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Abstract

In this work, we discuss the accuracy of measurements for electromagnetic. The two

kinds of antenna we use are Dipole antenna and Broadband antenna. In general, if the

antenna measurements we recorded at different frequencies do not exceed the ideal value

±4dB, we would regard this site as a normalized site, otherwise it is not a normalized

site(just a measurement exceeds the range). Traditionally, all we use is Dipole antenna,

but due to difficulty of operation and inaccuracy of Dipole antenna, we investigate by sta-

tistical methods if we may use the Broadband antenna to replace the traditional Dipole

antenna to measure. First of all, we introduce the data and procedure in the experiments,

and fit a statistical regression model to predict the measurements at different frequencies

in different test setups. Then, according to the data we collected, use the change point

models to modify the statistical models. Our goal is to find a suitable statistical model

for the measurements. Finally, we compare the measurements of Broadband antenna with

Dipole antenna in the other experimental conditions keep the same.

Keywords: Broadband antenna, Dipole antenna, Regression model, Change point model,

Piecewise linear regression.
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1. Introduction

EMI is electromagnetic interference. The source of EMI includes a switch circle, static

electricity, lightning, power. Basically, the EMI spread in the space all the time. The

electric products for human using will send out EMI either large or small. Every electronic

products have EMI’s problems, and all products have to be tested and inspected on a EMI’s

unit. The electronic products are allowed to enter the market after passing the EMI’s test.

It will cause waste of time and money if the designer ignores the problems of EMI. The

electromagnetic interference for products will appear and cause to the failure of products.

So in this work we are interested in studying the EMI’s problems.

There are many different test setups in this experiment such as two different kinds of

antenna: Dipole antenna and Broadband antenna; the polarization of antenna: horizontal

and vertical; and the different transmit antenna height and receive antenna height. At

every test setup, besides the 27 data points from frequency 30 MHz to 1000 MHz recorded,

we also take records on Vdir, Afrx, Aftx, and Vsite values at each data point. The six test

setups for this experiment are:

1 Broadband, hor, h1=1M, h2=1-4M

2 Broadband, hor, h1=2M, h2-1-4M

3 Broadband, ver, h1=1M,h2=1-4M

4 Broadband, ver, h1=1.5M, h2=1-4M

5 Dipole, hor, h1=2M, h2=1-4M

6 Dipole, ver, h1=2.75M, h2=2.75-4M

And at each test setup we repeat the experiment three times during three days(1st,

2nd, 3rd). In the data we collected, the dev values are the measurements after subtracting

the ideal values. All our focus is on the difference between measurements(meas =Vdir-

Vsite-Afrx-Aftx) and ideal values. In Section 2 we begin analyzing the experimental data:

we first compare the difference between the repeating measurements, and fit the statistical

models. In Section 3, we use the change point models to modify the statistical models we

fitted in Section 2, discuss the pure error for model estimation, and try to find a better

fit model. In Section 4, we contrast the measuring difference between the two kinds of

antenna, including the comparison of Dipole and Broadband antenna and the comparison
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of different polarization and different transmit antenna height in Broadband antenna. The

final section is the conclusion.

2. Fitting models

After introducing the data obtained in this experiment, we analyze the data using the

statistical model method. Firstly, we use the statistical models to compare and test the

replication data, then fit the polynomial regression models according to the result of tests.

We have repeated the data at each test setup three times. Therefore, before fitting the

models, we should consider whether there are differences of these measurements or not. In

these models, the dependent variables are the frequencies which take log10, denoted below

as log10(freq), and do the following analysis.

a. We fit one model respectively to the repeated measurements, and contrast directly these

three models at each test setup.

b. Then the test methods are as following: in each test setup, we fit another model

with combining the repeat data and add two indicator variables to this model in order to

distinguish three repeat measurements. We examine whether the effects of two indicator

variables are dominated or not in this model.

According to the analysis, the three models at each test setup are not obviously differ-

ent(see Tables I-1∼I-6). We formally test the three repeated data by adding two indicator

variables into the combined models:

(2.1) Yt = α0 + α1X1 + α2X2 + α3X3 + εt

and Yt = meas,X1 = log10(freq), (X2, X3) = (0, 0), represents the 1st measurement, and

(X2, X3) = (1, 0) represents the 2nd measurement, and (X2, X3) = (0, 1) represents the 3rd

measurement, εt i.i.d is normal distribution; In this model, the null hypothesis is :

H0 : α2 = 0 v.s H1 : α2 6= 0 and H0 : α3 = 0 v.s H1 : α3 6= 0

at significant level α, we reject H0 iff | t∗ |> t(1− α
2
, n− 2). As the result, all the R2 value

of each model are close 1(Table I-7) and all the conclusions receive H0 at six different test

setups. So we obtain that these three repeated measurements at different test setups do

not have measuring differences according to our statistical analysis.

