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Abstract

A mixture experiment is an experiments in which the q-ingredients are nonnegative and

subject to the simplex restriction
∑q

i=1 xi = 1 on the (q − 1)-dimentional probability simplex

Sq−1. In this work , we investigate the robust A-optimal designs for mixture experiments with

uncertainty on the linear, quadratic models considered by Scheffé (1958). In Chan (2000), a

review on the optimal designs including A-optimal designs are presented for each of the Scheffé’s

linear and quadratic models. We will use these results to find the robust A-optimal design for

the linear and quadratic models under some robust A-criteria. It is shown with the two types

of robust A-criteria defined here, there exists a convex combination of the individual A-optimal

designs for linear and quadratic models respectively to be robust A-optimal. In the end, we

compare efficiencies of these optimal designs with respect to different A-criteria.

Keywords : Convex combination, equivalence theorem, invariant symmetric block matrices,

robust design.
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1 Introduction

Experiments are considered in which the response to a mixture depends on the proportions of

components, but not on the total amount of the mixture. Let q be the number of components

and xi be the proportion of the ith component in the mixture, so that

x1 + x2 + ... + xq = 1, xi ≥ 0, (i = 1, 2, ..., q).

The design space is the (q-1)-dimensional probability simplex Sq−1, where

Sq−1 = {x = (x1, ..., xq)
′ ∈ [0, 1]q :

q∑
i=1

xi = 1}.

For the mixture models, we assume the response can be adequately graduated by a polynomial

in the xi. It is usually assumed that the observed response at x=(x1, x2, ..., xq)
′ may be expressed

as y(x)=E(x) + ε(x), where the E(x) is the mixture model and ε(x) is the error term, which

are uncorrelated and have common unknown variance for all observations.

In this work, we take f(x) as a multivariable polynomial regression model and a design ξ as

a probability measure on Sq−1 with finite supports. Denote a probability measure for a mixture

experiment as follows

ξ =




x1,1

x1,2
...

x1,q




x2,1

x2,2
...

x2,q

 . . .


xn,1

xn,2
...

xn,q


p1 p2 . . . pn

 ,
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where xi = (xi,1, xi,2, ..., xi,q)
′ for i = 1, 2, ..., q and x1,x2, ...,xn represent the finite supports

and the corresponding weights are p1, p2, ..., pn. The information matrix for the model f(x) is

therefore defined by

Mf (ξ) =

∫
Sq−1

f(x)f ′(x)dξ(x),

and the dispersion matrix is equal to M−1
f (ξ). Thus we call a design ξ∗ A-optimal if a design

ξ∗ minimizes trM−1
f (ξ) among all feasible designs defined on Sq−1. Minimization of trM−1

f (ξ)

is equivalent to minimization of the mean dispersion of the estimates of the parameters.

On the other hand, while considering A-optimality as above, there is an equivalence theorem

for characterizing the A-optimal designs, that is, ξ∗ is A-optimal for a model f(x). If and only

if

f ′(x)M−2
f (ξ∗)f(x) ≤ trM−1

f (ξ∗),

for any point x ∈ Sq−1, or

tr(Mf (ξ)M
−2
f (ξ∗)) ≤ trM−1

f (ξ∗),

for ξ is an arbitrary design on Sq−1, with equality if and only if x or ξ is assigned to the design

points (Pukelsheim (1993, p.221)).

Usually, the model is a single regression function. But in practice, the experimenters are often

uncertain which model is suitable. That is, if there are several possible regression models in

consideration, experimenters are not certain which one is more proper before accomplishing the

experiments. In order to resolve such problems, model robust optimal designs are considered.
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The aim of this work is to discuss robust designs between the Scheffé’s linear and quadratic

models. The criterion of selecting an optimal design is to minimize a convex combination of

respective trace function of the dispersion matrices for these two models. This is called the

robust A-optimal criterion. In this work, a real number r ∈ [0, 1] is chosen to be the model

convex combination coefficient.

In Chan (2000), an extensive review on some known results is given about analytic solutions

and numerical solutions of optimal designs for various regression models for experiments with

mixture. Guan and Chao (1987), Yu and Guan (1993) have determine the A-optimal design

for the simplex weighted centroid designs considered where Scheffé’s models are considered. At

the moment, we can denote ξ∗1 and ξ∗2 as A-optimal designs for Scheffé’s linear and quadratic

models respectively for later use.

As the robust A-optimal criterion is a convex combination of the individual A-optimal cri-

terion, it is speculated that there is a convex combination of the individual A-optimal designs

to be robust A-optimal. In what follows, we will first find an optimal α∗ to be the best one

among all convex designs, and later verify that it is indeed A-optimal.

To do this, first note that equivalence theorem in Dette (1990) has been provided for D-

and D1- optimal designs, which are generalized to the problem of determining optimal product

designs in the case of multivariable polynomial regression. Analogous to the robust criterion

there, a robust A-optimal criterion is also defined and an equivalence theorem is provided for

two or more models in this work.
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In the past, the way to verify the A-optimal designs for different mixture models is usually

quite complicated. In this work, it is even more difficult while adding an unknown convex

design coefficient α in the robust criterion. However, due to a complete class result of Draper,

et al. (2000) on weighted centroid designs, the problem can be substantially reduced. That is,

we merely need to discuss designs on centroid points but not all other ones, then we will use the

result to deal with our robust optimal problem.In Klein (2002), there is a quite nice method to

verify a candidate optimal design obtained to satisfy the equivalence theorem in the complete

class of weighted centroid designs. He analyzes a quadratic subspace of block matrices which

are invariant under the action of a group H arising from the design of mixture experiments,

and the matrices have been used to find the D-, A- and E-optimal designs respectively.

In general, the investigators assume that the fitted model is focused on a single regression

function. But in practice, experimenters are often uncertain about which model is suitable.

It dates back to Box and Draper (1959), if we use a simple linear function to estimate the

expected value of the response when the true model is quadratic, it would result in a large

bias for estimation. Thus, while designing an experiment for regression models, robustness has

always been an important issue.

In the first part of next section, we provide an A-optimal equivalence theorem on multivariable

regression. The problem of finding an optimal design is reduced to one in the class of weighted

centroid designs in the second part. In the third part, results about a multiplication table for

the blocks of H-invariant symmetric matrices introduced in Klein (2002) are stated. In Section



Section 1 5

3, the robust A-optimal design is obtained by verifying that in the corresponding equivalence

theorem, which is considered on weighted centroid designs. Section 4 presents some plots of the

relation between α and r, defined under different criteria. Finally, in Section 5, we conclude

our work here and discuss some possible further works.



Section 2 6

2 Preliminary for robust A-optimal design

In the first part of the section, the model robust A-optimality criteria analogous to Dette

(1990) will be provided. In the second part, we state the weighted centroid designs in the

experiments for mixture models. Finally, invariant symmetric block matrices by Klein (2002)

will be introduced.

2.1 Generalized A-optimal equivalence theorem

The following result due to Dette (1990) characterizes the generalized D-optimal designs.

Analogous to the results, we will provide a generalized A-optimality criterion to deal with our

robust A-optimal designs for mixture experiments later as well.

In Dette (1990), the generalized D-optimal design criterion is defined and a class of polynomial

regression models is as follows. Let

Fn = {fl|fl(x) =
l∑

i=0

θl,ix
i, l = 0, 1, ..., n, x ∈ [−1, 1]}

A vector γ = (γ0, γ1, ..., γn) of real numbers is called a prior for Fn where γ is a probability

measure on {0, 1, ..., n} or is, for s ∈ {1, ..., n− 1}, of the form

γ0 = ... = γn−s−1 = 0, γn−s = −n− s + 1

s
,

γn−s+1 = ... = γn−1 = 0, γn =
n + 1

s
.
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For a given prior γ on {0, ..., n}, we call a design ξγ optimal for Fn with respect to the prior

γ, if ξγ maximizes the function

Ψγ(ξ) =
n∑

l=0

γl

l + 1
log(detMl(ξ)).

