · · · , θm)′ , and εij is a random error with

E(εij) = 0; E(ε2
ij) = σ2

i ; E(εijεpj) = σip, i 6= p and E(εijεpq) = 0, j 6= q.

An approximate design ξ is a probability measure on Ω with finite support,

ξ =

(
x1, · · · , xr

w1, · · · , wr

)

with distinct support points x1, · · · , xr ∈ Ω, and weights 1 > w1, · · · , wr > 0,
∑r

i=1 wi = 1,

and r ∈ ℵ.

If all the weights wi are integral multiples of 1/n for a given n ∈ ℵ, then ξ is called

an exact design with n observations, and we write ξn = ξ.

If ηi(x, ϑ), i = 1, · · · , k, are linear regression functions and can be represented as

ηi(x, ϑ) = f ′
i(x)ϑ, where fi(x) is the regression function corresponding to ηi(x, ϑ), i =

1, · · · , k. Let F (x) = [f1(x), · · · , fk(x)] be a m× k matrix, then the information matrix of

a design ξ is

M(ξ) =
∫
Ω

F (x)Σ−1F ′(x)dξ(x),

where Σ is the common covariance matrix of εj = (ε1j, · · · , εkj)
′. Let ϑ̂ be the least square

estimates of the parameter ϑ, then

Cov(ϑ̂) ∝ M−1(ξ)
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A design ξ∗ is called D-optimal if ξ∗ maximizes the determinant of the information

matrix M(ξ) among all possible design,

|M(ξ∗)| = max
ξ
|M(ξ)|

where it is assumed that on there exists an approximate design with nonsingular informa-

tion matrix.

Denote E and En as the sets of all approximate designs and all exact designs with n

observations respectively. An approximate design ξ∗ ∈ E is called D-optimal in E, iff it

maximizes detM(ξ) over ξ ∈ E, and an exact design ξ∗n ∈ En is called D-optimal in En, iff

it maximizes detM(ξn) over ξn ∈ En.

Krafft and Schaefer (1992) considers a linear regression model with a one-dimensional

control variable and multiresponse variables, where the parameters in each response are

different. Under rather mild assumptions on the set of regression functions a factorization

lemma has been given that the multiresponse D-optimal is independent of the covariance

matrix of the response variables. Bischoff (1995) has also discussed some similar problems.

Huang and Luh (1999) has discussed the case where there are some common parameters in

each response model in the low degree. The problem we study here also has to restriction

that it is assumed there are some common parameters in each response model, it is not

restricted in the low degree.

The exact D-optimal design problem for polynomial regression on a compact interval

has attracted a lot of attention in the literature. Salaevskii (1966) conjectures that an exact

D-optimal design ξ∗ distributes observations as evenly as possible among the r support

points of the approximate D-optimal design. This conjecture is also stated by Wynn

(1972). In fact, Hohmannn and Jung (1975) proves the linear case (m = 1) and Granovskii

(1967) proves the partial solutions for quadratic case (m = 2). Gaffke and Krafft (1982)

has given Huang (1987) and Gaffke (1987) finds the sufficient conditions for the minimum

sample size for the results to hold. Krafft and Schaefer (1992) proves some symmetric case

for the individual response variables in a multiresponse polynomial model with first-order

or second-order models in each response. Imhof (2000) completes the proofs not solved in
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Krafft and Schaefer (1992) for the other cases include symmetric and asymmetric. The

problem we study here that exact D-optimal design in a multiresponse polynomial model

with the same parameter of quadratic order in each response and extend the results of

symmetric cases for k ≥ 2.
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3 Approximate D-optimal designs for k polynomial

models

In this section, we discuss the model with the following form. Consider a polynomial

regression with k dimensional response variables Y = (Y1, Y2, · · · , Yk)
′


E(Y1) = θ0,1 + θ1,1x + · · ·+ θr,1x

r + θr+1x
r+1 + · · ·+ θmxm

E(Y2) = θ0,2 + θ1,2x + · · ·+ θr,2x
r + θr+1x

r+1 + · · ·+ θmxm

...
E(Yk) = θ0,k + θ1,kx + · · ·+ θr,kx

r + θr+1x
r+1 + · · ·+ θmxm

(3.1)

where x ∈ Ω = [−1, 1], with Cov(Y ) = Σ.