Before fitting models, firstly we draw some scatter plots for measurements to see the

relations of the data and the forms of models(Figure 2.1,2.2). We can get some informa-

tion from scatter plots: the two kinds of antenna have different tendencies on measuring
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and an apparent variability appears when the antenna’s polarization is vertical and low

frequencies. By the scatter plots for measurements versus frequencies and ideal versus

frequencies, they tend to square curves, so we take frequencies to log10(freq) in order to

remove the square tendency because of the unequal distance in original frequency interval.

As the result, we fit linear and square polynomial regression models at each test setup

without the repeated data(Table I-8,I-9). What we interest in is the difference between

measurements and ideal values at different frequencies in each test setup. No matter what

linear or square models we fitted, R2 for models are high. But these models are still not

perfect because the residual plots appear some obvious tendencies. So we consider to use

another models to modify the residual.

3. The change point models

If the simple regression models do not correspond to our research data, we have two

basic choices:

a. Find another better models.

b. Transform the original data to fit models.

We hope that we can find a much better model to predict the measurements, but

we cannot get a better result after transforming original data(because of the residuals).

And we cannot explain its physical meaning easily after transforming. According to the

principles of EMI, low frequencies have a obvious difference than high frequencies when

measuring. Our thought is to find a change point to divide data into two groups(low

frequencies and high frequencies), and use a change point model to fit data which we got.

Among many previous papers have studied this subject. Generally speaking, what we

interest in change point models are these two points(Krishnaiah and Miao (1988)): (1)to

determine whether the change points exist in models or not (2)to estimate the numbers of

change points and positions of these change points in models. Many papers had investigated

the estimation of change points, such as Quandt (1958, 1960), Quandt and Ramsey (1978),

and Robison (1964), they all discussed the problems of switch regression models. Page

(1954, 1955, 1957) firstly used the cumulative sum(CUSUM) method to estimate change

points. Hudson (1966) and other authors also put forward the maximum likelihood and

least square methods to estimate and test change points. Then, Hinkley (1971) proved
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the approximate distribution of the intersections of two models. In addition, Chenrnoff

and Zacks (1964), Smith (1975), Carter and Blight (1981) used the bayesian estimator to

estimate. And Freeman (1984, 1986)discussed the goodness of fit for two-phase regression

and an unknown change point model. However, in the change point models, they become

more complicated as long as the numbers of change point are more than one. So we

suppose that there is only one change point in our models, because of the feature of

data(low frequencies and high frequencies). And we suppose that the errors of model εt

are i.i.d N(0, σ2)(σ is unknown).In this section, we discuss the methods to fit change point

models at six different test setups. Here is the procedures:

a. Find the change point

b. Test the change point we found

c. Test the change points are jump points or not

d. Examine the change point models

3.1 Estimation of change points

When estimating change points, we use two methods to deal with; one is to use the

theory values of NSA and EMAX
D to estimate the position of change points, another is to

use the piecewise regression model to estimate. The two methods are as following:

a. Use the formula of NSA’s theory value:

The formula of NSA’s theory values were introduced by Akira(1990, 1992).

NSATH = −20log(fM) + 48.9− EMAX
D .

fM= frequency in MHz.

EMAX
D = maximum received field.

The formula of EMAX
D (vertical and horizontal) is

EMAX
DH =

√
49.2(d2

2 + d2
1 | ρH |2 +2d1d2 | ρH | cos[ΦH − 2π

λ
(d2 − d1)]

1/2)

d1d2

EMAX
DV =

√
49.2R2(d6

2 + d6
1 | ρV |2 +2d3

1d
3
2 | ρV | cos[ΦV −

2π

λ
(d2 − d1)]

1/2)

d3
1d

3
2

EMAX
D (ideal) = 48.9− 20log(fM)− ideal
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EMAX
D (meas) = 48.9− 20log(fM)−meas

draw EMAX
D (ideal) versus log10(freq)(Figure 3.1), and directly determine the initial po-

sition of change point according to the figures. After deciding the position, we can get two

linear models. We take the point which make the residual sum of these two models being

the smallest. Here is the least square estimation model:

(3.1)

yt =

{
α10 + α11t + εt , 0 < t ≤ tm
α20 + α21t + εt , t > tm

=

{
α′

1X(t) + εt , 0 < t ≤ tm
α′

2X(t) + εt , t > tm

Q(α, t) = Σm
k=1(yk − α̂′

1X(t))2 +
∑n

k=m+1(yk − α̂′
2X(t))2

Q(α̂, t̂) = minQ(α, t)

yt = measurements, t = log10(freq), we take a change point(tM) firstly, then we can

get the parametric estimations of these two models. We put tM into Q(α, t). Find ˆtM

which makes the Q(α, t) be the smallest by repeating the procedure, after that ˆtM is the

estimation of change point. The estimations of change point at six different test setups are

individually 180MHz, 90MHz, 250MHz, 300MHz, 90MHz, 140MHz.

b. Piecewise Regression:

model is as follows.

(3.2) yt = β0 + β1t + β2(t− tm)I[t>tm] + εt

yt = measurements, t = log10(freq), tm = log10(changepoint), I[t>tm] is equal to 0, if

t ≤ tm; I[t>tm] is equal to 1, if t > tm. Find the ˆtM which makes the SSE of models be the

smallest. The SSE’s figures are shown as in Figure 3.2, and the estimations of change

point at six different test setups are individually 160MHz, 80MHz, 400MHz, 250MHz,

80MHz, 60MHz.

3.2 Test the change points

We use two methods to estimate change points in Section 3.1. After estimating the

positions of change point, we test respectively the change points we found:
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a. Let the model is:

(3.3)

yt =

{
α10 + α11t + εt , 0 < t ≤ tm
α20 + α21t + εt , t > tm

= α10 + α11t + (α20 + α21t) · I[t>tm] + εt

here the null hypothesis is H0 : α′
2 = (α20, α21) = 0, versus H1 : α′

2 = (α20, α21) 6= 0 and

the test statistic is :

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
/
SSE(F )

dfF

at the significant level α = 0.05, reject H0 iff | F ∗ |> F2,77(0.05). The result is as Table

1, and the conclusion rejects H0. The points we found are obviously change points in the

models.

Then we test whether the change points are jump points or not:

Here the null hypothesis H0 : α20 = 0 versus H1 : α20 6= 0, and use the t-test, reject H0

iff | t∗ |> t(0.975, 79). The result is as Table 1, the critical value = t(0.975,79)=2.2849,

and we obtain that the conclusion is H1. And it means that the change point we found

are jump points. In other words, slope changes in the change point models, and ”jump”

on the position of change point.

b.The method we use is that find the t̂M makes the model have the smallest SSE. So

we use the same models to test the change point by using statistical test:

consider the model as in (3.2). Here the null hypothesis H0 : β2 = 0 versus H1 : β2 6= 0

and we reject H0 iff | F ∗ |> F2,77(0.05). The result is as Table 2, and the conclusion is

reject H0. The points we found are also obviously change points in the models.

Then we test whether the change points are jump points or not:

Add β3I[t>tm] into the model (3.2) because we want to check whether the model is contin-

uous on the position of change point or not, consider the model:

(3.4) yt = β0 + β1t + β2(t− tm)I[t>tm] + β3I[t > tm] + εt

the null hypothesis H0 : β3 = 0 versus H1 : β3 6= 0, and the critical value is t(0.975,79)=2.2849.

The result is as Table 2, and the conclusion is H0. It means that the slope change without

jump points in models for method 2.

6



Table 1 Test statistic and p-value of model (3.3)
F ∗ p-value t∗ p-value c.p

BD(hor,h1=1M,h2=1-4M) 188.25 0.0000 -15.017 0.0000 180MHz
BD(hor,h1=2M,h2=1-4M) 195.476 0.0000 -19.434 0.0000 90MHz
BD(ver,h1=1M,h2=1-4M) 27.914 0.0000 6.866 0.0000 250MHz
BD(ver,h1=1.5M,h2=1-4M) 41.735 0.0000 2.744 0.0075 300MHz
DP(hor,h1=2M,h2=1-4M) 167.337 0.0000 -18.028 0.0000 90MHz
DP(ver,h1=2.75M,h2=2.75-4M) 12.083 0.0000 3.154 0.0023 140MHz

Table 2 Test statistic and p-value of model (3.2) and (3.4)
F ∗ p-value t∗ p-value c.p