The D-optimality criterion is a special case with prior γD = (0, ..., 0, 1) and Ds-optimality

criterion with γDs , s ∈ (1, ..., n − 1). Furthermore, the equivalence theorem of the generalized

D-optimality criterion is also given in Dette (1990).

Analogous to the result as the above, the generalized A-optimality criteria is considered as

follows. Let a vector r = (r0, r1, ..., rn) of real numbers be a prior for Fn. For a given prior

function β = β(r) = (β0, β1, ..., βn), a canonical function of a prior vector r, we call a design ξβ

optimal Fn with respect to the prior β, if ξβ minimizes the following two functions:

(i) Ψβ(ξ) =
n∑

l=0

βltr(M
−1
l (ξ)) (2.1)

(ii) Ψβ(ξ) =
n∑

l=0

βllog( tr(M−1
l (ξ))). (2.2)

From the above, the aims of the two criteria are the same, that is to minimize a kind of

convex combinations of some functions of the traces of dispersion matrices for two or more

models to obtain a robust optimal design.

Now we also need an equivalence theorem to prove our assertion for a given criterion as

the above. Analogous to Fedorov (1972, p125), we provide an equivalence theorem for the

generalized L-optimal designs under the n + 1 linear regression models f0, f1, ..., fn, here we let

the class Fn defined on a compact set ℵ as follows.
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Lemma 2.1. For a given prior β = (β0, β1, ..., βn), we say the design ξβ is optimal for the

class Fn with n + 1 linear regression functions f0, f1, ..., fn with respect to the prior β, then the

following three statements are equivalent:

(i)The design ξβ minimizes
∑n

l=0 βlL{M−1
l (ξ)}.

(ii)For an arbitrary design ξ,

n∑
l=0

βlL{M−1
l (ξβ)Ml(ξ)M

−1
l (ξβ)} ≤

n∑
l=0

βlL{M−1
l (ξβ)}.

(iii)For an arbitrary single point x ∈ ℵ,

maxx∈ℵ

n∑
l=0

βlL{M−1
l (ξβ)fl(x)fl(x)′M−1

l (ξβ)} =
n∑

l=0

βlL{M−1
l (ξβ)}.

Proof . 1◦ We will show that (ii) follows from (i). To do this, let ξ be an arbitrary design,

the design ξs = (1− s)ξβ + sξ is considered and also M(ξs) = (1− s)M(ξβ) + sM(ξ). In view

of the linearity of the functional L

∂

∂s
L{M−1(ξs)} = L{ ∂

∂s
M−1(ξs)}.

From this, we obtain

∂

∂s
Ψβ(ξs) =

∂

∂s

n∑
l=0

βlL{M−1
l (ξs)} =

n∑
l=0

βlL{
∂

∂s
M−1

l (ξs)}

=
n∑

l=0

βlL{M−1
l (ξs)(Ml(ξβ)−Ml(ξ))M

−1
l (ξs)}.

Now set s = 0, due to the convexity of L(M−1(ξ)) and if ξβ is optimal, the following inequality

must be satisfied, i.e.

∂

∂s
Ψβ(ξs)|s=0 =

n∑
l=0

βlL{M−1
l (ξβ)(Ml(ξβ)−Ml(ξ))M

−1
l (ξβ)} ≥ 0,
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which implies

n∑
l=0

βlL{M−1
l (ξβ)Ml(ξ)M

−1
l (ξβ)} ≤

n∑
l=0

βlL{M−1
l (ξβ)},

for an arbitrary design ξ and the equality holds if and only if ξ = ξβ.

2◦ We will show that (iii) follows from (ii). To do this, consider the design ξ concentrated

at a single point x and Ml(ξ) = fl(x)fl(x)′ such that

n∑
l=0

βlL{M−1
l (ξβ)fl(x)fl(x)′M−1

l (ξβ)} ≤
n∑

l=0

βlL{M−1
l (ξβ)}. (2.3)

On the other hand, for any design ξ with finite support points x1,x2, ...,xp,

n∑
l=0

βlL{M−1
l (ξ)} =

n∑
l=0

βlL{M−1
l (ξ)Ml(ξ)M

−1
l (ξ)}

=
n∑

l=0

βlL{M−1
l (ξ)(

∑
xi∈ξ

pifl(xi)fl(xi)
′)M−1

l (ξ)}

=
n∑

l=0

βl

∑
xi∈ξ

piL{M−1
l (ξ)fl(xi)fl(xi)

′M−1
l (ξ)}.

Meanwhile, since ξβ is optimal, then

max
x

n∑
l=0

βlL{M−1
l (ξ)fl(x)fl(x)′M−1

l (ξ)}

≥ max
i

n∑
l=0

βlL{M−1
l (ξ)fl(xi)fl(xi)

′M−1
l (ξ)}

≥
n∑

l=0

βlL{M−1
l (ξ)}

≥
n∑

l=0

βlL{M−1
l (ξβ)}.
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(2.4)

Therefore, comparing (2.3) and (2.4), it is not difficult to see that for a robust linear-optimal

design, maxx Φ(x, ξβ) = maxx

∑n
l=0 βlL{M−1

l (ξβ)fl(x)fl(x)′M−1
l (ξβ)} attains the smallest pos-

sible value. For brevity, we call the design ξβ minimizing maxx Φ(x, ξ) the minimax design.

Furthermore, for the design ξ is arbitrary given, the robust linear-optimal design ξβ will also

satisfy the following equation:

max
x∈ℵ

Φ(x, ξβ) = max
x∈ℵ

n∑
l=0

βlL{M−1
l (ξβ)fl(x)fl(x)′M−1

l (ξβ)}

=
n∑

l=0

βlL{M−1
l (ξβ)}.

3◦ We will show that (i) follows from (iii). If the design ξβ satisfies the equation,

max
x∈ℵ

Φ(x, ξβ) =
n∑

l=0

βlL{M−1
l (ξβ)},

but not linear-optimal. We can assume that the minimax design ξβ does not satisfy (i), that

is,
∑n

l=0 βlL{M−1
l (ξβ)} > minξ

∑n
l=0 βlL{M−1

l (ξ)}. Then a design ξ can be found such that

∂
∂s

Ψβ(ξs) < 0, where ξs = (1− s)ξβ + sξ. For example, we could choose a design ξ◦ minimizing∑n
l=0 βlL{M−1

l (ξ)} as the design it is possible. Besides,

∂

∂s
Ψβ(ξs)|s=0 =

n∑
l=0

βlL{M−1
l (ξβ)} −

n∑
l=0

βlL{M−1
l (ξβ)Ml(ξ)M

−1
l (ξβ)}

= Ψβ(ξβ)−
n∑

l=0

βl

∑
xi∈ξ

piL{M−1
l (ξβ)fl(xi)fl(xi)

′M−1
l (ξβ)}

≥ Ψβ(ξβ)−max
x∈ℵ

Φ(x, ξβ) = 0.
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The obtained contradiction proves our assertion.

Lemma 2.2. For a given prior β = (β0, β1, ..., βn), the following three conditions are equivalent:

(i)The design ξβ is optimal for the class Fn with respect to the prior β

(ii)The design ξβ minimizes

Φβ(ξ) = maxx∈ℵ

n∑
l=0

βl
L{M−1

l (ξ)fl(x)fl(x)′M−1
l (ξ)}

L{M−1
l (ξ)}

(iii)

Φβ(ξβ) = maxx∈ℵ

n∑
l=0

βl
L{M−1

l (ξβ)fl(x)fl(x)′M−1
l (ξβ)}

L{M−1
l (ξβ)}

= 1

Proof . For the generalized L-optimal equivalence theorem according to criteria(ii), the proof

can be obtained similarly in Lemma 2.1.

Although the above criterion and equivalence theorem is originally defined and established

for polynomial regression models on compact intervals, it can be used for mixture experiments

without any problem. Therefore, we may find the robust designs with the corresponding crite-

rion and the equivalence theorem for mixture experiments as well.