Let ϑ = (θ0,1, θ1,1, · · · , θr,1, θ0,2, θ1,2, · · · , θr,2, · · · , θ0,k, θ1,k, · · · , θr,k, θr+1, · · · , θm)′. The

model (3.1) can be represented as
η1(x, ϑ) = f ′

1(x)ϑ = (f ′
11(x),0,0, · · · ,0, f ′

22(x))ϑ
η2(x, ϑ) = f ′

2(x)ϑ = (0, f ′
11(x),0, · · · ,0, f ′

22(x))ϑ
...

ηk(x, ϑ) = f ′
k(x)ϑ = (0,0,0, · · · , f ′

11(x), f ′
22(x))ϑ

where f11(x) = (1, x, · · · , xr)′,f22(x) = (xr+1, · · · , xm)′, and 0 is a 1 × (m − r) vector

with all elements 0. These k polynomial regression models have the common parameters

(θr+1, · · · , θm), but the coefficient parameters for the lower degree polynomial terms are

not the same. Define F (x) = [f1(x), · · · , fk(x)]. Thus, the information matrix of a design

ξ can be written as

M(ξ) =
∫ 1

−1
F (x)Σ−1F ′(x)dξ(x)

=
(

M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)
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where

M11(ξ) =
∫ 1

−1
(f11(x)⊗ Ik)Σ

−1(f ′
11(x)⊗ Ik)dξ(x)

=
∫ 1

−1
(f11(x)f ′

11(x))dξ(x)⊗ Σ−1

= A11(ξ)⊗ Σ−1

M12(ξ) =
∫ 1

−1
(f11(x)⊗ Ik)(1⊗ Σ−1)(f ′

22(x)⊗ 1)dξ(x)

=
∫ 1

−1
(f11(x)f ′

22(x))dξ(x)⊗ (Σ−11)

= A12(ξ)⊗ (Σ−11)

M21(ξ) = A′
12(ξ)⊗ (1′Σ−1)

M22(ξ) =
∫ 1

−1
(f22(x)⊗ 1′)(1⊗ Σ−1)(f ′

22(x)⊗ 1)dξ(x)

=
∫ 1

−1
(f22(x)f ′

22(x))dξ(x)⊗ (1′Σ−11)

= A22(ξ)⊗ (1′Σ−11)

and

A11(ξ) =
∫ 1

−1
f11(x)f ′

11(x)dξ(x)

A12(ξ) =
∫ 1

−1
f11(x)f ′

22(x)dξ(x)

A22(ξ) =
∫ 1

−1
f22(x)f ′

22(x)dξ(x)

Ik is k × k identity matrix, and 1 denotes a k × 1 vector with all elements 1.

Without loss of generality, we consider only designs with nonsingular information

matrices. For any design ξ, denote dΣ(ξ, x) = tr[M−1(ξ)F (x)Σ−1F ′(x)]. An equivalence

theorem corresponding to D-optimal criterion in multiresponse model can be found in

Fedorov (1972), which states that a design ξD is D-optimal for multiresponse models as

follows.
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Theorem 3.1 If M(ξD) is nonsingular, then following assertions are equivalent.

(1) the design ξD maximizes det M(ξ)

(2) the design ξD minimizes maxx dΣ(ξ, x)

(3) maxx dΣ(ξD, x) = l

where l = (r + 1) + k(m − r) is the number of the unknown parameters and the equality

holds at the support points.

In Chang et al. (1999), the D-optimal designs with (r, m) = (1, 2) or (1, 3) for different

degree of model is dependent on the ρ. In the following, it is shown that for model (3.1)

the D-optimal designs are also independent of the covariance matrix.

Theorem 3.2 Consider the model (3.1). The D-optimal designs are independent of co-

variance matrix Σ.

proof: The determinant of information matrix M(ξ) can be written as

|M(ξ)| =

∣∣∣∣∣ A11(ξ)⊗ Σ−1 A12(ξ)⊗ (Σ−11)
A′

12(ξ)⊗ (1′Σ−1) A22(ξ)⊗ (1′Σ−11)

∣∣∣∣∣
= |A11(ξ)⊗ Σ−1||A22(ξ)⊗ (1′Σ−11)

