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Abstract

In this work, we investigate c-optimal design for polynomial regression model without

intercept. Huang and Chen (1996) showed that the c-optimal design for the dth degree

polynomial with intercept is still the optimal design for the no-intercept model for estimat-

ing certain individual coefficients over [−1, 1]. We found the c-optimal designs explicitly for

estimating other individual coefficients over [−1, 1], which have not been obtained earlier.

For the no-intercept model, it is shown that the support points are scale invariant over

[−b, b]. Finally some special cases are discussed for estimating the coefficients of the 2nd

degree polynomial without intercept by Elfving theorem over nonsymmetric interval [a, b].

Keywords : c-optimal design, Elfving Theorem, individual regression coefficient.
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C-optimal designs for polynomial regression without intercept.

1 Introduction

Let E(y(x)) = θ′f(x) be the homoscedasic regression model on [a, b], where f ′(x) =

(f0(x), f1(x), · · · , fd(x)) denote a known vector with d + 1 linearly independent continu-

ous functions on [a, b], and θ′ = (θ0, θ1, · · · , θd) is the unknown parameter vector. The

outcome variable y(x) with mean value
∑d

i=0 θifi(x) and a common variance σ2. Let

Y = [y(x1), · · · , y(xn)]′, X = [f(x1), · · · , f(xn)]′, where y(x1), · · · , y(xn) are the uncorre-

lated random responses. Least squares estimator of the unknown parameter vector θ is

θ̂ = (X ′X)−1X ′Y . Then E(θ̂) = θ and Cov(θ̂) = σ2(X ′X)−1.

An exact design specifies a probability measure ξ on [a, b] which concentrates weight pν

at distinct xν and where npν is an integer, ν = 1, · · · , n. An approximate design is one where

the integral constraint on all the npν is not imposed. The information matrix of a design

ξ is defined by M(ξ) =
∫

f(x)f ′(x)dξ(x) = (mij)
d
i,j=0, where mij =

∫
fi(x)fj(x)dξ(x), such

that M(ξ) = 1
n(X ′X).

Our primary goal here is to estimate a linear form c′θ = Σd
ν=0cνθν and assume that

Σd
ν=0c

2
ν > 0, where the coefficient vector c = (c0, c1, · · · , cd)

′ ∈ Rd+1.

A linear form c′θ is called estimable with respect to ξ if c is contained in the range of

the matrix M(ξ). If c′θ is estimable with a design ξ, then the variance of c′θ is proportion

to c′M−1(ξ)c, where M−1(ξ) is a generalized inverse of the information matrix M(ξ).The

design is called c-optimal if minimizes c′M−1(ξ)c among all the design ξ on [a, b] where c

lies in the range of M(ξ).

Hoel and Levine (1964) showed that if fν(x) = xν , ν = 0, 1, · · · , d on [−1, 1], and
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c = f(x0) with |x0| > 1 then the c-optimal design is supported on the Chebyshev points

sν = cos(νπ
d

), ν = 0, 1, · · · , d. These are the points which satisfy |Td(x)| = 1, where Td(x)

is the dth Chebyshev polynomial of the 1st kind.

Kiefer and Wolfowitz (1965) considered more general systems of regression functions

and a large class of designs supported by the Chebyshev points was characterized.

Studden (1968) gave a different proof of the Kiefer-Wolfowitz results and pointed out

that for some special vectors c, its c-optimal design is supported by the Chebyshev points.

Chang and Heiligers (1996) found the E-optimal designs for the no-intercept regression

model on symmetric interval [−1, 1].

Huang and Chen (1996) showed that the c-optimal design for the dth degree polynomial

with intercept is still the optimal design for the no-intercept model for estimating certain

individual coefficients over [−1, 1]. We found the c-optimal designs explicitly for estimating

other individual coefficients over [−1, 1], which have not been obtained earlier. For the no-

intercept model, it is shown that the support points are scale invariant over [−b, b]. Finally

some special cases are discussed for estimating the coefficients of the 2nd degree polynomial

without intercept by Elfving theorem over nonsymmetric interval [a, b].
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2 Preliminary for characterization of c-optimal designs

and related results.

The following result due to Elfving (1952) characterizes the c-optimal designs ξ and

will be employed throughout the paper. First we define the Elfving set R, which is the

convex hull of the regression range R+ = {f(x) = (f0(x), · · · , fd(x))|x ∈ χ} and its negative

image R− = {−f(x)|x ∈ χ}. That is

R = conv(R+ ∪R−).

Every vector c ∈ R can be put in the form

c =
k∑

ν=1

ενpνf(xν)

where εν = ±1, pν > 0 and
∑k

ν=1 pν = 1. The integer k may always be taken to be at most

d + 2 and at most d + 1 if c is a boundary point of R.

In the following we state the Elfving theorem and a lemma given in Studden (1968).