2.2 Optimal weighted centroid designs

Based on a result of Draper, et al. (2000) on weighted centroid designs, which will be

introduced in the following, the problem can be substantially reduced.
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Definition 2.1. For q ≥ 2 and j ∈ 1, 2, ..., q, the j-th elementary centroid design ηj is

the uniform distribution on the centroids of depth j, that is, on all points taking the form

1
j

∑j
i=1 eki

∈ Sq−1 with 1 ≤ k1 < k2 < ... < kj−1 < kj ≤ q.

That is, a design ηj assigns equal weights 1

(q
j)

to each of points of x ↔ (1
j
, ..., 1

j
, 0, ..., 0), where

j = 1, 2, ..., q. A convex combination ηα =
∑q

j=1 αjηj with α = (α1, ..., αq)
′ ∈ Sq−1 is called a

weighted centroid design with weight vector α. We denote the set of weighted centroid designs

by η(Sq−1).

By Draper and Pukelsheim (1999) and Draper, et al. (2000), it is shown that the set η(Sq−1)

of weighted centroid designs is an essentially complete class in the second-degree Kronecker

models fk(x) for mixture experiments with q ≥ 2 ingredients. That is, for every design ξ on

Sq−1, there exists a weighted centroid design η with tr{M−1
k (η)} ≤ tr{M−1

k (ξ)}. The same

completeness property holds within the second degree Scheffé models fs(x), which will be shown

in next section.

As a consequence of the above, the search for an A-optimal design can be restricted to the

set of competing designs on η(Sq−1). Thus, a simpler design problem to solve is finding an

optimal design ξ∗ ∈ η(Sq−1) with equivalence theorem.

2.3 Invariant symmetric block matrices for the design of mixture experiments

In dealing with the problems about the calculations of the matrices, especially in the general

cases as q ≥ 2, we need to obtain a general form of the information matrices in the quadratic
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models. Klein (2002) presents that the information matrices for a mixture experiment can

be decomposed into blocks of H-invariant symmetric matrices and a multiplication table is

provided there. It is also shown that the matrices have seven distinct entries at most. The

H-invariant symmetric matrices representation in Klein (2002) are given as follows. Let Gq be

the symmetric group of order q. Given a permutation π ∈ Gq of the ingredients 1, ..., q, we

denote the corresponding permutation matrix by Rπ,

Rπ =

q∑
i=1

eπ(i)e
′
i,

where ei denotes the ith Euclidean unit vector of <q, with ith entry one and zeros elsewhere.

Let Perm(q) be the group of all q × q permutation matrices. Define the group,

H := {Hπ =

(
Rπ 0
0 Sπ

)
: π ∈ Gq},

Sπ :=

q∑
i,j=1,i<j

E(π(i),π(j))↑E
′
ij ∈ Perm(

(
q

2

)
),

where (π(i), π(j))↑ for all π ∈ Gq denotes the pair of indices π(i), π(j) in ascending order.

We can see that the group H is a subgroup of the orthogonal group, the space

Sym(

(
q + 1

2

)
,H) := {C ∈ Sym(

(
q + 1

2

)
) : HCH ′ = C,∀H ∈ H}

of H-invariant symmetric matrices is a quadratic subspace of Sym(
(

q+1
2

)
), that is, a subspace

closed under formation of powers Cn with n ∈ N. We briefly introduce the results of this

analysis by Klein (2002). First we define the identity matrices U1 = Iq and W1 = I(q
2)

, and
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write 1q = (1, ..., 1)′ ∈ <q. Furthermore, we define

U2 = 1q1
′
q − Iq ∈ Sym(q),

V1 =

q∑
i,j=1,i<j

Eij(ei + ej)
′ ∈ <(q

2)×q,

V2 =

q∑
i,j=1,i<j

q∑
k=1,k 6∈{i,j}

Eije
′
k ∈ <(q

2)×q,

W2 =

q∑
i,j=1,i<j

q∑
k,l=1,k<l,|{i,j}∩{k,l}|=1

EijE
′
kl ∈ Sym(

(
q

2

)
),

W3 =

q∑
i,j=1,i<j

q∑
k,l=1,k<l,|{i,j}∩{k,l}|=0

EijE
′
kl ∈ Sym(

(
q

2

)
),

as the invariant symmetric block matrices.

Lemma 2.3. Any matrix C ∈ Sym(
(

q+1
2

)
,H) can be uniquely represented in the form

C =

 aIq + bU2 cV ′
1 + dV ′

2

cV1 + dV2 eW1 + fW2 + gW3


with coefficients a,...,g ∈ <. The term V2, W2 and W3 only occur for q ≥ 3 or q ≥ 4, respectively.

In particular,

dimSym(

(
q + 1

2

)
,H) =


4 , for q = 2
6 , for q = 3
7 , for q ≥ 4.

Lemma 2.4. For any q ≥ 2, the matrices U1, U2 ∈ Sym(q), V1, V2 ∈ <(q
2)×q, and W1, W2, W3 ∈

Sym(
(

q
2

)
) from Lemma 2.3 satisfy the following equations:

(i)(Products in span{U1, U2})

V ′
1V1 = (q − 1)U1 + U2, V ′

2V2 =
(

q−1
2

)
U1 +

(
q−2
2

)
U2,

V ′
1V2 = V ′

2V1 = (q − 2)U2, V ′
2V2 = (q − 1)U1 + (q − 2)U2.
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(ii)(Products in span{V1, V2})

V1U2 = V1 + 2V2, V2U2 = (q − 2)V1 + (q − 3)V2,

W2V1 = (q − 2)V1 + 2V2, W2V2 = (q − 2)V1 + 2(q − 3)V2,

W3V1 = (q − 3)V2, W3V2 =
(

q−2
2

)
V1 +

(
q−3
2

)
V2.

(iii)(Products in span{W1, W2, W3})

V1V
′
1 = 2W1 + W2, V1V

′
2 = V2V

′
1 = W2 + 2W3,

V2V
′
2 = (q − 2)W1 + (q − 3)W2 + (q − 4)W3,

W 2
2 = 2(q − 2)W1 + (q − 2)W2 + 4W3,

W 2
3 =

(
q−2
2

)
W1 +

(
q−3
2

)
W2 +

(
q−4
2

)
W3,

W2W3 = W3W2 = (q − 3)W2 + 2(q − 4)W3.
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3 The robust A-optimal designs for Scheffé’s linear and

quadratic models

In this section, we concentrate on the robust A-optimal designs for the Scheffé’s linear and

quadratic models. First we introduce the two mixture models and the A-optimal designs re-

spectively, which will be used later. To the end, our candidate robust optimal design will be

verified with the equivalence theorem to confirm that it is indeed A-optimal.

3.1 Scheffé’s linear and quadratic models and the corresponding A-optimal designs

The first type of mixture model was the polynomial suggested by Scheffé (1958). Let Eq,1(x)

and Eq,2(x) denote Scheffé linear and quadratic polynomials on the simplex Sq−1 , which are

defined as follows.

(i) Scheffé’s linear model:

Eq,1(x) =
∑

1≤i≤q

θixi = θ′1f1(x),

(ii) Scheffé’s quadratic model:

Eq,2(x) =
∑

1≤i≤q

θixi +
∑

1≤i≤j≤q

θijxixj = θ′2f2(x).

Using the equivalence theorem, it is easy to prove that the design ξ∗1 which assigns a weight

1/q to each x ↔ (1, 0, ..., 0) is A-optimal for the linear polynomial Eq,1(x), and these points
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are the only possible support points. Guan and Chao (1987), Yu and Guan (1993) have given

that the {q, 2} simplex weighted centroid design with w1 : w2 =
√

4q − 3 : 4 is A-optimal

for Scheffé’s quadratic models with q ≥ 4. That is, the design ξ∗2 assigns equal weights w1 to

x ↔ (1, 0, ..., 0) and w2 to x ↔ (1
2
, 1

2
, 0, ..., 0), i.e.

w1 =

√
4q − 3

q
√

4q − 3 + 2q(q − 1)
, w2 =

4

q
√

4q − 3 + 2q(q − 1)
,

for q ≥ 4, where Cq
1w1 + Cq

2w2 = 1.