−(A′
12(ξ)⊗ (1′Σ−1))(A−1

11 (ξ)⊗ Σ)(A12(ξ)⊗ (Σ−11))|

= |A11(ξ)⊗ Σ−1||A22(ξ)⊗ (1′Σ−11)− (A′
12(ξ)A

−1
11 (ξ)A12(ξ))⊗ (1′Σ−11)|

= |A11(ξ)⊗ Σ−1||(A22(ξ)− A′
12(ξ)A

−1
11 (ξ)A12(ξ))⊗ (1′Σ−11)|

= |A11(ξ)|k|Σ−1|m−r
(

|A(ξ)|
|A11(ξ)|

)
(1′Σ−11)r+1

= |A(ξ)||A11(ξ)|k−1|Σ−1|m−r(1′Σ−11)r+1

where A(ξ) =
∫ 1
−1 f(x)f ′(x)dξ(x), and f(x) = (f ′

11(x), f ′
22(x))′. The determinant of infor-

mation matrix is proportional to |A(ξ)||A11(ξ)|k−1. That is ξD is D-optimal if and only if,

ξD maximizes |A(ξ)||A11(ξ)|k−1. Thus the D-optimal designs are independent of Σ.
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For any design ξ, let ξ̃ be the conjugate design of ξ, i.e., ξ̃(−x) = ξ(x), for all support

points x of ξ. For model (3.1), it is easy to check that |M(ξ)| = |M(ξ̃)| and as log |M(ξ)|
is a strictly concave function in ξ, thus,

|M(
ξ + ξ̃

2
)| ≥ |M(ξ)|1/2|M(ξ̃)|1/2 = |M(ξ)|,

which implies that we can restrict our attention to symmetric designs.

Moreover, in model (3.1), for D-optimality, the corresponding dispersion function

dΣ(ξ, x) is a polynomial of degree 2m for any design ξ. Thus, by the equivalence theorem,

the D-optimal design has at most m + 1 support points. Furthermore, the optimal design

has m + 1 support points, it must contain the two boundary points {−1, 1}.

The model under consideration here is invariant or symmetric with respect to the

group consisting of permutations and sign changes of the coordinates. The invariance the-

orem which concludes that there exists a symmetric D-optimal designs is a very important

tool for obtaining D-optimal designs either theoretically or numerically. In the following

we only consider symmetric approximate designs.

Theorem 3.3 Consider a polynomial regression with k dimensional responses as defined

in model (3.1) with r = 0 and m = 1. The design ξD is D-optimal where

ξD =

{
−1 1
1
2

1
2

}
.

proof: Let cj =
∫ 1
−1 xjdξ(x). In the model (3.1) with r = 0 and m = 1, the determinant

of information matrix of a symmetric design ξ is

|M(ξ)| ∝ |A(ξ)||A11(ξ)|k−1

=

∣∣∣∣∣ 1 0
0 c2

∣∣∣∣∣ ∣∣∣ 1
∣∣∣k−1

= c2

where 0 ≤ c2 ≤ 1. Thus, in order to maximize |M(ξ)|, it is easy to see that the D-optimal

design ξD is {
−1 1
1
2

1
2

}
.
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The above theorem may be applied to parallel line assay with linear regression model.

In biological assays, in some circumstances the regression equation for S may be quadratic.

In Theorem 3.4 the D-optimal designs for quadratic regression are discussed.

Theorem 3.4 Consider a polynomial regression with k dimensional responses as defined

in model (3.1) with r = 1 and m = 2. The D-optimal design ξD is

ξD =

{
−1 0 1
k+1

2(k+2)
1

k+2
k+1

2(k+2)

}
.

proof: Let cj =
∫ 1
−1 xjdξ(x). In the model (2.1) with r = 1 and m = 2, the determinant

of information matrix of a symmetric design ξ is

|M(ξ)| ∝ |A(ξ)||A11(ξ)|k−1

=

∣∣∣∣∣∣∣
1 0 c2

0 c2 0
c2 0 c4

∣∣∣∣∣∣∣
∣∣∣∣∣ 1 0

0 c2

∣∣∣∣∣
k−1

= (c2c4 − c3
2)c

k−1
2

= ck
2(c4 − c2

2)

where c2
2 ≤ c4 ≤ c2 and 0 ≤ c2 ≤ 1. Thus, in order to maximize |M(ξ)|, it is easy to see

that we need c4 = c2. Furthermore, |M(ξ)|c2=c4 = ck+1
2 − ck+2

2 attains its maximum when

c2 = k+1
k+2

. Thus, the D-optimal design ξD is{
−1 0 1
k+1

2(k+2)
1

k+2
k+1

2(k+2)

}
.

Now we discussed a variation of the above model. Let P be a l×l permutation matrix,

then G(x) = PF (x) where G(x) = [g1(x), · · · , gk(x)]. From this transformation, we can

obtain the more general result as follows.