Theorem 2.1. A design ξ0 is c-optimum if and only if there exists a measurable function

ϕ(x) satisfying |ϕ(x)| ≡ 1 such that

(i)
∫

ϕ(x)f(x)ξ(dx) = βc for some β

(ii) βc is a boundary point of the Elfving set R.

Lemma 2.1. A vector c of the form

c =
k∑

ν=1

ενpνf(xν)

lies on the boundary of R if and only if there exists a nontrivial ”polynomial”

u(x) =
∑

ν

aνfν(x)
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such that |u(x)| ≤ 1 for x ∈ [−1, 1], ενu(xν) = 1, ν = 1, 2, · · · , k, and
∑

ν aνcν = 1.

Studden(1968) showed that if f0, · · · , fd form a Chebyshev system over [−1, 1] then

there are two classes of vectors c, where the support points s0, · · · , sd, of the c-optimal

design are the alternating extreme points of the unique Chebyshev polynomial.

The classes of vectors c can be determined by the sign pattern of the determinants

Dν(c) =

∣∣∣∣∣∣∣
f0(s0) · · · f0(sν−1) f0(sν+1) · · · f0(sd) c0

...
...

...
...

...
fd(s0) · · · fd(sν−1) fd(sν+1) · · · fd(sd) cd

∣∣∣∣∣∣∣
= |f(s0) · · · f(sν−1)f(sν+1) · · · f(sd) c|

The sign of Dν(c) will be denoted by dν(c) ; if Dν(c) = 0 the sign may be defined as

−1 or +1.

Then we introduce the c-optimal Weights Theorem on linearly independent regression

vectors that provides explicit formula for calculation the c-optimal weights. The theorem

is from Pukelsheim and Torsney (1991), and has forerunners in Studden (1971, Theorem

3.1), and Kitsos, Titterington and Torsney (1988, section 6.1).

Theorem 2.2. There exist linearly independent regression vectors x1, x2, · · · , xk in χ that

support an optimal design ξ for c′θ. The weights wν = ξ(xν), satisfy

wν =
|uν |

Σj≤k|uj|
for all ν = 1, 2, · · · , k

where u1, u2, · · · , uk, are the components of the vector u = (XX ′)−1Xc, and

X ′ = (f(x1), f(x2), · · · , f(xk))
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be a k × k nonsingular matrix.

In c-optimality the interest is in estimating the linear combination of the parameters

c′θ with minimun variance. The design criterion to be minimized is thus

V ar(c′θ) ∝ c′M−1(ξ)c .

The equivalence theorem states that, for the optimum design,

{c′M−1(ξ∗)f(x)}2 ≤ c′M−1(ξ∗)c

for x ∈ χ.

We define some notations which are useful for later discussions. If there are d distinct

points a ≤ x0 < · · · < xd−1 ≤ b such that f(xi) 6= 0 for all 0, 1, · · · , d− 1 , let

F

(
0 1 · · · d− 1
x0 x1 · · · xd−1

)
= |f(x0)f(x1) · · · f(xd−1)| 6= 0 ,

and

Lν(x) = F

(
0 1 · · · ν − 1 ν ν + 1 · · · d− 1
x0 x1 · · · xν−1 x xν+1 · · · xd−1

)
/F

(
0 1 · · · d− 1
x0 x1 · · · xd−1

)
denote the Lagrange interpolation polynomial defined by requiring that Lν(xj) = δνj,

ν, j = 0, · · · , d− 1.

Next we state a formulas for finding the inverse of a nonsingular Vandermonde matrix

adopted from Graybill (1983 p.265-270), which will also be used later.

Let x0, x1, · · · , xd−1 be a set of d real numbers and let X be a d × d Vandermonde

matrix defined by

X =


1 1 · · · 1
x0 x1 · · · xd−1

x2
0 x2

1 · · · x2
d−1

...
...

...
xd−1

0 xd−1
1 · · · xd−1

d−1

 (1)
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and define the (d− 1)th degree polynomial Pν(x) by

Pν(x) = (x− x0)(x− x1) · · · (x− xν−1)(x− xν+1) · · · (x− xd−1)

=
d−1∏
t = 0
t 6= ν

(x− xt) for ν = 0, 1, · · · , d− 1. (2)

If we multiply the factors in Pν(x), we get

Pν(x) =
d−1∑
j=0

aνjx
j for ν = 0, 1, · · · , d− 1, (3)

where {aνj} are the appropriate products and sums of the numbers x0, x1, · · · , xd−1.

We now state a theorem for the inverse of X.

Theorem 2.3. Let X be a d × d Vandermonde matrix given in (1), where the xν are

distinct. Denote X−1 by B = [bmn]. The elements of bmn are

bmn =
aνj

Pν(xν)
, (4)

where m = ν + 1, n = j + 1, and ν, j = 0, 1, · · · , d− 1.
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3 Optimal designs for the individual regression coeffi-

cients

3.1 Individual regression coefficients for the no-intercept model
over [-1,1]

For the no-intercept model f(x) = (x, · · · , xd)′ on [−1, 1], this model is the same

as the weighted polynomial model with weight function w(x) = x2 and let f̃d−1(x) =

(1, x, · · · , xd−1)′.