To be more precise, it is understood that the Scheffé’s linear A-optimal design ξ∗1 can be

expressed as follows,

ξ∗1 =




1
0
...
0




0
1
...
0

 . . .


0
0
...
1


1
q

1
q

. . . 1
q

 , (3.1)

and the Scheffé’s quadratic A-optimal design ξ∗2 as follows,

ξ∗2 =




1
0
0
...
0




0
1
0
...
0

 . . .


0
0
0
...
1




1/2
1/2
0
...
0




1/2
0

1/2
...
0

 . . .


0
0
...

1/2
1/2


w1 w1 . . . w1 w2 w2 . . . w2


. (3.2)

Meanwhile, we denote f1(x) = (x1, x2, ..., xq)
′ and f2(x) = (x1, x2, ..., xq, x1x2, x1x3, ..., xq−1xq)

′

as Scheffé’s linear models and quadratic models respectively, and the corresponding information

matrices are M1(ξ) and M2(ξ) with a design ξ on Sq−1.
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3.2 Robust A-optimality criteria for Scheffé models

In Section 2, the generalized A-optimality criteria defined in (2.1) and (2.2) have been de-

fined, and now problems with uncertainties on linear and quadratic models, i.e. l = 2 will be

considered. Therefore, the robust A-optimal criteria can be written as

(i) Ψβ(ξ) = β1trM
−1
1 (ξ) + β2trM

−1
2 (ξ) (3.3)

(ii) Ψβ(ξ) = β1log(trM−1
1 (ξ)) + β2log(trM−1

2 (ξ)). (3.4)

Then the equivalence theorem for the two criteria given in Section 2 can be used here. Thus,

a design ξβ is robust A-optimal for Scheffé’s linear and quadratic models if ξβ minimizes the

functions Ψβ(ξ), and it can be verified through the equivalence theorems, such that for all

x ∈ Sq−1,

Φ(x, ξβ) = β1f1(x)′M−2
1 (ξβ)f1(x) + β2f2(x)′M−2

2 (ξβ)f2(x)

= β1φ1(x, ξβ) + β2φ2(x, ξβ) ≤ β1trM
−1
1 (ξβ) + β2trM

−1
2 (ξβ),

or

Υ(x, ξβ) = β1
f1(x)′M−2

1 (ξβ)f1(x)

trM−1
1 (ξβ)

+ β2
f2(x)′M−2

2 (ξβ)f2(x)

trM−1
2 (ξβ)

= β1υ1(x, ξβ) + β2υ2(x, ξβ) ≤ 1.

In what follows, we will show that the function φl(x, ξβ) can be considered as a trace of the

products of certain matrices, where l = 1 or 2, which has some good properties and can be

used later.
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3.3 Exchangeability and Kiefer ordering

By Draper and Pukelsheim (1999), we call a design τ = τ(x) as a single-point permutation de-

sign, which assigns weights on each of points of the subset{x : a single point x ↔ (x1, x2, ..., xq)},

where x is an arbitrary point defined on Sq−1. A design τ is said to be permutationally invariant

when τR = τ for all R ∈ Perm(q), where τR is the image of τ under R. We call a design with

this invariance property an exchangeable design. Moreover, we may obtain an exchangeable

design τ̄ by averaging over the permutation group,

τ̄ =
1

q!

∑
R∈Perm(q)

τR.

To illustrate the notation, we give an example for q = 3 and an arbitrary point x = (1
3
, 2

3
, 0)′,

then the set of

{x ↔ (x1, x2, x3)} = {(1
3
,
2

3
, 0), (

1

3
, 0,

2

3
), (

2

3
,
1

3
, 0), (

2

3
, 0,

1

3
), (0,

1

3
,
2

3
), (0,

2

3
,
1

3
)}.

Suppose a design τ is chosen as

τ =


 1/3

2/3
0

  2/3
0

1/3

  0
1/3
2/3

  0
2/3
1/3


1
3

1
4

1
4

1
6

 ,

which assigns weights on the subset of {x ↔ (x1, x2, x3)}. Now, if a permutation matrix R is

considered by

R =

 0 0 1
1 0 0
0 1 0

 ,
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which will imply

Rτ =


 0

1/3
2/3

  1/3
2/3
0

  2/3
0

1/3

  1/3
0

2/3


1
3

1
4

1
4

1
6

 .

Therefore, while considering all the permutation matrices R ∈ Perm(3), then

τ̄ =


 1/3

2/3
0

  1/3
0

2/3

  2/3
1/3
0

  2/3
0

1/3

  0
1/3
2/3

  0
2/3
1/3


1
6

1
6

1
6

1
6

1
6

1
6

 .

If the original design τ itself is exchangeable, then no modification is necessary, τ̄ = τ .

Otherwise, the average τ̄ is an improvement over τ , in that it exhibits more symmetry, or

balance. In terms of matrix majorization, the moment matrix of the averaged design τ̄ is

majorized by the moment of τ , M(τ̄) ≺ M(τ). As a consequence, the design τ̄ yields better

than τ , under a large class of optimality criteria. For more details, see Pukelsheim (1993, p.343).

Furthermore, for the calculation of the equivalence theorem, we need some useful properties of

τ̄ as follows.

Corollary 3.1. For an arbitrary point x and a single-point permutation design τ = τ(x), we

have

φl(x, ξ) = fl(x)′M−2
l (ξ)fl(x) = tr{Ml(τ̄)M−2

l (ξ)}

for any exchangeable design ξ, where l = 1 or 2 and τ̄ is an averaged design over design τ .

Proof . For τ̄ = 1
q!

∑
τR, R ∈ Perm(q),

M(τ̄) =
1

q!

∑
R

M(τR) =
∑
xi∈τ̄

1

q!
f(xi)f(xi)

′.
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All the points xi ∈ τ̄ can be produced by one point x1 ∈ τ under the permutation matrix Ri,

that is, xi = Rix1, Ri ∈ Perm(q). For convenience, we denote that

(x(1))
′ = (x1, x2, ..., xq)

′

(x(2))
′ = (x1x2, x1x3, ..., xq−1xq)

′.

By Draper et al. (1993), for every orthogonal q×q matrix Ri, there exists a unique nonsingular

q × q matrix R1i such that

f1(Rix) = R
(1)
i (x(1))

′ = R1if1(x)′,

and a
(

q+1
2

)
×
(

q+1
2

)
matrix R2i such that

f2(Rix) =

(
R

(1)
i .

. R
(2)
i

)(
x(1)

x(2)

)
= R2if2(x)′,

where R(2) is a matrix, changed with R(1). Moreover, RliR
′
li = R′

liRli = Iql
for l = 1 or 2.

Hence, from the right hand side of the equation, we have

tr{Ml(τ̄)M−2
l (ξ)} = tr{

∑
xi∈τ̄

1

q!
fl(xi)fl(xi)

′M−2
l (ξ)}

= tr{
∑
x1∈τ̄

1

q!
fl(Rix1)fl(Rix1)

′M−2
l (ξ)}

=
∑
x1∈τ̄

1

q!
tr{Rlifl(x1)fl(x1)

′R′
liM

−2
l (ξ)}

= tr{fl(x1)fl(x1)
′R′

liM
−2
l (ξ)Rli}.

Since the design ξ assigns one weight p1 to each of points x ↔ (1, 0, ..., 0) and another weight
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p2 to x ↔ (1
2
, 1

2
, 0, ..., 0), it is clear that ξ is an exchangeable design, i.e.

Ml(ξ) =

∫
fl(x)fl(x)′dξ =

∫
fl(x)fl(x)′dξR =

∫
fl(Rx)fl(Rx)′dξ

= Rl

∫
fl(x)fl(x)′dξR′

l = RlMl(ξ)R
′
l,

where R ∈ Perm(q) and RlR
′
l = R′

lRl = Iql
for l = 1 or 2. Then we have

M−1
l (ξ) = (RlMl(ξ)R

′
l)
−1 = (R′

l)
−1M−1

l (ξ)(Rl)
−1 = RlM

−1
l (ξ)R′

l

M−2
l (ξ) = (RlM

−1
l (ξ)R′

l)
−1 = RlM

−2
l (ξ)R′

l

Thus, as ξ is an exchangeable design,

tr{Ml(τ̄)M−2
l (ξ)} = tr{fl(x1)fl(x1)

′R′
liM

−2
l (ξ)Rli}

= tr{fl(x1)fl(x1)
′R′

liRliM
−2
l (ξ)R′

liRli}

= tr{fl(x1)fl(x1)
′M−2

l (ξ)} = fl(x1)
′M−2

l (ξ)fl(x1).