Consider a polynomial regression with k dimensional response variables Y = (Y1, Y2, · · · , Yk)
′

E(Y1) = θj1,1x
j1 + θj2,1x

j2 + · · ·+ θjr,1x
jr + θjr+1x

jr+1 + · · ·+ θjmxjm

E(Y2) = θj1,2x
j1 + θj2,2x

j2 + · · ·+ θjr,2x
jr + θjr+1x

jr+1 + · · ·+ θjmxjm

...
E(Yk) = θj1,kx

j1 + θj2,kx
j2 + · · ·+ θjr,kx

jr + θjr+1x
jr+1 + · · ·+ θjmxjm

(3.2)
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where x ∈ Ω = [−1, 1], with Cov(Y ) = Σ and ji ∈ ℵ , jp 6= jq , ∀p 6= q. Here the common

parameters do not necessarily appear in the last m− r terms, but can appear in any place.

Then through reparameter transformation, we can always put those terms with common

parameters at the end. In the following we have the similar result as Theorem 3.2.

Theorem 3.5 Consider the model (3.2). The D-optimal designs are independent of co-

variance matrix Σ.

proof: The determinant of information matrix M(ξ) can be written as

|M(ξ)| =

∣∣∣∣∣ B11(ξ)⊗ Σ−1 B12(ξ)⊗ (Σ−11)
B′

12(ξ)⊗ (1′Σ−1) B22(ξ)⊗ (1′Σ−11)

∣∣∣∣∣
= |B11(ξ)⊗ Σ−1||B22(ξ)⊗ (1′Σ−11)

−(B′
12(ξ)⊗ (1′Σ−1))(B−1

11 (ξ)⊗ Σ)(B12(ξ)⊗ (Σ−11))|

= |B11(ξ)⊗ Σ−1||B22(ξ)⊗ (1′Σ−11)− (B′
12(ξ)B

−1
11 (ξ)B12(ξ))⊗ (1′Σ−11)|

= |B11(ξ)⊗ Σ−1||(B22(ξ)−B′
12(ξ)B

−1
11 (ξ)B12(ξ))⊗ (1′Σ−11)|

= |B11(ξ)|k|Σ−1|m−r
(

|B(ξ)|
|B11(ξ)|

)
(1′Σ−11)r+1

= |B(ξ)||B11(ξ)|k−1|Σ−1|m−r(1′Σ−11)r+1

where

B11(ξ) =
∫ 1

−1
g11(x)g′

11(x)dξ(x)

B12(ξ) =
∫ 1

−1
g11(x)g′

22(x)dξ(x)

B22(ξ) =
∫ 1

−1
g22(x)g′

22(x)dξ(x)

and B(ξ) =
∫ 1
−1 g(x)g′(x)dξ(x), g(x) = (g′

11(x), g′
22(x))′, and g′

11(x) is the vector with

different parameters, g′
22(x) is the vector with common parameters. The determinant of

information matrix is proportional to |B(ξ)||B11(ξ)|k−1. That is ξD is D-optimal if and

only if, ξD maximizes |B(ξ)||B11(ξ)|k−1. Thus the D-optimal designs are independent of

Σ.
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From Theorem 3.5, it is known that the D-optimal design is independent of the

covariance structure between the k responses when the degrees of the k responses are of

the same order. A simple example is given below for illustration.

Example 1

{
E(Y1) = β0 + β1,1x + β2x

2

E(Y2) = β0 + β1,2x + β2x
2 ,

where Cov(Y1, Y2) = Σ =

(
1 ρ
ρ 1

)
.

Let P and F (x) be defined as

P =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 , F (x) =


1 1
x 0
0 x
x2 x2

 ,

then G(x) can be expressed as

G(x) = PF (x) =


x 0
0 x
1 1
x2 x2

 .

Therefore the D-optimal design is independent of Σ by Theorem 3.5.

In Chang et al. (1999) it considers the dual response model with some common

parameters but for each response the model is different order it is found there that D-

optimal design is dependent on the correlation coefficient ρ. We present a result from

Chang et al. (1999) for illustration.