BD(hor,h1=1M,h2=1-4M) 190.66 0.0000 0.255 0.7994 160MHz
BD(hor,h1=2M,h2=1-4M) 172.668 0.0000 -0.098 0.9222 80Mhz
BD(ver,h1=1M,h2=1-4M) 26.062 0.0000 -1.778 0.0793 400MHz
BD(ver,h1=1.5M,h2=1-4M) 38.697 0.0000 -1.248 0.2157 250MHz
DP(hor,h1=2M,h2=1-4M) 159.85 0.0000 0.692 0.4909 80MHz
DP(ver,h1=2.75M,h2=2.75-4M) 10.872 0.0000 0.078 0.9380 60MHz

3.3 Goodness of fit test

As the results, we used two methods to find change points, then test change points we

found. So we can obtain that the change point models found by method 1 consist of two

straight lines with different slopes. The other change point models found by method 2 are

continuous broken lines with different slopes. Hence, we discuss the goodness of fit of these

two change point models separately.

a. Model found by method 1:

By Figure 3.3, the goodness of fit is pretty good. We put emphasis on the continuous

change point models.

b. Model found by method 2:

As the result, we can confirm the model is as in model (3.2), and the model information

and estimations of change points are shown as Table 3.1:
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Table 3.1 Coefficients of model (3.2) and estimations of change point
β0 β1 β2 R2 c.p MSE

BD(hor,h1=1M,h2=1-4M) 83.921 -36.44 14.27 0.996 160MHz 0.669
BD(hor,h1=2M,h2=1-4M) 79.128 -36.692 15.959 0.996 80MHz 0.458
BD(ver,h1=1M,h2=1-4M) 37.27 -15.214 -14.435 0.986 400MHz 1.899
BD(ver,h1=1.5M,h2=1-4M) 34.928 -13.792 -12.039 0.976 250MHz 1.774
DP(hor,h1=2M,h2=1-4M) 83.469 -39.261 17.538 0.996 80MHz 0.596
DP(ver,h1=2.75M,h2=2.75-4M) 34.041 -11.375 -11.237 0.979 60MHz 1.999

Table 3.2 The front and rear model information of model (3.2)
c.p R2

1 R2
2 MSE1 MSE2

BD(hor,h1=1M,h2=1-4M) 160MHz 0.988 0.990 0.9088 0.3845
BD(hor,h1=2M,h2=1-4M) 80MHz 0.972 0.993 0.7880 0.3296
BD(ver,h1=1M,h2=1-4M) 400MHz 0.908 0.934 2.1965 0.5184
BD(ver,h1=1.5M,h2=1-4M) 250MHz 0.865 0.960 2.1613 0.7616
DP(hor,h1=2M,h2=1-4M) 80MHz 0.990 0.987 0.3213 0.7215
DP(ver,h1=2.75M,h2=2.75-4M) 60MHz 0.311 0.981 4.6193 1.3795

The residual plots of model are shown as in Figure 3.4. Although the R2 of models

are quite high, we have to check the residuals:

(1)The normal distribution of residual

Normal P-P plots are shown as in Figure 3.5. We can obtain that residuals didn’t vary

from the normal hypothesis too far.

(2)The correlations of residual(Durbin-Watson test)

Durbin-Watson test is used to check whether the correlation of residual is AR(1) model

or not(Figure 3.6). The critical value of Durbin-Watson test is difficult to obtain, but

the smaller DW value lead to the auto correlation relation. The result of test is shown as

Table 4.

By Table 4, the DW value of 2nd test setup is 0.75, it seems to have some auto corre-

lation tendencies in 2nd test setup. We cannot make sure it has AR(1) model by Figure

3.6. And we try to fit a AR(1) model at 2nd test setup, but it does not improve the

auto correlation tendencies. Notice that the Durbin-Watson test is not robust when the

correlation is not AR(1) model(for example: AR(2)). So we need more data to confirm its
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model at 2nd test setup.

(3)The variability of residual

We use the Levene test(Levene(1960)) to check the variability of residuals. The result is

shown as Table 4, and the critical value= t(0.025,79)=2.285. The p-values of 2nd and 6th

test setups are significant. We consider using the weighted least square to modify, and the

coefficients are shown as Table 4. But the WLS models don’t improve too much, so we

also need more data to check models at 2nd and 6th test setups.