Since x1 must be one point belonging to supports of the design τ , the equality certainly holds

true. Then the proof is completed.

Note that the convex complete class results obtained by Draper and Pukelsheim (1999)

and Draper et al. (2000) are for Kronecker regression models. But it is mentioned that the

Scheffé models contains some properties as Kronecker models by a linear transformation. For

convenience, let fk and fs represent the Kronecker and Scheffé models respectively, and Mk and

Ms represent the information matrices of the two models respectively. Moreover, we denote

that a symmetric matrix M ≥ 0 if the matrix is nonegative definite. Now a weighted centroid
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design η ∈ η(Sq−1) and a feasible design τ on Sq−1 are considered for Scheffé models, then we

have a property as follows.

Corollary 3.2. In the second-degree Scheffé models for mixture experiments with q ≥ 2 ingre-

dients, consider a weighted centroid design η ∈ η(Sq−1), we have

Ms(η) ≥ Ms(τ̄),

where τ is any feasible design on Sq−1.

Proof . By Draper et al. (2000), it is known that Mk(η) ≥ Mk(τ̄). Now choose a
(

q+1
2

)
× q2

transform matrix L, defined as

L =

 Iq
1
2
V ′

1
1
2
V ′

1

0 1
2
W1

1
2
W1

 .

Then there is a correspondence between the Scheffé model fs(x) and the Kronecker model fk(x)

through the linear transformation by the matrix L, where

fs(x) = (x1, x2, ..., xm, x1x2, x1x3, ..., xq−1xq)
′,

fk(x) = (x2
1, x

2
2, ..., x

2
m, x1x2, x1x3, ..., xq−1xq, x2x1, x3x1, ..., xqxq−1)

′,

such that

fs(x) = Lfk(x),

which implies that the information matrices of any design ξ for the Scheffé model and those for

the Kronecker model have a relationship as

Ms(τ̄) =

∫
fs(x)fs(x)′dτ̄ = L

∫
fk(x)fk(x)′dτ̄L′ = LMk(τ̄)L′.
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Therefore,

Mk(η)−Mk(τ̄) ≥ 0 ⇒ Ms(η)−Ms(τ̄) = L(Mk(η)−Mk(τ̄))L′ ≥ 0,

which implies that

Ms(η) ≥ Ms(τ̄). (3.5)

Then the proof is completed.

3.4 The equivalence theorem on weighted centroid designs

By those properties stated above, the verification of robust A-optimality through equivalence

theorem for Scheffé’s linear and quadratic models can be substantially reduced.

Lemma 3.1. For an exchangeable design ξ∗, it is robust A-optimal for Scheffé’s linear and

quadratic models if and only if

β1tr{M1(ηj)M
−2
1 (ξ∗)}+ β2tr{M2(ηj)M

−2
2 (ξ∗)} ≤ β1trM

−1
1 (ξ∗) + β2trM

−1
2 (ξ∗)

for every centroid design ηj, where j = 1,2,...,q.

Proof . By Corollary 3.2, apply (3.5) on the Scheffé’s second degree models, we can replace

the character s into 2. i.e.

M2(η) ≥ M2(τ̄). (3.6)
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Moreover, we can also use a
(

q+1
2

)
× q matrix z to reduce the inequality of the information

matrix for Scheffé’s quadratic models to that for Scheffé’s linear models. i.e.

M1(η) = z′M2(η)z ≥ z′M2(τ̄)z = M1(τ̄). (3.7)

Taking inverse on (3.6) and (3.7), we have

M−1
1 (η) ≤ M−1

1 (τ̄) ⇒ M−2
1 (η) ≤ M−2

1 (τ̄) (3.8)

Referring to the equivalence theorem stated in Section 3.2,

φ1(x, ξ) = f1(x)′M−2
1 (ξ)f1(x) = f2(x)′zM−2

1 (ξ)z′f2(x)

φ2(x, ξ) = f2(x)′M−2
2 (ξ)f2(x),

where ξ is a feasible design on Sq−1. By (3.7) and (3.8), we have the corresponding function

for a design η ∈ Sq−1 such that

Φ(x, η) = β1φ1(x, η) + β2φ2(x, η)

= β1f2(x)′zM−2
1 (η)z′f2(x) + β2f2(x)′M−2

2 (η)f2(x)

= f2(x)′(β1zM
−2
1 (η)z′ + β2M

−2
2 (η))f2(x)

≤ f2(x)′(β1zM
−2
1 (τ̄)z′ + β2M

−2
2 (τ̄))f2(x)

= Φ(x, τ̄).

Besides, in view of corollary 3.1, for every point x ∈ Sq−1, we can choose a single-point permu-
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tation design τ such that

Φ(x, ξ∗) = β1f1(x)′M−2
1 (ξ∗)f1(x) + β2f2(x)′M−2

2 (ξ∗)f2(x)

= β1tr{M1(τ̄)M−2
1 (ξ∗)}+ β2tr{M2(τ̄)M−2

2 (ξ∗)}

≤ β1tr{Ml(η)M−2
l (ξ∗)}+ β2tr{M2(η)M−2

2 (ξ∗)}.

Thus, the inequality in the robust A-optimal equivalence theorem,

β1f1(x)′M−2
1 (ξ∗)f1(x) + β2f2(x)′M−2

2 (ξ∗)f2(x) ≤ β1trM
−1
1 (ξ∗) + β2trM

−1
2 (ξ∗)

for every point x ∈ Sq−1, can be reduced to that for any η ∈ η(Sq−1), i.e.

β1tr{M1(η)M−2
1 (ξ∗)}+ β2tr{M2(η)M−2

2 (ξ∗)} ≤ β1trM
−1
1 (ξ∗) + β2trM

−1
2 (ξ∗),

which is equivalent to the inequality as

β1tr{M1(ηj)M
−2
1 (ξ∗)}+ β2tr{M2(ηj)M

−2
2 (ξ∗)} ≤ β1trM

−1
1 (ξ∗) + β2trM

−1
2 (ξ∗),

for all ηj, j = 1, 2, ..., q.

As a result of the above lemma, we merely need to check all the centroid designs ηj under

the equivalence theorem while trying to verify that a design ξ∗ is A-optimal, and need not to

check all the points x ∈ Sq−1 as before.

In Draper et al. (2000), the moment matrices M(ηj) for second degree Kronecker models

have been given for j = 1, 2, ..., q. In this work, we provide the moment matrices of the design

ηj ∈ η(Sq−1) for second degree Scheffé models in the following lemma.
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Lemma 3.2. For second degree Scheffé model, we have

M1(ηj) = µ2,jIq + µ11,jU2

M2(ηj) =

(
C11,j C ′

21,j

C21,j C22,j

)
=

(
µ2,jIq + µ11,jU2 µ21,jV

′
1 + µ111,jV

′
2

µ21,jV1 + µ111,jV2 µ22,jW1 + µ211,jW2 + µ1111,jW3

)
,

where

µ2,j = 1
jq

, µ11,j = 1
jq

j−1
q−1

;

µ21,j = 1
j2q

1
jq

, µ111,j = 1
j2q

j−1
q−1

j−2
q−2

;

µ22,j = 1
j3q

1
jq

, µ211,j = 1
j3q

j−1
q−1

j−2
q−2

, µ1111,j = 1
j3q

j−1
q−1

j−2
q−2

j−3
q−3

.