Example 2 Let

{
E(Y1) = β0 + β1,1x
E(Y2) = β0 + β1,2x + β2,2x

2 ,

where Cov(Y1, Y2) = Σ =

(
1 ρ
ρ 1

)
. The design ξρ is D-optimal, where if

12



ρ ≥ −1

3
, ξρ =

{
−1 1
1
2

1
2

}
,

and if

ρ < −1

3
, ξρ =

{
−1 0 1
2

3(1−ρ)
−1−3ρ
3(1−ρ)

2
3(1−ρ)

}
.
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4 Exact D-optimal designs for k polynomial models

In this section, we discuss the exact D-optimal design of quadratic regression for

parallel line assay. Consider model (3.1) with k = 2, m = 2, r = 0 and r = 1, respectively,

that is considering the following two models{
E(Y1) = θ0,1 + θ1x + θ2x

2

E(Y2) = θ0,2 + θ1x + θ2x
2 , (4.1)

{
E(Y1) = θ0,1 + θ1,1x + θ2x

2

E(Y2) = θ0,2 + θ1,2x + θ2x
2 . (4.2)

where Cov(Y1, Y2) = Σ = (σij), σ11 = σ22 = σ2, σ12 = ρσ1σ2.

From Theorem 3.4, we know that the D-optimal design is independent of the co-

variance matrix and the corresponding approximate D-optimal design for model (4.1) and

model (4.2) on Ω ∈ [−1, 1] are ξD
0 and ξD

1 , respectively, where

ξD
0 =

{
−1 0 1
1/3 1/3 1/3

}
,

ξD
1 =

{
−1 0 1
3/8 1/4 3/8

}
,

Now, we consider the exact D-optimal design for model (4.1) and (4.2).

Let x1, · · · , xq denote the distinct levels at which n1, · · · , nq observations are to be

taken. Here n1 + · · · + nq = n. An exact n-point design is a probability measure ξn on

[−1, 1] where ξn(xi) = ni/n denotes the relative proportion of total observations at the

point xi. The set of all exact designs for a given value of n will be denoted by En.

The information matrix of an exact design ξn is

M(ξn) =
q∑

i=1

F (xi)Σ
−1F ′(xi)ξn(xi).
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A design ξ∗n is called an exact n-points optimal design if ξ∗n maximizes the determinant

of M(ξn) over the set En of all n-point design on [−1, 1].

In the case of univariate polynomial regression, Salaevskii (1966) conjectures that an

exact D-optimal design puts mass as equally as possible among the support points of the

approximate D-optimal design for polynomial regression. However, the D-optimal n-point

designs for the multiresponse model (4.1) and (4.2) may not always be obtained in this

manner. A similar case is discussed in Krafft and Schaefer (1992). They have obtained

some partial results under their model where all unknown parameters are allowed to be

distinct. Later, Imhof (2000) completes the proofs for the remaining results.

It is known that the solutions ξ∗n for exact D-optimal design problem are more difficult

to obtain than that of approximate designs, because the nice convexity structure for the

latter case is destroyed by restricting to exact designs. For the model (4.1), it is found that

the exact D-optimal design is the same as that for a single response quadratic regression

model. Exact D-optimal designs for a single response quadratic regression are due to

Gaffke and Krafft (1982). But for the model (4.2), we find that the optimal designs are

the same as that for the model in Krafft and Schaefer (1992). We will discuss the reasons

why the exact D-optimal design are the same for the two models in the following.

From Theorem 3.2, the determinant of information matrix is proportional to |A(ξ)||A11(ξ)|k−1.

For model (4.2),

|A(ξ)||A11(ξ)| =

∣∣∣∣∣∣∣
n s1 s2

s1 s2 s3

s2 s3 s4

∣∣∣∣∣∣∣
∣∣∣∣∣ n s1

s1 s2

∣∣∣∣∣
where x ∈ [−1, 1]n

si = si(x) =
n∑

k=1

xi
k, 1 ≤ i ≤ 4.

This form is exactly the same function to be maximized, therefore exact D-optimal

design is the same as the model that Krafft and Schaefer (1992) and the proof is given in

Appendix. In the general case with k responses, we have shown the D-optimal design is

still independent of the covariance structure. Therefore we only need to discuss the case
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with independence among the k responses. In the following, through some row and column

operations, it is shown that the problem may be reduced to another form. This results

may also be applied to the case studied in Krafft and Schaefer (1992) with k = 2.