Table 4 DW-statistic and coefficients of WLS
DW t∗L p-value β′

0 β′
1 β′

2

BD(hor,h1=1M,h2=1-4M) 1.382 1.686 0.09574 83.735 -36.34 14.102
BD(hor,h1=2M,h2=1-4M) 0.75 2.298 0.0242 78.783 -36.457 15.62
BD(ver,h1=1M,h2=1-4M) 1.105 2.147 0.03486 37.937 -15.538 -13.444
BD(ver,h1=1.5M,h2=1-4M) 1.239 1.944 0.05546 35.47 -14.061 -11.567
DP(hor,h1=2M,h2=1-4M) 1.21 -1.758 0.08262 84.02 -39.591 17.963
DP(ver,h1=2.75M,h2=2.75-4M) 1.306 2.473 0.01555 31.602 -9.928 -13.088

Based on our analysis, the change point models found by piecewise regression are bet-

ter than polynomial regression models, especially in the residual diagnosis. We also want

to know that the difference in the values fitted by change point models, original measure-

ments, and ideal values.(see Figure 3.8)

In this section, we use two kinds of change point models: one is discontinuous model

and the other is continuous model. Even if the change point models are more suitable than

polynomial regression models, we have to be careful when using them. There are still some

trends we cannot find in residual diagnosing, especially when the polarization is vertical.

3.4 The estimation of error in models

In this section, we focus on the continuous broken line change point models. After

analyzing the measurements fitted by change point models, we want to know that the

difference between these fitted values and ideal values. The formula deduces estimation of

predict values and bias of ideal values, it is shown as below:
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∑
i(yi −mi)

2

=
∑

i(yi − Eyi + Eyi −mi)
2 =

∑
i(yi − Eyi)

2 +
∑

i(Eyi −mi)
2

E[
∑

i(yi −mi)
2]

= E[
∑

i(yi − Eyi)
2] + E[

∑
i(Eyi −mi)

2]

=
∑

i[E(yi − Eyi)
2] +

∑
i[E(Eyi −mi)

2]

=
∑

i(V ar(yi)) +
∑

i[E(Eyi −mi)
2] ——————— (1)

and

∑
i(ŷi −mi)

2

=
∑

i(ŷi − Eyi + Eyi −mi)
2 =

∑
i(ŷi − Eyi)

2 +
∑

i(Eyi −mi)
2

E[
∑

i(ŷi −mi)
2]

=
∑

i[E(ŷi − Eyi)
2] +

∑
i[E(Eyi −mi)

2]

=
∑

i(V ar(ŷi)) +
∑

i[E(Eyi −mi)
2]

= pσ̂2 +
∑

i[E(Eyi −mi)
2](p is the number of coefficients)

then

∑
i[E(Eyi −mi)

2] = E[
∑

i(ŷi −mi)
2]− pσ̂2

and put it into (1), so we can get that

E[
∑

i(yi −mi)
2] = nσ̂2 + E[

∑
i(ŷi −mi)

2]− pσ̂2

= (n− p)σ̂2 + E[
∑

i(ŷi −mi)
2] (here σ̂2 = 1

n−p

∑
i(yi − ŷi)

2)

By the results, we can use the models we fitted to estimate the difference between

measurements and ideal values.

3.5 Comparison with other models

In previous sections, because we know the difference between low frequencies and high

frequencies innately, we consider the change point model methods, and divide the original

data into two groups to analyze. Therefore, it is reasonable for us to use change point

models to analyze. When analyzing the original data, we find not only the scatter plots

but also residual plots show the form of sawtooth on the certain test setup. Therefore,

we think that it may be the periodic relation of data. In this section, we add the Fourier

polynomial into model to find a better model.
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1. Fourier model

(3.5) yt = θ0 + Σk
r=1[θrsin(2πr · t

log10(1000)
) + ϕrcos(2πr · t

log10(1000)
)]

2. Linear + Fourier model

(3.6) yt = α0 + α1t + Σk
r=1[θrsin(2πr · t

log10(1000)
) + ϕrcos(2πr · t

log10(1000)
)]

3. Change point + Fourier model

(3.7) yt = α0+α1t+α2(t−tm)·It>tm+Σk
r=1[θrsin(2πr· t

log10(1000)
)+ϕrcos(2πr· t

log10(1000)
)]

4. Square change point model

According to Section 3.4, when the polarization is horizontal, we are satisfied with the

linear change point models. However, the residuals of model reveal some tendencies when

the polarization is vertical. So we add the square polynomial into change point models

when the polarization is vertical:

(3.8) Y (t) = β0 + β1t + β2(t− tm)I[t>tm] + β3(t− tm)2I[t>tm] + εt

and the coefficients of model is as below:

Table 5 Coefficients of square change point model (3.8)
β0 β1 β2 β3 c.p

BD(ver,h1=1M,h2=1-4M) 36.498 -14.799 -29.388 41.257 400MHz
BD(ver,h1=1.5M,h2=1-4M) 34.142 -13.355 -20.546 15.102 250MHz
DP(ver,h1=2.75M,h2=2.75-4M) 31.767 -9.915 -14.774 1.74 80MHz

For the data of vertical polarization, the square change point models are still better

than the linear change point models.