Our goal is to find the optimal design for each parameter θi for the weighted polynomial

models on [−1, 1]. Let cp = (0, · · · , 0, 1, 0, · · · , 0)′ be the vector in Rd with a one in the pth

component and zero elsewhere. Then c′pθ = θp, for all p = 1, · · · , d, with θ = (θ1, · · · , θd)
′ .

We divide the discussion into four cases according to d and d− p are even or odd.

First we consider the case that d − p is even and d is odd. Huang and Chen (1996)

showed that the cp-optimal design for the dth degree polynomial model with intercept is

still the optimal design for the no-intercept model for certain p’s, this is given in Theorem

3.1.

Theorem 3.1. Let sν = cos(νπ
d

) , ν = 0, 1, · · · , d be the Chebyshev points and

τ = (τ0, τ1, · · · , τd)
′ be the coefficient vector of the dth Chebyshev polynomial of the 1st

kind, Td(x). For the no-intercept model on [−1, 1] with odd degree d and even d − p, the

cp-optimal design is supported by the Chebyshev points {sν}.

For even degree d, Chang and Heiligers (1996) showed that for the no-intercept model

on [−1, 1], the E-optimal design for the dth degree polynomial model with intercept over

[−1, 1] remains optimal.
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They also proved that there exists an equioscillating weighted polynomial of degree d

over [−1, 1] (weighted by
√

w = x)

Cd−1 =
√

wc′d−1f̃d−1 ,

that is for a special vector cd−1 = (γ0, · · · , γd−1)
′ ∈ Rd will be given later, where ||Cd−1|| =

maxx∈[−1,1]|Cd−1(x)| = 1. There are d alternation points 1 ≥ %0 > · · · > %d−1 ≥ −1 in

[−1, 1] such that

Cd−1(%ν) = (−1)ν ||Cd−1|| , 0 ≤ ν ≤ d− 1 .

Actually, there is exactly one normalized weighted equioscillating polynomial Cd−1 of

degree d, The leading coefficient γd−1 of Cd−1 is different from zero, as is implied by the

oscillating property and Cd−1(0) = 0. The equioscillating property of Cd−1 carries over to

Cd−1(x) = −Cd−1(−x), [−1, 1], thus Cd−1 is an odd polynomial.

Let l = d− 2
2 and Tl+1(x) =

∑l+1
ν=0 τνx

ν , x ∈ [−1, 1], which is the Chebyshev polyno-

mial of the first kind of degree l + 1(normalized so that Tl+1(1) = 1) with corresponding

alternation points ρν = cos( νπ
l + 1

), 0 ≤ ν ≤ l + 1,and denote σ = cos(2l + 1
2l + 2

π) which is

the smallest zero of Tl+1 in [−1, 1]. Then we have the following lemma from Chang and

Heiligers(1996).

Lemma 3.1. Cd−1(x) = sgn(x)Tl+1((1− σ)x2 + σ), x ∈ [−1, 1], i.e.,

γν =

{
0 if ν is even

(1− σ
σ )ν

∑l+1
µ=ν

(
µ
ν

)
σµτµ if ν is odd

and

%ν =

{
(
ρν − σ
1− σ )

1
2 if 0 ≤ ν ≤ l

−(
ρd−1−ν − σ

1− σ )
1
2 if l < ν ≤ d− 1
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Then we can find a symmetric polynomial of degree d over [−1, 1],

ud(x) =
√

wv′df̃d−1 , vd = (α0, · · · , αd−1)
′ ∈ Rd .

The leading coefficient αd−1 of ud(x) is different from zero, and

αd−1 = sgn(x)(−1)
p
2 γd−1 ,

where p means the one in the pth component of cp = (0, · · · , 0, 1, 0, · · · , 0)′ and zero else-

where. The symmetric property of ud(x) carries over to ud(x) = ud(−x), x ∈ [−1, 1], thus

ud is an even polynomial. Then we can have a similar lemma as Lemma 3.1.

Let −1 ≤ x0 < · · · < xd−1 ≤ 1 be the d alternation points of ud(x) over [−1, 1] , and

||ud|| = maxx∈[−1,1]|ud(x)| = 1.