For case of illustration, we consider a simple case k = 2 for model (3.1), by row and

column operations

n∑
i=1

 f1 0
0 f1

f2 f2

 [ f ′
1 0 f ′

2

0 f ′
1 f ′

2

]
=

n∑
i=1

 f1f
′
1 0 f1f

′
2

0 f1f
′
1 f1f

′
2

f2f
′
1 f2f

′
1 2f2f

′
2



→
n∑

i=1

 f1f
′
1 0 f1f

′
2

−f1f
′
1 f1f

′
1 f1f

′
2

0 f2f
′
1 2f2f

′
2



→
n∑

i=1

 f1f
′
1 0 f1f

′
2

0 f1f
′
1 2f1f

′
2

0 f2f
′
1 2f2f

′
2


Then the problem turns to determine

sup{|
n∑

i=1

f1f
′
1|
∣∣∣∣∣
∑n

i=1 f1f
′
1

∑n
i=1 f1f

′
2∑n

i=1 f2f
′
1

∑n
i=1 f2f

′
2

∣∣∣∣∣ : x ∈ [−1, 1]n}, (4.3)

where f1 = f1(x) = (1, x, · · · , xr)′, f2 = f2(x) = (xr+1, · · · , xm)′.

In the case with k ≥ 2, it can be seen that

n∑
i=1

[
f1 ⊗ Ik

f2 ⊗ 1′

] [
f ′

1 ⊗ Ik f ′
2 ⊗ 1

]
=

n∑
i=1

[
f1f

′
1 ⊗ Ik f1f

′
2 ⊗ 1

f2f
′
1 ⊗ 1′ f2f

′
2 ⊗ k

]

→
n∑

i=1

 f1f
′
1 ⊗ Ik−1 0 f1f

′
2 ⊗ 1

0 f1f
′
1 kf1f

′
2

0 f2f
′
1 kf2f

′
2


Therefore the problem turns to determine

sup{|
n∑

i=1

f1f
′
1|k−1

∣∣∣∣∣
∑n

i=1 f1f
′
1

∑n
i=1 f1f

′
2∑n

i=1 f2f
′
1

∑n
i=1 f2f

′
2

∣∣∣∣∣ : x ∈ [−1, 1]n}, (4.4)
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Finally, we extend the more general result for the multiresponse model with some

common parameters, but the positions of the common parameters are not restricted to the

last terms. More explicitly consider a polynomial regression with k dimensional response

variables Y = (Y1, Y2, · · · , Yk)
′


E(Y1) = θj1,1x

j1 + θj2,1x
j2 + · · ·+ θjr,1x

jr

E(Y2) = θj1,2x
j1 + θj2,2x

j2 + · · ·+ θjr,2x
jr

...
E(Yk) = θj1,kx

j1 + θj2,kx
j2 + · · ·+ θjr,kx

jr + θjr+1x
jr+1 + · · ·+ θjmxjm

(4.5)

where x ∈ Ω = [−1, 1], with Cov(Y ) = Σ and ji ∈ ℵ , jp 6= jq , ∀p 6= q. Again through

some matrix permutation, we have the following results.

Theorem 4.1 Consider the model (3.2). Then exists a permutation matrix, such that the

exact D-optimal is the same as that for the model (4.5).

proof: Let P be a l × l permutation matrix, that is P ′P = I, where l is the number of

unknown parameters.

n∑
i=1

PF (x)F ′(x)P ′ =
n∑

i=1

[
g1 ⊗ Ik

g2 ⊗ 1′

] [
g′
1 ⊗ Ik g′

2 ⊗ 1
]

→
n∑

i=1

 g1g
′
1 ⊗ Ik−1 0 g1g

′
2 ⊗ 1

0 g1g
′
1 kg1g

′
2

0 g2g
′
1 kg2g

′
2


where g1 = g1(x) is the vector with no common parameters and g2 = g2(x) is the vector

with common parameters.

The problem is to determine

sup{|
n∑

i=1

g1g
′
1|k−1

∣∣∣∣∣
∑n

i=1 g1g
′
1

∑n
i=1 g1g

′
2∑n

i=1 g2g
′
1

∑n
i=1 g2g

′
2

∣∣∣∣∣ : x ∈ [−1, 1]n}, (4.6)

From (4.3), (4.4) and (4.6), we obtain an important result for any multiresponse

model with some common parameters. The exact D-optimal design for model of the form

as model (3.2), we only need to consider the part with distinct parameters. In other words,
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the part of the common parameters do not lead to any change on the results for the exact

D-optimal design. Therefore, when the models are with some common parameters, just

consider one of them and let the other parameters be equal to 0. We give simple example

to assist us to understand.

Example 3 Consider the model in Example 1, then the exact D-optimal is the same as

that of the following model.{
E(Y1) = β1,1x
E(Y2) = β0 + β1,2x + β2x

2 .

In biological assay, sometimes it may use several test preparations at the same time.

So it is reasonable to consider the more general symmetric cases for k ≥ 2. We have the

following theorem.