Proof . By Draper and Pukelsheim (1999), it is evident that ηj is exchangeable and assigns

an equal weight 1
j

to each of x ↔ (1
j
, ..., 1

j
, 0, ..., 0) for j = 1, 2, ..., q. Therefore,

µ2,j =

∫
x2

rdηj =
1

j2

(
q − 1

j − 1

)
1(
q
j

) =
1

jq

µ11,j =

∫
xrxsdηj =

1

j2

(
q − 2

j − 2

)
1(
q
j

) =
1

jq

j − 1

q − 1

µ21,j =

∫
x2

rxsdηj =
1

j3

(
q − 2

j − 2

)
1(
q
j

) =
1

j2q

j − 1

q − 1

µ111,j =

∫
xrxsxtdηj =

1

j3

(
q − 3

j − 3

)
1(
q
j

) =
1

j2q

j − 1

q − 1

j − 2

q − 2

µ22,j =

∫
x2

rx
2
sdηj =

1

j4

(
q − 2

j − 2

)
1(
q
j

) =
1

j3q

j − 1

q − 1

µ211,j =

∫
x2

rxsxtdηj =
1

j4

(
q − 3

j − 3

)
1(
q
j

) =
1

j3q

j − 1

q − 1

j − 2

q − 2

µ1111,j =

∫
xrxsxtxudηj =

1

j4

(
q − 4

j − 4

)
1(
q
j

) =
1

j3q

j − 1

q − 1

j − 2

q − 2

j − 3

q − 3

,

where 1 ≤ r < s < t < u ≤ q.
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In next subsection, we will find the robust A-optimal among the class Ξc defined below. Let

ξ∗1 ,..., ξ∗m be the A-optimal designs respectively for the m candidate models.

3.5 Robust A-optimal designs for Scheffé’s models

Let the class Ξc be the class of the convex combinations of ξ∗1 ,..., ξ∗m with a weight vector

α = (α1, α2, ..., αm)′ ∈ Sm−1 for m ∈ N such as

Ξc = {ξα = α1ξ
∗
1 + α2ξ

∗
2 + ... + αmξ∗m, α = (α1, α2, ..., αm)′ ∈ Sm−1}.

In this work, as we would like to find a robust design with uncertainties on Scheffé’s linear and

quadratic models, we consider a design ξα ∈ Ξc and it is conjectured that a convex combination

of ξ∗1 and ξ∗2 would be robust A-optimal with a weight vector α = (α, 1− α, 0, ..., 0)′ such as

ξα = αξ∗1 + (1− α)ξ∗2 . (3.9)

Note that the convex design ξα also belongs to the class η(Sq−1), so that it is clearly an

exchangeable design. By robust A-optimality function in (3.3), the prior (β1, β2) can be chosen

as (r, 1− r),( r
q1

, 1−r
q2

) or ( r
trM−1

1 (ξ∗1)
, 1−r
trM−1

2 (ξ∗2)
), where q1 = q and q2 =

(
q+1
2

)
. For given r ∈ [0, 1]

in the case with β = (β1, β2) = (r, 1− r), we will find a corresponding α∗
r ∈ [0, 1] such that ξα∗r

minimizes the function Ψr(ξα), and later verify that ξα∗r is indeed robust A-optimal.

On the other hand, we can also show that for (β1, β2) = ( r
q1

, 1−r
q2

) and ( r
trM−1

1 (ξ∗1)
, 1−r
trM−1

2 (ξ∗2)
),

robust A-optimal designs can be obtained through that for (β1, β2) = (r, 1−r). Thus, we merely

need to consider the criterion with (β1, β2) = (r, 1− r) and others can be obtained accordingly.
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Theorem 3.1. For a given prior r ∈ [0, 1], consider a design ξα ∈ Ξc for mixture experi-

ments with q ≥ 4 ingredients, there exists an optimal α∗
r with α∗

r = g(r) ∈ [0, 1] such that the

corresponding function g(*) is one-one and onto.

Proof . As the robust A-criterion is

Ψr(ξα) = rtrM−1
1 (ξα) + (1− r)trM−1

2 (ξα),

In order to find an optimal α∗
r to minimize Ψr(ξα), we take the derivative on Ψr(ξα) with respect

to α and set it equal to zero. Then we have

∂

∂α
Ψr(ξα) = r

∂

∂α
tr(M−1

1 (ξα)) + (1− r)
∂

∂α
tr(M−1

2 (ξα))

= −rtr{M−1
1 (ξα)(

∂

∂α
M1(ξα))M−1

1 (ξα)} − (1− r)tr{M−1
2 (ξα)(

∂

∂α
M2(ξα))M−1

2 (ξα)}

= rtr{M−1
1 (ξα)(M1(ξ

∗
2)−M1(ξ

∗
1))M

−1
1 (ξα)}

+(1− r)tr{M−1
2 (ξα)((M2(ξ

∗
2)−M2(ξ

∗
1)))M

−1
2 (ξα)}

= rtr{M−2
1 (ξα)(M1(ξ

∗
2)−M1(ξ

∗
1))}+ (1− r)tr{M−2

2 (ξα)(M2(ξ
∗
2)−M2(ξ

∗
1))}.

Thus, the optimal α∗
r holds the following equality.

rtr{M−2
1 (ξα∗r)(M1(ξ

∗
2)−M1(ξ

∗
1))}+ (1− r)tr{M−2

2 (ξα∗r)(M2(ξ
∗
2)−M2(ξ

∗
1))} = 0. (3.10)

Moreover, observe that ξ∗1 = η1 and ξ∗2 = Cq
1w1η1 + Cq

2w2η2 such that

M(ξ∗2)−M(ξ∗1) = M(Cq
1w1η1 + Cq

2w2η2)−M(η1)

= M((Cq
1w1 − 1)η1 + Cq

2w2η2)

= Cq
2w2(M(η2)−M(η1)),
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where Cq
1w1 + Cq

2w2 = 1. Hence, (3.10) yields that

rtr{M−2
1 (ξα)(M1(η2)−M1(η1))}+ (1− r)tr{M−2

2 (ξα)((M2(η2)−M2(η1))} = 0. (3.11)

While solving the equation, as those matrices have some special forms as shown in Lemma

2.3, we can compute Ml(η2) − Ml(η1) by using Lemma 3.2 for l = 1, 2. Therefore, we can

express those matrices with q ingredients as

M1(η2)−M1(η1) =

( −1

2q
Iq +

1

2q(q − 1)
U2

)
(3.12)

M2(η2)−M2(η1) =


−1

2q
Iq +

1

2q(q − 1)
U2

1

4q(q − 1)
V ′

1

1

4q(q − 1)
V1

1

8q(q − 1)
W1

 . (3.13)

For the convex design ξα ∈ Ξc, the corresponding information matrices for Scheffé models

can be written as

Ml(ξα) = αMl(ξ
∗
1) + (1− α)Ml(ξ

∗
2), (3.14)

where l = 1, 2. Hence, in order to calculate M−2
1 (ξα) and M−2

2 (ξα), we first need to find the

moment matrices M1(ξ
∗
1), M1(ξ

∗
2), M2(ξ

∗
1) and M2(ξ

∗
2). After some computations, we obtain

M1(ξ
∗
1) = 1

q
Iq,

M1(ξ
∗
2) =

(
w1Iq + w2(

1

4
(q − 1)Iq +

1

4
U2)

)
,

M2(ξ
∗
1) =

 1

q
Iq 0

0 0

,

M2(ξ
∗
2) =

 M1(ξ
∗
2)

1
8
w2V

′
1

1
8
w2V1

1
16

w2W1

,
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then substitute the above moments matrices into (3.14), we have

M1(ξα) =

(
α

q
+ (1− α)w1 +

1

4
(1− α)(q − 1)w2)Iq +

1

4
(1− α)w2U2

)
, (3.15)

M2(ξα) =

 M1(ξα) 1
8
(1− α)w2V

′
1

1
8
(1− α)w2V1

1
16

(1− α)w2W1

 . (3.16)

For simplicity, take p1 = α
q

+ (1− α)w1 and p2 = (1− α)w2 to express the convex design ξα as

ξα =




1
0
0
...
0




0
1
0
...
0

 . . .