Lemma 3.2.

ud(x) = (−1)
p
2 Tl+1((1− σ)x2 + σ) , x ∈ [−1, 1]

αν = sgn(x)(−1)
p
2 γν , ν = 0, 1, · · · , d− 1 .

xν =

{
−(

ρd−1−ν − σ
1− σ )

1
2 if 0 ≤ ν ≤ l

(
ρν − σ
1− σ )

1
2 if l < ν ≤ d− 1

and

ud(xν) =

{
(−1)

p
2
+ν if 0 ≤ ν ≤ l

(−1)
p
2
+ν−1 if l < ν ≤ d− 1

Proof. Since ud(x) = (−1)
p
2 sgn(x)Cd−1(x), and

Cd−1(xν) = (−1)ν+1||Cd−1|| = (−1)ν+1 , 0 ≤ ν ≤ d− 1

9



, such that it is easy to know

ud(xν) = (−1)
p
2 sgn(x)(−1)ν+1

=

{
(−1)

p
2
+ν if 0 ≤ ν ≤ l

(−1)
p
2
+ν−1 if l < ν ≤ d− 1

�

Then for the no-intercept model on [−1, 1] with even degree d and even d− p, we have

the following theorem.

Theorem 3.2. Let xν , ν = 0, 1, ..., d − 1 be the extreme points of the function ud(x)

over [−1, 1]. For the no-intercept model on [−1, 1] with even degree d and even d− p, the

cp-optimal design is supported on the points {xν}.

Proof. We want to find the sign of the determinant Dν(cp) , and denote it by dν(cp),

ν = 0, 1, ..., d− 1.

Dν(cp) = |f(x0) · · · f(xν−1)f(xν+1) · · · f(xd−1)cp|

= (−1)p+d|Ap,ν+1|
d−1∏
t = 0
t 6= ν

xt ,

where

Ap,ν+1 =



1 · · · 1 1 · · · 1
x0 · · · xν−1 xν+1 · · · xd−1
...

...
...

...
xp−2

0 · · · xp−2
ν−1 xp−2

ν+1 · · · xp−2
d−1

xp
0 · · · xp

ν−1 xp
ν+1 · · · xp

d−1
...

...
...

...
xd−1

0 · · · xd−1
ν−1 xd−1

ν+1 · · · xd−1
d−1


.

Ap,ν+1 is the (d − 1) × (d − 1) matrix and it’s the same by crossing out the pth row and
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(ν + 1)thth column of the Vandermonde matrix X in (1). The determinant of the minor

matrix Ap,ν+1 is denoted by |Ap,ν+1| = |Xp,(ν+1)|. Since X is a d× d matrix with

|X| =
∏

0≤t1<t2≤d−1

(xt2 − xt1) ,

where {xν} are distinct, then det(X) 6= 0. Therefore X is invertible and by (4)

bν+1,p =
aν,p−1

Pν(xν)
.

On the other hand, by the usual formula in computing the inverse. we have

bν+1,p =
1

|X|
[(−1)p+ν+1|Xp,ν+1|]′ ,

which in turns implies

|Ap,ν+1| = (−1)p+ν+1 aν,p−1

Pν(xν)

∏
0≤t1<t2≤d−1

(xt2 − xt1) .

when d and p are even, we get

Dν(cp) = (−1)p+ν+1 aν,p−1

Pν(xν)

d−1∏
t = 0
t 6= ν

xt

∏
0≤t1<t2≤d−1

(xt2 − xt1) . (5)

Now we need to find the sign of aν,p−1. As we know aν,p−1 is the coefficient of xp−1

in Pν(x) in (2). Recall that the extreme points of the ud(x) are symmetric around 0 and

denote them as

−xν = xd−1−ν , ν = 0, 1, · · · , d

2
− 1 .

Expect for (x− xd−ν) = (x + xν), the factors in Pν(x) come in pairs of x− xk and x + xk .

Hence we have

Pν(x) = (x− x0)(x− x1) · · · (x− xν−1)(x− xν+1) · · · (x− xd−2)(x− xd−1)

= (x + xν)
∏

k={0,1,···, d
2
−1}\{ν,d−1−ν}

(x2 − x2
k) .
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Multiplying out the products, we find the sign of the coefficient of the odd power xp−1

in Pν(x) is the same as the sign of

∑
τ ⊆ {0, 1, · · · , d

2
− 1}\{ν, d − 1 − ν}

]τ = ( d
2
− p

2
)

∏
k∈τ

(−x2
k)

and it equals to

(−1)
d
2
− p

2

∑
τ

∏
k∈τ

x2
k . (6)

Next it is known that

Pν(xν) =
d−1∏

k = 0
k 6= ν

(xν − xk) = (−1)d−ν−1

d−1∏
k = 0
k 6= ν

|xν − xk| (7)

and

sgn(
∏
t = 0
t 6= ν

xt) =

{
(−1)

d
2
−1 , 0 ≤ ν ≤ d

2 − 1

(−1)
d
2 , d

2 − 1 < ν ≤ d− 1 .
(8)

From (6)-(8), the sign of Dν(c) in (5) can be established, then we have the following

result

dν(cp) =

{
(−1)

p
2
−1 , 0 ≤ ν ≤ d

2 − 1

(−1)
p
2 , d

2 − 1 < ν ≤ d− 1 .