Theorem 4.2 Consider model (3.1) with r = 1, m = 2, n ∈ ℵ, for k ≥ 2. For j in the

symmetric case of Table 4.1, where{
n = (k + 2)p + j, if k is odd,
n = 2(k + 2)p + j, if k is even.

Then the support points of the exact D-optimal design ξ∗n are {−1, 0, 1} and

e−1 = e1 =

{
1
2
[k+1
k+2

n], if [k+1
k+2

j] is even,
1
2
([k+1

k+2
n] + 1), if [k+1

k+2
j] is odd,

e0 = n− 2e1,

where ei, i ∈ {−1, 0, 1} denotes the number of observations on {−1, 0, 1}, respectively.

18



Table 4.1 Exact D-optimal designs for k polynomial models with r = 1 and m = 2.

k n symmetric case j asymmetric case j
2 8p + j 0,±2,±3 ±1,±4
3 5p + j 0,±2 ±1
4 12p + j 0,±2,±3,±5 ±1,±4,±6
5 7p + j 0,±2,±3 ±1
6 16p + j 0,±2,±4,±5,±7 ±1,±3,±6,±8
7 9p + j 0,±2,±4 ±1,±3
8 20p + j 0,±2,±4,±5,±7,±9 ±1,±3,±6,±8,±10
9 11p + j 0,±2,±4,±5 ±1,±3

proof: Let for x ∈ [−1, 1]n

si = si(x) =
n∑

k=1

xi
k, 1 ≤ i ≤ 4.

The problem is to determine

sup{S ′(x) : x ∈ [−1, 1]n},

where
S ′(x) = |M(ξn)||M11(ξn)|k−1

=

∣∣∣∣∣∣∣
n s1 s2

s1 s2 s3

s2 s3 s4

∣∣∣∣∣∣∣
∣∣∣∣∣ n s1

s1 s2

∣∣∣∣∣
k−1

We will show that S ′(x) has an upper bound on [−1, 1] which is attained when x ∈
{−1, 0, 1}n. First we have

S ′(x) = (ns2s4 + 2s1s2s3 − s3
2 − ns2

3 − s2
1s4)(ns2 − s2

1)
k−1

≤ nk−1sk
2(ns4 − s2

2)
= nk−1(

∑n
i=1 yi)

k(n
∑n

i=1 y2
i − (

∑n
i=1 yi)

2) = W (y)

where x2
i = yi and W (y) attains its supremum on [0, 1]n in the vertices of [0, 1]n. Consid-

ering thus W (y) on {0, 1}n, let

w = w(y) = |{i : yi = 1}|.
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Then

W (y) = nk−1wk(nw − w2).

We can see that W (y) is maximal iff

w = [k+1
k+2

n], if [k+1
k+2

j] is even,

w = [k+1
k+2

n] + 1, if [k+1
k+2

j] is odd,

where [z] denotes the greatest integer less than or equal to z.

But if the (k + 1)j (mod (k + 2)) ≡ (k + 2)/2, for example, k = 2 and n = 8p + 2,

it can not be proved by this method. From numerical results we discover that for k = 5,

p = 1, 2, the structure of the exact D-optimal design will change. Fortunately, for large

enough n the structure will be consistent.
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5 Discussion

In this work we discuss the approximate and exact D-optimal designs for multire-

sponse polynomial regression models with common parameters motivated from parallel

line assays. First, the approximate D-optimal designs are shown to be independent of the

covariance structure between the k responses when the degrees of the k responses are of the

same order and with common parameters at the last few terms of the polynomial. Then

we extend this result further in Theorem 3.5.

The exact D-optimal design problem of the model (4.1) for any k, it is found that the

exact D-optimal design is the same as a single response with quadratic regression model.

Then in model (4.2), we also detect the structure of the exact D-optimal design is the

same as that from Krafft and Schaefer (1992) and Imhof (2000). Later, in Theorem 4.1

we provide a model with more general structure to illustrate results under the structure of

model (4.1) and (4.2).

Besides, we extend general results for the symmetric cases with k ≥ 2. In Imhof (2000)

the problem for n = 8p + 2 and the other asymmetric cases are solved, but the techniques

used there are very complicate, we are unable to extend the method there for the general

k right now. From numerical results, we detect that in some small samples the structure

of the exact D-optimal designs may change. For example, when k = 5, p = 1, 2, j = 4

the exact D-optimal design is asymmetric and for p ≥ 3 they are symmetric. Although

for large samples the structure is fixed. It is quite possible the situation is also like in

Salaevskii conjecture that a fixed pattern exists only for sample size large enough. In the

future work, we may discuss the asymmetric cases for general k.
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6 Appendix

Krafft and Schaefer (1992) consider the linear and quadratic regression model that{
EYi(x) = θ

(i)
0 + θ

(i)
1 x i = 1, · · · , m

EYi(x) = θ
(i)
0 + θ

(i)
1 x + θ

(i)
2 x2 i = m + 1, · · · , 2m.