4. Comparison

In the preceding research, we fitted the statistical model in order to predict the mea-

surements at different frequencies in different test setups. Moreover, what interest us is

the difference between these two kinds of antenna in measurement. So, in this section, we

discuss the measuring difference between these two kinds of antenna under the same test

setup, and the comparison of Broadband antenna’s test setups.
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4.1 Comparison between Broadband antenna and Dipole

antenna

We choose the 2nd and 5th test setups to analyze. These two test setups are Broad-

band antenna and Dipole antenna which are on (hor,h1=1M,h2=1-4M). Figure 4.1 are

scatter plots of measurements and dev values for these two data. It seems that there is no

difference in the plots of measurement, but in the plots of dev, dev values of Broadband

antenna seems to be bigger than Dipole antenna almost all frequencies. It means that the

measurements of Broadband antenna are bigger than Dipole antenna, especially at high

frequencies, and the dev values of Dipole antenna disperse more disorderly than Broadband

antenna does. It seems that the values measured by Dipole antenna are more different from

ideal values. And we consider this model:

(4.1) yt = β0 + β1t + β2(t− tm)+ + β3 · I + β4t · I + εt

here yt = measurements, t = log10(freq), I is a indicator, and I is equal to 1, iff antenna

is Broadband; I is equal to 0, iff antenna is Dipole. And tM in this model is the change

point of Broadband and Dipole antenna(80 MHz). The model’s information are shown as

Table 6:

Table 6 Coefficients of model (4.1)
coefficient t∗ p-value

β0 82.357 82.303 0.000
β1 -38.625 -69.885 0.000
β2 16.749 25.812 0.000
β3 -2.117 -3.671 0.000
β4 1.298 5.068 0.000

According to Table 6, we can obtain that the effect of antenna is obvious(p-value=

0.0000). It means that these two kinds of antenna have obvious difference in measurement.

And this will prove the hypothesis we considered before. We use Levene test(Levene(1960))

to check the variability of errors because of we put two different kinds of antenna data into

the same model:

| t∗L |= 1.3649 < t(0.975, 160) = 2.263,

so the result is that the variability of error for these two kinds of antenna are not different.
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4.2 Comparison of Broadband antenna

In this experiment, we want to know whether difference exist in the polarization or

not. So we choose the 1st and 3rd test setups to compare. From the scatter plots shown

as Figure 4.1, we can obtain some information from them. It seems that there are the

obvious differences between these two data. We consider this model:

(4.2) yt = β0 + β1t + β2I + β3t · I + εt

here yt = measurements, t = log10(freq), I is a indicator, and I is equal to 1, iff the polar-

ization is horizontal; I is equal to 0, iff the polarization is vertical. The model information

are shown as Table 7:

Table 7 Coefficients of model (4.2)
coefficient t∗ p-value

β0 42.896 40.650 0.000
β1 -18.142 -38.727 0.000
β2 26.469 17.736 0.000
β3 -10.506 -15.858 0.000

As to Table 7, the difference in measurements will come out when the polarization

of Broadband antenna changes. Moreover, we also want to know that the difference in

measurements on Broadband antenna when the height of transmit antenna changes. So we

choose the data of 1st and 2nd test setups for horizontal polarization, and the data of 3rd

and 4th test setups for vertical polarization. For the scatter plots shown as in Figure 4.2.

It seems to have measuring difference on different height of transmit antenna for horizontal

polarization. But the difference in measurement are not so obvious when the polarization

is vertical. We consider the same model as below, and the model information are shown

as Table 8 and Table 9:

Table 8 Coefficients of model(horizontal)
coefficient t∗ p-value

β0 56.653 56.419 0.000
β1 -23.848 -53.498 0.000
β2 12.711 8.951 0.000
β3 -4.800 -7.614 0.000
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Table 9 Coefficients of model(vertical)
coefficient t∗ p-value

β0 43.420 42.429 0.000
β1 -18.259 -40.191 0.000
β2 -0.524 -0.362 0.718
β3 0.117 0.182 0.856

As what we think, the effect of coefficients in model prove that there are obvious

difference in measurements when the height of transmit antenna changes for horizontal

polarization. But for vertical polarization, there have no difference(p-value= 0.718, 0.856).