By Studden (1968), we know that

βcp =
d−1∑
ν=0

(−1)d−1−νdν(cp)pνf(xν) =
d−1∑
ν=0

ενpνf(xν)

where β is a positive constant, and

εν = (−1)d−1−νdν(cp) =

{
(−1)d−ν+ p

2 , 0 ≤ ν ≤ d
2 − 1

(−1)d−ν+ p
2
−1 , d

2 − 1 < ν ≤ d− 1 .

Write ud(x) =
∑d−1

ν=0 aνfν(x), with coefficient vector a = (a0, a1, ..., ad−1), |ud(x)| ≤ 1,

x ∈ [−1, 1], and by Lemma 3.2
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ud(xν) =

{
(−1)ν+ p

2 , 0 ≤ ν ≤ d
2 − 1

(−1)ν+ p
2
−1 , d

2 − 1 < ν ≤ d− 1 .

Then

ενud(xν) = (−1)d+p = 1 ,

and pν ≥ 0 ,
∑d

ν=0 pν = 1, such that

aβcp =
d−1∑
ν=0

(−1)d−1−νdν(cp)pν(af(xν))

=
d−1∑
ν=0

ενpνud(xν)

=
d−1∑
ν=0

pν = 1 .

Hence βcp is a boundary point of R. Then by Elfving Theorem(1952), the design is

cp-optimal design. �

Now we consider the case that d − p is odd, we also divide the discussions into two

parts according to degree d is even or odd.

For even degree d, Huang and Chen (1996) found an equioscillating function of one

lower order and all extrema are symmetric around 0. They also found that the number

of the extrema is equal to the number of the unknown parameters, this is presented in

Theorem 3.3 for completeness.

Theorem 3.3. For the no-intercept model of even degree d on [−1, 1] and d−p odd, there

exists an equioscillating function e(x) defined in terms of {|x|, |x|x, · · · , |x|xd−2} on [−1, 1]

such that the extreme points of the e(x) are ρν = cos( νπ
d− 1

) , ν = 0, 1, · · · , d−1. Then a cp-

optimal design is supported on the Chebyshev points ρν = cos( νπ
d− 1

) , ν = 0, 1, · · · , d−1 .

For the case odd d and d− p, we have the following theorem.
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Theorem 3.4. For the no-intercept model on [−1, 1] with odd degree d and odd d−p , the

cp-optimal design are supported on at the d− 1 alternating extreme points of the function

of one lower order ud−1(x).

Proof. Let cp = (ĉp
′, 0)′, and d′ = d−1 is even. From the proof of Theorem 3.2, we know

that a ĉp-optimal design ξ̂ is a symmetric design with the support points x0, x1, ..., xd′−1

which are the extrema of ud′(x) over [−1, 1]. Let ud′(x) =
∑d−1

ν=0 aνfν(x), with coefficient

vector a = (a0, a1, ..., ad−2, 0), and f(x) = (f0(x), f1(x), ..., fd−1(x))′, where

ud′(xν) =

{
(−1)ν+ p

2 , 0 ≤ ν ≤ d′

2 − 1

(−1)ν+ p
2
−1 , d′

2 − 1 < ν ≤ d′ − 1 .

Then there exists a β > 0, such that

βĉp =
d′−1∑
ν=0

ενpν(f0(xν), f1(xν), ..., fd′−1(xν))
′ ,

since
∑d′−1

ν=0 ενpνfd−1(xν) = 0 , We have that

βcp =
d′−1∑
ν=0

ενpνf(xν) .

And

εν = (−1)d′−1−νdν(ĉp) =

{
(−1)d′−ν+ p

2 , 0 ≤ ν ≤ d′

2 − 1

(−1)d′−ν+ p
2
−1 , d′

2 − 1 < ν ≤ d′ − 1 ,

such that

ενud′(xν) = (−1)d′+p = 1 .

From the proof of Theorem 3.2, we know that

aβcp = 1 .

Hence βcp =
∑d′−1

ν=0 (−1)d′−1−νdν(cp)pνf(xν), and βcp is a boundary point of R. Then by

Elfving theorem, the theorem is proofed. �
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3.2 Individual regression coefficients for the no-intercept model
over [-b,b]

A difficulty with the cp-optimal design for no intercept model is that it is not invari-

ant under linear transformations, that is the optimal design on a given interval does not

transform linearly. Although it is of interest to know whether it would be scale invari-

ant. Next we will prove the scale invariance property of cp-optimality. Some properties of

the information matrices between two designs with scale supporting points and the same

corresponding weights will be presented below.