(6.1)

where θ
(i)
0 , θ

(i)
1 , θ

(i)
2 are unknown regression parameters. Assume the covariance matrix

Cov(Y1(x), · · · , Y2m(x)) = Σ is independent of x.

Theorem 6.1 (Krafft and Schaefer (1992)) Let n ∈ ℵ, n = 8p + j, j ∈ {0, 3, 5, 6}. Then

for model (6.1) the support points of exact D-optimal design ξ∗n are {−1, 0, 1} and

e−1 = e1 =


3p, if j = 0,
3p + 1, if j = 3,
3p + 2, if j = 5 or j = 6,

e0 = n− 2e1,

where ei, i ∈ {−1, 0, 1} denotes the observations of xi.

proof: Let for x ∈ [−1, 1]n

si = si(x) =
n∑

k=1

xi
k, 1 ≤ i ≤ 4.

The problem is to determine

sup{S(x) : x ∈ [−1, 1]n},

where
S(x) = |M(ξn)||M11(ξn)|

=

∣∣∣∣∣∣∣
n s1 s2

s1 s2 s3

s2 s3 s4

∣∣∣∣∣∣∣
∣∣∣∣∣ n s1

s1 s2

∣∣∣∣∣
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We will show that S(x) has an upper bound on [−1, 1] which is attained when x ∈
{−1, 0, 1}n. First we have

S(x) = (ns2s4 + 2s1s2s3 − s3
2 − ns2

3 − s2
1s4)(ns2 − s2

1)
≤ ns2

2(ns4 − s2
2)

= n(
∑n

i=1 yi)
2(n

∑n
i=1 y2

i − (
∑n

i=1 yi)
2) = V (y)

where x2
i = yi( V (y) attains its supremum on [0, 1]n in the vertices of [0, 1]n). Considering

thus V (y) on {0, 1}n, let

v = v(y) = |{i : yi = 1}|.

Then

V (y) = nv2(nv − v2).

We can see that V (y) is maximal iff

v = [3
4
n], if j = 0, 3, or 6,

v = [3
4
n] + 1, if j = 5,

where [z] denotes the greatest integer less than or equal to z.

From the above proof, the n = 8p + 2 is a special case which can not be treated

similarly as the other symmetric case. We must use different method to solve it. Imhof

(2000) gives the proofs for the following Theorem 6.2 to Theorem 6.5.

Theorem 6.2 Let n ∈ ℵ, n = 8p + 2. Then for model (6.1) the support points of exact

D-optimal design ξ∗n are {−1, 0, 1} and{
−1 0 1

3p + 1 2p 3p + 1

}
.

The proofs for the asymmetric case is more complicate than that for symmetric case.

Therefore, we consider that all support points in [−1, 1]n.

Theorem 6.3 Let n ∈ ℵ, n = 8p + 1 and x0 be the real root of w(x) = 0, where

w(x) = (9n + 3)x3 − 20x2 + (21n + 31)x + 4
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Then for model (6.1) the support points of exact D-optimal design ξ∗n are{
−1 −x0 1

3p + 1 2p 3p

}
∪
{
−1 x0 1
3p 2p 3p + 1

}
.

Theorem 6.4 Let n ∈ ℵ, n = 8p + 4 and x0 be the real root of w(x) = 0, where

w(x) = 9n2x3 − 20nx2 + (21n2 − 32)x + 4n

Then for model (6.1) the support points of exact D-optimal design ξ∗n are{
−1 −x0 1

3p + 2 2p 3p + 1

}
∪
{

−1 x0 1
3p + 1 2p 3p + 2

}
.

Theorem 6.5 Let n ∈ ℵ, n = 8p + 7 and x0 be the real root of w(x) = 0, where

w(x) = (9n− 3)x3 − 20x2 + (21n− 31)x + 4

Then for model (6.1) the support points of exact D-optimal design ξ∗n are{
−1 −x0 1

3p + 3 2p + 2 3p + 2

}
∪
{

−1 x0 1
3p + 2 2p + 2 3p + 3

}
.
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