0
0
0
...
1




1/2
1/2
0
...
0




1/2
0

1/2
...
0

 . . .


0
0
...

1/2
1/2


p1 p1 . . . p1 p2 p2 . . . p2


,

which assigns p1 to each of x ↔ (1, 0, ..., 0) and p2 to each of x ↔ (1/2, 1/2, 0, ..., 0) such that

the moment matrices (3.15) and (3.16) can be rewrote as

M1(ξα) =

(
(p1 +

1

4
(q − 1)p2)Iq +

1

4
p2U2

)
,

M2(ξα) =

 M1(ξα) 1
8
p2V

′
1

1
8
p2V1

1
16

p2W1

 .

Thus, we can use these matrices to calculate the inverse matrices respectively in the next step.

For a block matrix M =

(
A B
C D

)
, the inverse of M can be computed as

M−1 =

(
K−1 −K−1BD−1

−D−1CK−1 D−1 + D−1CK−1BD−1

)
,

where K−1 = A− BD−1C, see Fedorov (1972, p.16,17). Moreover, due to quadratic subspace

property of Sym(
(

q+1
2

)
,H) by Klein (2002), we can assume that the inverse matrices M−1

l (ξα∗r)

have a form the same as Ml(ξα∗r) for l = 1, 2. Using the inverse formula above and Lemma 2.3
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and Lemma 2.4, we obtain the following results,

M−1
1 (ξα) =

(
a1Iq + b1U2

)
,

M−1
2 (ξα) =

 a2Iq + b2U2 c2V
′
1 + d2V

′
2

c2V1 + d2V2 e2W1 + f2W2 + g2W3

 ,

where

a1 =
8p1 + (4q − 6)p2

(4p1 + (q − 2)p2)(2p1 + (q − 1)p2)
, b1 =

−2p2

(4p1 + (q − 2)p2)(2p1 + (q − 1)p2)
,

a2 =
1

p1

, b2 = 0, c2 =
−2

p1

, d2 = 0, e2 =
8

p1

+
16

p2

, f2 =
4

p1

, g2 = 0.

Similarly, we compute M−2
l (ξα) by M−1

l (ξα)∗M−1
l (ξα) for l = 1, 2 and the forms of the matrices

are still invariant, i.e.

M−2
1 (ξα) =

(
a′1Iq + b′1U2

)
,

M−2
2 (ξα) =

 a′2Iq + b′2U2 c′2V
′
1 + d′2V

′
2

c′2V1 + d′2V2 e′2W1 + f ′2W2 + g′2W3

 ,

where

a′1 =
4(16p2

1 + 8(2q − 3)p1p2 + (4q2 − 11q + 8)p2
2)

(4p1 + (q − 2)p2)2(2p1 + (q − 1)p2)2
, b′1 =

−4(8p1p2 + (3q − 4)p2
2)

(4p1 + (q − 2)p2)2(2p1 + (q − 1)p2)2
,

a′2 =
4q − 3

p2
1

, b′2 =
4

p2
1

, c′2 = −2(16p1 + (4q + 1)p2)

p2
1p2

, d′2 = −16

p2
1

,

e′2 =
8(32p2

1 + 32p1p2 + (4q + 1)p2
2)

p2
1p

2
2

, f ′2 =
4(32p1 + (4q + 9)p2)

p2
1p2

, g′2 =
64

p2
1

.

In what follows, we substitute the above results into equation (3.11), then we have

tr{M−2
1 (ξα)(M1(η2)−M1(η1))} = t1(q, α) = − 8

(4p1 + (q − 2)p2)
, (3.17)

tr{M−2
2 (ξα)(M2(η2)−M2(η1))} = t2(q, α) =

16

p2
2

− 4q − 3

p2
1

, (3.18)
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and solving equation (3.11) and obtain that there exists a real number α∗
r ∈ [0, 1] such that

r =
t2(q, α

∗
r)

t2(q, α∗
r)− t1(q, α∗

r)
. (3.19)

On the other hand, for the function r = g−1(α∗
r) is considered, taking the derivation on r with

respect to α∗
r , then we have

∂

∂α∗
r

g−1(α∗
r) =

t2(q, α
∗
r)t

′
1(q, α

∗
r)− t′2(q, α

∗
r)t1(q, α

∗
r)

(t2(q, α∗
r)− t1(q, α∗

r))
2

, (3.20)

where all functions of the numerator of (3.20) as follows.

t1(q, α
∗
r) =

−2q(2(q − 1) +
√

4q − 3)

(qα∗
r + (q − 2) +

√
4q − 3)

< 0, (3.21)

t2(q, α
∗
r) = q2(2(q − 1) +

√
4q − 3)2(

1

(1− α∗
r)

2
− 1

(1 + 2(q−1)√
4q−3

α∗
r)

2
) > 0, (3.22)

and the derivations on t1(q, α
∗
r) and t2(q, α

∗
r) with respect to α∗

r as follows,

t′1(q, α
∗
r) =

2q2(2(q − 1) +
√

4q − 3)

(qα∗
r + (q − 2) +

√
4q − 3)2

> 0, (3.23)

t′2(q, α
∗
r) = q2(2(q − 1) +

√
4q − 3)2(

2

(1− α∗
r)

3
+

4(q − 1)(4q − 3)

(2(q − 1)α∗
r +

√
4q − 3)3

) > 0. (3.24)

Thus, for α∗
r ∈ [0, 1), the four inequalities (3.21), (3.22), (3.23) and (3.24) above make the

derivative function (3.20) greater than zero. Moreover, by (3.21) and (3.22), we also find that

g−1(0) = 0 and limα∗r→1 g−1(α∗
r) = 1. Therefore, the relation function g−1(α∗

r) is strictly-

increasing on [0, 1] and this function from α∗
r to r is one-one and onto. That is, for a given

r ∈ [0, 1], there exists an optimal α∗
r ∈ [0, 1] and thus the relation function α∗

r = g(r) is one-one

and onto. The proof is completed.
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Usually, we use r = g−1(α∗
r) as the relation function because it is easier to get α∗

r this way.

Moreover, as (β1, β2) is of different form, the relation function between r and α∗
r can be still

obtained easily by applying the results for (r, 1− r).

Theorem 3.2. For a given r ∈ [0, 1], the design ξα∗r ∈ Ξc with optimal α∗
r ∈ [0, 1] is robust

A-optimal.

Proof . To prove that the convex design ξα∗r is robust A-optimal, the equivalence theorem in

Lemma 3.1,

rtr{M1(ηj)M
−2
1 (ξα∗r)}+ (1− r)tr{M2(ηj)M

−2
2 (ξα∗r)} ≤ rtrM−1

1 (ξα∗r) + (1− r)trM−1
2 (ξα∗r)

for every j = 1, 2, ..., q, must be satisfied.

After some computations, we find that the equality holds on the support points of the design

ξα∗r at each of the points x ↔ (1, 0, ..., 0) and x ↔ (1
2
, 1

2
, 0, ..., 0). By Corollary 3.1, it is

shown the equality also holds on j = 1, 2 because the centroid designs η1 and η2 are the

permutation designs of each x ↔ (1, 0, ..., 0) and x ↔ (1
2
, 1

2
, 0, ..., 0) respectively. Now we take

Cj := rtr{M1(ηj)M
−2
1 (ξα∗r)}+ (1− r)tr{M2(ηj)M

−2
2 (ξα∗r)}, then if we can show that

C2 > C3 > C4 > ... > Cq, (3.25)

the proof is completed.

The inequality above is equivalent to Cj − Cj+1 > 0, for j = 2, ..., q − 1. According to the

properties of weighted centroid designs, the moment matrices M1(ηj) and M2(ηj) have been

given in Lemma 3.2. After some simplifications, we have
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Cj − Cj+1 = (8(j − 1)(64p∗1p
∗
2(j

3 − 3j2 − 5j − 2) + 32p∗21 (j3 + 11j2 + 12j + 4)− p∗22 ((17j3 −

37j2 − 68j − 28) + 4q(j3 + 11j2 + 12j + 4))))/(j3(j + 1)3(256p∗41 + 128(q − 2)p∗31 p∗2 + 8(2q2 −

16q + 15)p∗21 p∗22 − 8(4q2 − 11q + 6)p∗1p
∗3
2 − (q − 2)2(4q − 3)p∗42 )).