Lemma 3.3. Two designs ξ1 =

{
x1, x2, · · · , xn

p1, p2, · · · , pn

}
and ξ2 =

{
bx1, bx2, · · · , bxn

p1 , p2 , · · · , pn

}
,

b ∈ R, −1 ≤ x1 < x2 < · · · < xn ≤ 1, with information matrices M(ξ1) and M(ξ2), and

f(x) = (x, · · · , xd)′. Then the determinant

|M(ξ2)| = bd(d+1)|M(ξ1)| ,

and the inverse M−1(ξ1) = [aij], M−1(ξ2) = [eij] such that [eij] = b−(i+j)[aij].

Proof. Let ci =
∫ 1

−1
xidξ1(x), and

M(ξ1) =

 c2 c3 · · · cd+1
...

...
...

cd+1 cd+2 · · · c2d


then

|M(ξ2)| = det

 b2c2 b3c3 · · · bd+1cd+1
...

...
...

bd+1cd+1 bd+2cd+2 · · · b2dc2d



= b
d(d+3)

2 det

 c2 bc3 · · · bd−1cd+1
...

...
...

cd+1 bcd+2 · · · bd−1c2d


= b

d(d+3)
2 b

d(d−1)
2 |M(ξ1)|

= bd(d+1)|M(ξ1)|
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Now we need to find the inverse, let |M(ξ2)ij| denote the determinant of the minor

matrix of M(ξ2) and adj(M(ξ2)) be the transposed matrix of cofactors. Then

M−1(ξ2) =
1

|M(ξ2)|
adj(M(ξ2))

=
1

bd(d+1)|M(ξ1)|
[(−1)i+j|M(ξ2)ij|]′

=
1

bd(d+1)|M(ξ1)|
[(−1)i+jbd(d+1)−(i+j)|M(ξ1)ij|]′

=
1

|M(ξ1)|
[b−(i+j)(−1)i+j|M(ξ1)ij|]′ .

�

Now we can prove the scale invariance of cp-optimal with Lemma 3.3.

Theorem 3.5. For the no-intercept model, if the design ξ1 is cp-optimal over [−1, 1] with

support points {xν} and corresponding weights {pν}. Then ξ2 is cp-optimal design over

[−b, b] with support points {bxν} and corresponding weights {pν}, b > 0.

Proof. Since the design ξ1 is cp-optimal, such that for all x ∈ [−1, 1],

(c′pM
−1(ξ1)f(x))2 ≤ c′pM

−1(ξ1)cp

Let y = bx, y ∈ [−b, b], b > 0,

c′pM
−1(ξ2)f(y) = (0, · · · , 0, 1, 0, · · · , 0)

 e11 e12 · · · e1d
...

...
...

ed1 ed2 · · · edd

 y
...
yd


= (ep1, · · · , epd)

 y
...
yd


=

d∑
j=1

epjy
j =

d∑
j=1

b−(p+j)apjy
j

= b−p

d∑
j=1

apj(
y

b
)j = b−p

d∑
j=1

apjx
j
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= b−pc′pM
−1(ξ1)f(x)

and

c′pM
−1(ξ2)cp = epp = b−2papp

= b−2pc′pM
−1(ξ1)cp

Then

(c′pM
−1(ξ2)f(y))2 = b−2p(c′pM

−1(ξ1)f(x))2

≤ b−2p(c′pM
−1(ξ1)cp)

= b−2pb2p(c′pM
−1(ξ2)cp)

= c′pM
−1(ξ2)cp

By the Equivalence Theorem, it is shown that ξ2 is cp-optimal. �

3.3 Individual regression coefficients for the no-intercept model
over [a,b]

In this section we will investigate the cp-optimal designs for no intercept model on an

arbitrary compact interval [a, b]. By fixing b = 1, we discuss the problem of finding the

cp-optimal design for no intercept model on the interval [a, 1], −1 ≤ a < 1. The cp-optimal

design for the model f(x) = (x, x2, · · · , xd) on [a, 1] for estimating pth parameter is denoted

by ξp
a,d .

For 2nd degree polynomial regression model over nonsymmetric interval, we find the

cp-optimal design by Elfving set (Figure 2). We only list the cp-optimal designs over the

interval [a, 1].

For the case d = 2 and p = 1 over [a, 1], we know that the regression polynomial

f(x) = (x, x2)′ and cp = (1, 0)′. We would like to estimate the coefficient of x and divide
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the different intervals into 3 parts according to the value of a, where the optimal design

ξ1
a,2 has the following patterns.

Theorem 3.6. For the model f(x) = (x, x2)′ defined on [a, 1] estimating 1st parameter,

the design ξ1
a,2 supported on the two points a and 1 is cp-optimal if −1 ≤ a ≤ 1 −

√
2 or

−1 +
√

2 ≤ a < 1, with corresponding weights 1/(1 + a2), a2/(1 + a2) .

Moreover, if 1 −
√

2 ≤ a ≤ 2
√

2 − 3, the cp-optimal design ξ1
a,2 supported on the two

points a, −(1 +
√

2)a with corresponding weights (2 +
√

2)/4, (2−
√

2)/4.

