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摘要 
 
 
 

    關於多項式迴歸模型下之最適設計問題己經在很多文獻中被討論到。對

於定義在[a,b]之多項式迴歸型，其正合 D-最適設計的最小樣本數 Huang 

(1987)和 Gaffke (1987)都給出了相似的充分條件。在本文中我們則是對一

混合實驗模型作探討。一混合實驗為一包含 q個非負成分   {x1,K,xq}，且
xii=1

q∑ =1的 q −1維之機率空間 Sq−1上的實驗設計。Kiefer (1961)證明了在 

Scheffé 的二次混合實驗模型下之D-最適設計，而基於此一結果我們證明 2

維與 3維在 Scheffé的二次混合實驗模型下之正合D-最適設計，並對於 4維
至9維的模型給出一些數值的結果。 

 

 

 

 

 

關鍵字：Scheffé二次模型、D-最適設計、正合D-最適設計、訊息矩陣、正
交多項式。 
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Abstract

The exact D-optimal design problems for regression models has been in-

vestigated in many literatures. Huang (1987) and Gaffke (1987) provided

a sufficient condition for the minimum sample size for an certain set of

candidate designs to be exact D-optimal for polynomial regression models

on a compact interval. In this work we consider a mixture experiment with

q nonnegative components, where the proportions of components are sub-

ject to the simplex restriction
∑q

i=1 xi = 1, xi ≥ 0. The exact D-optimal

designs for mixture experiments for Scheffé’s quadratic models are investi-

gated. Based on results in Kiefer (1961) results about the exact D-optimal

designs for mixture models with two or three ingredients are provided and

numerical verifications for models with ingredients between four and nine

are presented.

Keywords : Scheffé’s quadratic models, D-optimal design, exact

D-optimal design, information matrix, orthonormal polynomial
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Section 1 1

1 Introduction

Consider a mixture experiment with q nonnegative components, where the propor-

tions of components are subject to the simplex restriction
∑q

i=1 xi = 1, xi ≥ 0. The q

proportions can be expressed as a column vector x = (x1, . . . , xq)
′ in Sq−1 where

Sq−1 = {(x1, . . . , xq)
′ ∈ [0, 1]q : x1 + · · · + xq = 1, xi ≥ 0 i = 1, . . . , q}.

An observation y(x) is obtained at x ∈ Sq−1 with E(y(x)) = β ′f(x) and variance σ2

independent of x, where f(x) is a known function and β is an unknown parameter vector.

In Scheffé’s quadratic model the expectation is expressed as

E(y(x)) = β1x1 + · · · + βqxq + β12x1x2 + · · ·+ β(q−1)qxq−1xq (1)

with regression function f(x) = (x1, . . . , xq, x12, . . . , x(q−1)q)
′. An exact design with sample

size N is a probability measure on a design space which puts weight pi > 0 at n distinct

support points, n ≤ N such that
∑n

i=1 pi = 1 and Npi, i = 1, . . . , n are integers. An

approximate design removes the integer restrictions on Npi , i = 1, . . . , n. Denote a

probability measure ξ for a mixture experiment as follows

ξ =

(

x1 · · · xn

p1 · · · pn

)

=





















x1,1
...

x1,q






· · ·







xn,1
...

xn,q







p1 · · · pn















,

where x1, . . . ,xn denote the finite supports with the corresponding weights p1, . . . , pn.

The information matrix is therefore defined by

M(ξ) =
n

∑

i=1

ξ(xi)f(xi)f
′(xi),
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and the corresponding dispersion function is given by

d(x, ξ) = f ′(x)M−1(ξ)f(x).

According to the Equivalence Theorem (Kiefer and Wolfowitz 1960) a design ξ∗ is called

an approximate D-optimal designs if ξ∗ maximizes det(M(ξ)) over all feasible designs on

the design space. Kiefer (1961) showed that an approximate design for the Scheffé’s

quadratic model which assigns measure 2/q(q + 1) to each point of the (q − 1, 2)-lattice.

If an exact design ξ∗N maximizes det(M(ξN)) over all feasible exact designs on the design

space, then it is called an exact N -points D-optimal design.