Since we merely need to discuss the function above on j ≥ 2, Cj − Cj+1 can be rewrite as

follows, i.e.

Cj − Cj+1 =
8(j − 1)(a(j − 2)3 + b(j − 2)2 + c(j − 2) + d)

j3(j + 1)3p∗21 p∗22 (4p∗1 + (q − 2)p∗2)
2(t2(q, α∗

r)− t1(q, α∗
r))

, (3.26)

where

a = 64p∗1p
∗
2 + 32p∗21 − (4q + 17)p∗22

∝
√

4q − 3(16 + (8q − 24)α∗
r) + (8α∗2

r (q − 4)2 + (12α∗2
r + 40α∗

r + 4)(q − 4)− 57α∗2
r + 162α∗

r − 7,

b = −128p∗1p
∗
2 + 448p∗21 − (56q + 14)p∗22

∝
√

4q − 3(48 + (136q − 184)α∗
r) + (α∗2

r (136q2 − 436q + 167) + α∗
r(232q + 34) + 68q − 167,

c = −512p∗1p
∗
2 + 1184p∗21 − (148q − 91)p∗22

∝
√

4q − 3(−20 + (136q − 116)α∗
r) + α∗2

r (136q2 − 300q + 99) + α∗
r(96q + 34) + 68q − 99,

d = −576p∗1p
∗
2 + 896p∗21 − (112q − 16)p∗22

∝
√

4q − 3(−16 + (40q − 24)α∗
r) + α∗2

r (40q2 − 68q + 19) + α∗
r(8q + 10) + 20q − 19.

Through some more computations, we can find the four coefficients a, b, c, d are greater then

zero for q ≥ 4, which implies the numerator of (3.26) is greater than zero as j ≥ 2. On the

other hand, by (3.21) and (3.22), the inequality t2(q, α
∗
r)− t1(q, α

∗
r) > 0 is easy to be obtained.

As the results above, the function (3.26) is greater than zero.
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Therefore, for q ≥ 4, the inequalities Cj−Cj+1 > 0 for all j = 2, 3, ..., q−1 have been proved.

That is, for a given r ∈ [0, 1], the optimal α∗
r ∈ [0, 1] implies that the convex design ξα∗r ∈ Ξc is

indeed robust A-optimal for Scheffé’s linear and quadratic models.
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4 Relationship between r and α∗r

In Section 2, the criteria (2.1) and (2.2) for n = 2 can be considered with some different prior

(β1, β2), such as

(β1, β2) = (r, 1− r), (
r

q1

,
1− r

q2

), or (
r

trM−1
1 (ξ∗1)

,
1− r

trM−1
2 (ξ∗2)

).

Given a criterion as the above, we could get the relationship between r and α∗
r with q ≥ 4

ingredient. In Section 3, we have shown that the convex design ξα∗r is robust A-optimal and there

exists an one-one correspondence between r and α while choosing the prior (β1, β2) = (r, 1−r).

Therefore, if we want to find robust A-optimal designs under the other two types of prior, we

can select the value (r, 1− r) as

(r, 1− r) = (

r′

m1

r′

m1

+
1− r

m2

,

1− r′

m2

r′

m1

+
1− r

m2

), (4.1)

where (m1, m2) = (q1, q2) or (trM−1
1 (ξ∗1), trM

−1
2 (ξ∗2)) . By (4.1), we have

r′ = h(r) =

r

m2

1− r

m1

+
r

m2

. (4.2)

Thus, for a given r ∈ [0, 1], the value r′ also belongs to [0, 1] and is one-one corresponding to

r. Now consider the convex combination coefficient α. If the one-one correspondence between

r and the optimal α∗
r holds true, it is obvious that r′ and α∗

r have the same result. Therefore,

for a given r, we say the design ξα∗r is robust A-optimal, then for a given r′ = h(r), we can also

find a robust A-optimal design ξα∗
r′

= ξα∗
h(r)

.

Although the prior (β1, β2) = (1−r) can be extended to other ones, the relationship between
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r and α∗
r on different type of (β1, β2) are different. In what follows, we will show these different

types of relationship and present with plots.

For the three types of prior (β1, β2), we denote (β1, β2) as ( r
m1

, 1−r
m2

), where (m1, m2) =

(1, 1), (q1, q2), or (trM−1
1 (ξ∗1), trM

−1
2 (ξ∗2)). For a given r ∈ [0, 1], a function g(∗) from r to the

corresponding optimal α∗
r ∈ [0, 1] is one-one and onto. Hence, for criteria (2.1) with n = 2, the

relation functions between r and α∗
r are as follows and the corresponding plots are shown in

Figure 1.

r =
t2(q, α

∗
r)

t2(q, α
∗
r)−

m2

m1

t1(q, α
∗
r)

, (4.3)

where t1(q, α
∗
r) and t2(q, α

∗
r) defined as (3.17) and (3.18).

On the other hand, for criteria (2.2) with n = 2, the relation functions between r and α∗
r are

as follows and the corresponding plots are shown in Figure 2.

r =
t2(q, α

∗
r)

t2(q, α
∗
r)−

m2trM
−1
2 (ξα∗r)

m1trM
−1
1 (ξα∗r)

t1(q, α
∗
r)

. (4.4)

Note that the results of criteria(ii) are equivalent to those in minimize the function

β1log{ 1

m1

trM−1
1 (ξα)}+ β2log{ 1

m2

trM−1
2 (ξα)},

where (m1, m2) = (1, 1), (q1, q2), or (trM−1
1 (ξ∗1), trM

−1
2 (ξ∗2)). Thus, we merely need to discuss

in m1 = m2 = 1.



Section 4 39

(a)

(b)

(c)

Figure 1. The relation functions between r and α∗
r for criterion (2.1) under different prior

(β1, β2) with q = 4, 10, 30 and 50. (a)(β1, β2) = (r, 1− r), (b) (β1, β2) = ( r
q1

, 1− r
q2

) and (c)

(β1, β2) = ( r
trM−1

1 (ξ∗1)
, 1− r
trM−1

2 (ξ∗2)
).
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(a)

(b)

(c)

Figure 2. The relation functions between r and α∗
r for criterion (2.2) under different prior

(β1, β2) with q = 4, 10, 30 and 50. (a)(β1, β2) = (r, 1− r), (b) (β1, β2) = ( r
q1

, 1− r
q2

) and (c)

(β1, β2) = ( r
trM−1

1 (ξ∗1)
, 1− r
trM−1

2 (ξ∗2)
).
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5 Summary and some further works

The main results in this work are finding the robust A-optimal designs under different robust

A-optimal criteria, where each criterion is a convex combination of a function of the traces

of dispersion matrices respectively with a convex coefficient r ∈ [0, 1]. We have therefore, for

one of the robust A-optimal criteria, found for each given r ∈ [0, 1], there does exist a convex

combination coefficient α∗
r ∈ [0, 1] such that the convex combination of individual A-optimal

design ξα∗r = α∗
rξ

∗
1 + (1−α∗

r)ξ
∗
2 is robust A-optimal under uncertainties between Scheffé’s linear

and quadratic models. Furthermore, it is proved that there exists an one-one and onto function

between a given value r and the corresponding optimal coefficient α∗
r .

In order to verify whether a candidate design is robust A-optimal, a generalized A-optimal

equivalence theorem is considered on Scheffé models. Moreover, the complete class results of

weighted centroid designs (Draper, et al. (2000)) and the property of H-invariant symmetric

matrices (Klein (2002)) have been very useful in finding the optimal designs in the robust

settings and making the computation tractable.

Furthermore, in this work, the value of r is predetermined, it is also of interest to discuss

whether the performances of ξα∗r is still acceptable under other values of r. In other words,

under which criterion, i.e. choice of r value, such that the performances are not too bad even

for other criterion, we will discuss along this direction in the future.
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