If 2
√

2− 3 < a ≤ −1+
√

2, the cp-optimal design ξ1
a,2 supported on the two fixed points

−1 +
√

2, 1 with corresponding weights (2 +
√

2)/4, (2−
√

2)/4.

Proof. At Figure 2 (a)-(d), we give the Elfving sets for 2nd degree polynomial model

without intercept over [a, 1], −1 ≤ a ≤ 1 −
√

2. The equation y = 2(x − 1) + 1 is the

tangent line of y = x2 with tacnode (1, 1), and the intersection of the equation and y = −x2

are (−1 +
√

2,−3 + 2
√

2) and (−1 −
√

2,−3 − 2
√

2), but (−1 −
√

2,−3 − 2
√

2) does not

belong to the domain. Since the point (−1 +
√

2,−3 + 2
√

2) is on y = −x2 , we find the

symmetric point of it to origin is (1 −
√

2, 3 − 2
√

2). Thus by Elfving Theorem we know

that if −1 ≤ a ≤ 1−
√

2, the cp-optimal is supported on the two endpoints a and 1. Then

we need to find the corresponding weights, by Theorem 2.2, we can find that

(X ′)−1 =

 1
a− a2

−1
a− a2

−a2

a− a2
a

a− a2

 and u =

 1
a− a2

−a2

a− a2

,

thus the corresponding weights are 1/(1 + a2), a2/(1 + a2) .

Similarly, if −1+
√

2 ≤ a < 1, the cp-optimal is supported on the two endpoints a and

1 with corresponding weights 1/(1 + a2), a2/(1 + a2) .

For the interval a ≥ 1−
√

2, the tangent line could not pass (1, 1) any more. Let (b, b2)
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be the tacnode of the tangent line on y = x2 passing (−a,−a2), then we can find the slope

of the tangent line is 2b, which equal to [b2 − (−a2)]/[b− (−a)], thus

b = −(1 +
√

2)a. (9)

Then we need to find at which value of a, the tangent line would pass the point

(−1,−1). Thus the slope of the tangent line is equal to [b2 − (−1)]/[b − (−1)], then

b = −1 ±
√

2, but b = −1 −
√

2 does not belong to the domain. From (9) we know that

a = 2
√

2− 3. By Elfving Theorem we know that if 1−
√

2 ≤ a ≤ 2
√

2− 3, the cp-optimal

design ξ1
a,2 supported on a, −(1 +

√
2)a.

By Theorem 2.2 we can find that

(X ′)−1 =

 (1 +
√

2)2

(4 + 3
√

2)a

(1 +
√

2)

(4 + 3
√

2)a2

−1
(4 + 3

√
2)a

1
(4 + 3

√
2)a2

 and u =

 (1 +
√

2)2

(4 + 3
√

2)a
−1

(4 + 3
√

2)a

,

thus the corresponding weights are (2 +
√

2)/4, (2−
√

2)/4.

For the interval a > 2
√

2 − 3, the tangent line keep passing (−1,−1) with tacn-

ode (b, b2) until a = −1 +
√

2 , where b = −1 +
√

2. By Elfving Theorem we know

that if 2
√

2 − 3 < a ≤ −1 +
√

2, the cp-optimal design ξ1
a,2 supported on the two

fixed points −1 +
√

2, 1. Thus we need to find the corresponding weights, we can use

the result 1/(1 + a2), wheree a = −1 +
√

2, such that the corresponding weights are

(2 +
√

2)/4, (2−
√

2)/4. �

For the case d = 2 and p = 2 over [a, 1], that is f(x) = (x, x2)′ and cp = (0, 1)′.We

would like to estimate the coefficient of x2 and divide the different intervals into 2 parts

according to the value of a.

Theorem 3.7. For the model f(x) = (x, x2)′ defined on [a, 1] estimating 2nd parameter,

the design ξ2
a,2 supported on the two points a and 1 is cp-optimal if −1 ≤ a ≤ 2

√
2 − 3 or
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−1 +
√

2 ≤ a < 1, with corresponding weights w1, 1− w1, where

w1 =

{
1

1− a , if − 1 ≤ a ≤ 2
√

2− 3
1

1 + a , if − 1 +
√

2 ≤ a < 1
.

Moreover, if 2
√

2− 3 ≤ a ≤ −1 +
√

2, the cp-optimal design ξ2
a,2 supported on the two

points −1 +
√

2, 1 with corresponding weights
√

2/2, (2−
√

2)/2.

Proof. By Theorem 3.6 we know that the tangent line on y = −x2 passing (1, 1)

have intersection with y = x2 at x = 2
√

2 − 3. By Elfving Theorem we know that if

−1 ≤ a ≤ 2
√

2− 3, the cp-optimal design ξ2
a,2 supported on the two endpoints a and 1.