As the result, there is difference between the traditional Dipole and Broadband an-

tenna at high frequencies when measuring. The sum of square dev values are shown as

Table 10. If we regard ideal values as the standard of antenna measurements, it is shown

that Broadband antenna is more exact than Dipole antenna(the Σ(dev)2 of 2nd and 5th

test setups are 72.95 and 97.67). And when the Broadband antenna are measuring, there

have difference of different polarizations. It is shown that the horizontal polarization is

more exact than the vertical polarization when the Broadband antenna is measuring. We

can get some ideals from previous scatter plots. In this section, we offer more powerful

evidence to support this statement. When the polarization is vertical, the difference of

height of transmit antenna could probably cause different results. However, the variability

of measurement would be extreme when the polarization is vertical.

Table 10 The value of Σ(dev)2 and Σ(predict− ideal)2

c.p Σ(dev)2 Σ(predict− ideal)2

BD(hor,h1=1M,h2=1-4M) 160MHz 109.82 56.19
BD(hor,h1=2M,h2=1-4M) 80MHz 72.95 36.6
BD(ver,h1=1M,h2=1-4M) 400MHz 233.08 88.47
BD(ver,h1=1.5M,h2=1-4M) 250MHz 236.58 100.95
DP(hor,h1=2M,h2=1-4M) 80MHz 97.67 46.32
DP(ver,h1=2.75M,h2=2.75-4M) 60MHz 175.48 39.72

5. Conclusion

In electromagnetism, the theoretical values of NSA were set up by a ideal Dipole an-

tenna with infinite plane, and superconductor ground. These situations do not exist in

real site. For the most part, reasons for measuring errors are defect of sites, inaccurate
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character of antenna, and the errors of instruments in experiment.

In the study we have mentioned before, we try to fit some different statistical models

for NSA’s measurements. We hope that we can find the fittest model to analyze the ac-

curacy of antenna measurements, and contrast the measuring difference between different

antenna. Moreover, after we find the fitted model, we do the following for model validation

before using it(Ronald (1977)).

a. Check the coefficients of model and compare predict values with the results of theory

or experience.

b. Collect new data to confirm the prediction from the fitted models.

c. If we cannot get new data, then divide the original data into two parts, use one

part data to fit models and estimate coefficients of model, and use the other to confirm

the models.

In our research, we cannot obtain a full factor level model because of the lack of

data(only six test setups). If we can collect more data, that will be benefit to the model

fitting and confirm. Moreover, the dev values for both sites conforming within ±4dB, we

put forward a testing procedure of comparing two normal sites at the same test setup by

the model we fitted:

collect data at different frequencies - conform to ±4dB? - abnormal siteNo

?
Yes

confirm factor levels and build models

?

compare MSE of models with different sites

?

conclusion

Based on results from this work, it would be of interest to collect more data and

information about EMI to build a more suitable model under all test setups in the future.

And we can use it to predict and compare the measurements of antenna at different fre-
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quencies in different test setups. Although the ideal value is calculated under a very perfect

condition, this condition does not exist in our daily life. The measurements of EMI will be

different in different environment and physical conditions. It is not reasonable to use the

unrealistic ideal value to be the standard value when measuring. In the future, we will try

to establish standard operation procedures to validate the uncertainties on the accuracy of

antenna measurements.
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Table I

Table I-1 The model comparison of repeated measurements for Broadband antenna on

(hor,h1=1M,h2=1-4M)

α0 α1 R2 MSE
1st 70.295 -28.816 0.976 4.442
2nd 68.296 -28.296 0.979 3.688
3rd 69.504 -28.798 0.979 3.744

Table I-2 The model comparison of repeated measurements for Broadband antenna on

(hor,h1=2M,h2=1-4M)

α0 α1 R2 MSE
1st 56.703 -23.831 0.980 2.517
2nd 56.382 -23.770 0.979 2.585
3rd 56.876 -23.945 0.979 2.699

Table I-3 The model comparison of repeated measurements for Broadband antenna on

(ver,h1=1M,h2=1-4M)

α0 α1 R2 MSE
1st 43.608 -18.419 0.949 3.935
2nd 42.056 -17.790 0.956 3.157
3rd 43.024 -18.218 0.962 2.781

Table I-4 The model comparison of repeated measurements for Broadband antenna on

(ver,h1=1.5M,h2=1-4M)