By Theorem 2.2 we can find that

(X ′)−1 =

 1
a− a2

−1
a− a2

−a2

a− a2
a

a− a2

 and u =

( −1
a− a2

a
a− a2

)
,

thus the corresponding weight of a is 1/(1− a).

By Theorem 3.6 we know that the tangent line on y = x2 passing (−1,−1) with

(−1 +
√

2, 3 − 2
√

2) as its tacnode. Thus if −1 +
√

2 ≤ a < 1, the cp-optimal ξ2
a,2 is

supported on the two endpoints a and 1 with corresponding weight of a is w1 = 1/(1 + a).

For the interval a ≥ 2
√

2−3, the tangent line keep passing (1, 1) with tacnode (b,−b2)

on y = −x2 until a = −1 +
√

2 , where b = 1 −
√

2. By Elfving Theorem we know that

if 2
√

2 − 3 ≤ a ≤ −1 +
√

2, the cp-optimal design ξ1
a,2 supported on the two fixed points

−1 +
√

2, 1. Thus we can find the corresponding weights
√

2/2, (2−
√

2)/2. �
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4 Discussion

For the no-intercept model over [−1, 1], Huang and Chen (1996) found cp-optimal

designs as d plus d − p is odd. We found cp-optimal designs as d plus d − p is even over

[−1, 1]. It is also shown that the support points are scale invariant over [−b, b]. In order to

obtain the optimal designs, we either find the sign pattern of the determinants Dν(cp) for

each ν = 0, 1, · · · , k, or show that the conditions of Elfving theorem hold for the vector cp

directly. For the no-intercept model f(x) = (x, x2)′ over nonsymmetric interval [a, b], by

fixing b = 1, we have obtained cp-optimal designs when −1 ≤ a < 1. In the future, it is of

interest to find general analytical formulas for nonsymmetric interval.
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Appendix

d positive support points (symmetric around 0)
2 1.0
4 0.643594 1.0
6 0.442891 0.855600 1.0
8 0.335671 0.692977 0.920738 1.0
10 0.269817 0.573649 0.803643 0.949796 1.0
d p corresponding weights
2 2 0.5
4 2 0.426777 0.073223
4 4 0.353553 0.146447
6 2 0.386895 0.083333 0.029772
6 4 0.283226 0.157229 0.059544
6 6 0.227671 0.183013 0.089316
8 2 0.374738 0.070436 0.038582 0.016243
8 4 0.263181 0.128310 0.076023 0.032486
8 6 0.204690 0.138086 0.108495 0.048730
8 8 0.168894 0.135299 0.130834 0.064973
10 2 0.369382 0.065410 0.032170 0.022787 0.0102509
10 4 0.254561 0.117094 0.062525 0.045319 0.0205017
10 6 0.194949 0.121724 0.085759 0.066816 0.0307526
10 8 0.158717 0.115725 0.098203 0.086353 0.0410034
10 10 0.134458 0.107623 0.103884 0.102781 0.0512543

Table 1: The support points and corresponding weighs for cp-optimal designs without
intercept for even degree d, d− p on [−1, 1].
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Table 2: The sign pattern of Dν(cp) for even degree d, d− p.

dν(cp)
d p 1 2 3 4 5 6 7 8 9 10
2 2 + -
4 2 + + - -
4 4 - - + +
6 2 + + + - - -
6 4 - - - + + +
6 6 + + + - - -
8 2 + + + + - - - -
8 4 - - - - + + + +
8 6 + + + + - - - -
8 8 - - - - + + + +
10 2 + + + + + - - - - -
10 4 - - - - - + + + + +
10 6 + + + + + - - - - -
10 8 - - - - - + + + + +
10 10 + + + + + - - - - -

Table 3: The value of ud(xν) for even degree d, d− p.

ud(xν)
d p 1 2 3 4 5 6 7 8 9 10
2 2 + -
4 2 - + + -
4 4 + - - +
6 2 + - + + - +
6 4 - + - - + -
6 6 + - + + - +
8 2 - + - + + - + -
8 4 + - + - - + - +
8 6 - + - + + - + -
8 8 + - + - - + - +
10 2 + - + - + + - + - +
10 4 - + - + - - + - + -
10 6 + - + - + + - + - +
10 8 - + - + - - + - + -
10 10 + - + - + + - + - +

25



Figure 1: The plots of {c′M−1(ξ)f(x)}2 for f(x) = (x, · · · , x6) where estimating pth pa-
rameter.

(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

(e) p = 5 (f) p = 6
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Figure 2: Elfving sets for 2nd degree polynomial model without intercept over [a, 1].

(a) a = −1 (d) a = 1−
√

2

(b) a = −0.7 (e) a = −0.3

(c) a = −0.5 (f) a = −0.2
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(g) a = 2
√

2− 3 (j) a = 0.2

(h) a = 0 (k) a = −1 +
√

2

(i) a = 0.1 (l) a = 0.7
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