α0 α1 R2 MSE
1st 43.619 -18.244 0.945 4.125
2nd 42.821 -18.086 0.953 3.457
3rd 43.820 -18.447 0.956 3.393
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Table I-5 The model comparison of repeated measurements for Dipole antenna on

(hor,h1=1M,h2=1-4M)

α0 α1 R2 MSE
1st 58.967 -25.217 0.976 3.296
2nd 58.565 -25.109 0.977 3.199
3rd 58.780 -25.112 0.978 3.026

Table I-6 The model comparison of repeated measurements for Dipole antenna on

(ver,h1=2.75M,h2=2.75-4M)

α0 α1 R2 MSE
1st 48.845 -20.403 0.972 2.541
2nd 52.467 -22.156 0.973 2.939
3rd 51.757 -21.720 0.980 2.115

Table I-7 Test of model’s coefficients effect

α0 α1 α2 α3 p2 p3

BD(hor,h1=1M,h2=1-4M) 69.924 -28.648 -0.926 -0.752 0.088 0.164
BD(hor,h1=2M,h2=1-4M) 56.741 -23.848 -0.185 -0.078 0.670 0.858
BD(ver,h1=1M,h2=1-4M) 42.997 -18.142 -0.163 -0.141 0.740 0.774
BD(ver,h1=1.5M,h2=1-4M) 43.652 -18.259 -0.448 -0.248 0.386 0.631
DP(hor,h1=2M,h2=1-4M) 56.810 -25.146 -0.163 -0.044 0.0735 0.926
DP(ver,h1=2.75M,h2=2.75-4M) 51.105 -21.426 -0.248 -0.0037 0.572 0.993

Table I-8 Linear regression model

α0 α1 R2 MSE
BD(hor,h1=1M,h2=1-4M) 69.365 -28.648 0.977 3.933
BD(hor,h1=2M,h2=1-4M) 56.653 -23.848 0.979 2.476
BD(ver,h1=1M,h2=1-4M) 43.896 -18.142 0.955 3.144
BD(ver,h1=1.5M,h2=1-4M) 43.420 -18.259 0.951 3.512
DP(hor,h1=2M,h2=1-4M) 58.771 -25.146 0.977 3.033
DP(ver,h1=2.75M,h2=2.75-4M) 51.023 -21.426 0.974 2.531
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Table I-9 Square regression model

β0 β1 β2 R2 MSE
BD(hor,h1=1M,h2=1-4M) 113.037 -68.976 8.942 0.995 0.843
BD(hor,h1=2M,h2=1-4M) 87.113 -51.975 6.236 0.992 0.980
BD(ver,h1=1M,h2=1-4M) 16.203 6.507 -5.465 0.972 2.011
BD(ver,h1=1.5M,h2=1-4M) 11.752 10.984 -6.484 0.974 1.906
DP(hor,h1=2M,h2=1-4M) 91.539 -55.405 6.709 0.990 1.304
DP(ver,h1=2.75M,h2=2.75-4M) 40.630 -11.829 -2.128 0.976 2.385
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Figure 3.5 Normal P-P plots
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Figure 3.6(1) ACF and PACF plots of piecewise regression model 
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Figure 3.6(2) ACF and PACF plots of piecewise regression model
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Figure 3.7(1) Residual plots of polynomial regression models and piecewise 
regression models
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Figure 3.7(2) Residual plots of polynomial regression models and piecewise 
regression models
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Figure 3.8(1) Fitted values of piecewise regression model, measurements, 
and ideal values
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Figure 3.9(1) Residuals of Fourier Model(k=3)
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Figure 3.9(2) Residuals of Linear + Fourier Model(k=3)



39

t

302520151050

R
es

id
ua

l

3

2

1

0

-1

-2

t

302520151050

R
es

id
ua

l

2.0

1.5

1.0

.5

0.0

-.5

-1.0

-1.5

-2.0

t

302520151050

R
es

id
ua

l

4

3

2

1

0

-1

-2

-3

t

302520151050

R
es

id
ua

l

4

2

0

-2

-4

t

302520151050

R
es

id
ua

l

4

3

2

1

0

-1

-2

-3

t

302520151050

R
es

id
ua

l

4

3

2

1

0

-1

-2

-3

-4

Figure 3.9(3) Residuals of Change point + Fourier Model(k=2)
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Figure 4.1 Measurements and ideal values at the same test setup 
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Figure 4.2 Measurements and ideal values at the same test setup


	¯B¤ô¦L.pdf
	page1

	figures.pdf
	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20

	«Ê�±.pdf
	page1