For a polynomial model on a closed interval [a, b], Salaevskii (1966) conjectured that

an exact design which distributes the weights as even as possible on the support points of

the approximate designs. The conjecture of Salaevskii had been studied by Constantine

and Studden (1981), Gaffke and Krafft (1982), Gaffke (1987), Huang (1987) and had

verified the Salaevskii conjecture holds for most of the cases. Chang and Chen (2004)

discussed the exact D-optimal design problem for multivariate linear polynomial models

on a simplex, parallelgram and quadratic polynomial models with or without intercept

on the q-ball for some cases, and provided some numerical results.

In this work, we investigate the exact D-optimal design for mixture experiments in

Scheffé’s quadratic models based on results in Kiefer (1961) and provide some results

for models with two and three ingredients and numerical verifications for models with

ingredients between four and nine.
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2 Preliminaries

Kiefer (1961) proved that an approximate D-optimal design ξ∗ on a simplex is sup-

ported equally with weights p = 2/q(q +1) on the (q−1, 2)-lattice with q(q +1)/2 points,

where x∗
i , i = 1, . . . , q are the vertexes and x∗

ij , 1 ≤ i < j ≤ q are the certres of the sides,

i.e.

ξ∗ =

























1
0
...
0





















0
1
...
0











. . .











0
0
...
1





















1/2
1/2
...
0





















1/2
0

1/2
...











. . .











0
...

1/2
1/2











p p . . . p p p . . . p















.

For the (q−1, 2)-lattice, Kiefer (1961) provided a q(q+1)/2 system of quadratic orthonor-

mal polynomials with respect to the q(q+1)/2 support points in ξ∗ such that each of which

vanishes at all other support points expect at one point of the lattice. More explicitly the

system consists of the functions [2q(q + 1)]
1

2 xi(xi −
1
2
), 1 ≤ i ≤ q, and [8q(q + 1)]

1

2 xixj ,

1 ≤ i < j ≤ q, these functions are very useful in expressing the corresponding dispersion

function for design supports on the lattice points.

Now let g(x) denote the vertor of the orthonormal polynomials mentioned above where

g(x) =























g1(x)
g2(x)

...
gq(x)
g12(x)

...
g(q−1)q(x)























=























2x1(x1 −
1
2
)

2x2(x2 −
1
2
)

...
2xq(xq −

1
2
)

4x1x2
...

4xq−1xq























.

For designs supported on S∗ = {x∗
1, . . . ,x

∗
q,x

∗
12, . . . ,x

∗
(q−1)q}, we may transform the re-

gression function f(x) in the Scheffé’s quadratic model into g(x). More explicitly g(x)

may be expressed as

g(x) = F−1f(x), x ∈ Sq−1
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where F = (f(x∗
1), . . . , f(x∗

k), f(x∗
12), . . . , f(x∗

(q−1)q).

Furthermore by the celebrated Kiefer-Wolfowitz Equivalence Theorem it can be shown

q
∑

i=1

g2
i (x) +

∑

i≤j

g2
ij(x) ≤ 1, ∀x ∈ Sq−1.

Similarly as in the Salaevskii conjecture, if the total number of trials is N = kp + t where

k = q(q +1)/2, p, t ∈ N, t < k, there are (
k
t

) different cnadidate exact designs ξ∗N,T with

|T | = t, T ⊂ T, originated from ξ∗ and T = {1, . . . , k, 12, . . . , (q − 1)q} is the index set.

That is

ξ∗N,T =

{

x∗
1 . . . x∗

q x∗
12 . . . x∗

(q−1)q

n1/N . . . nq/N nq+1/N . . . nk/N

}

(2)

where nℓ = p + 1 if ℓ ∈ T or nℓ = p if ℓ 6∈ T . Then the information matrix of ξ∗N,T can be

expressed as

M(ξ∗N,T ) =
∑

i∈T

pif(xi)f
′(xi) =

∑

i∈T

piFg(xi)g
′(xi)F

′

= F







p1 · · · 0
...

. . .
...

0 · · · p(q−1)q






F ′

and the inverse matrix of M(ξ∗N,T ) is

M−1(ξ∗N,T ) = (F−1)′







p−1
1 · · · 0
...

. . .
...

0 · · · p−1
(q−1)q






F−1.

Hence, the dispersion function of ξ∗N,T is rewritten as

d(x, ξ∗N,T ) = f ′(x)M−1(ξ∗N,T )f(x)

= g′(x)F ′(F−1)′







p−1
1 · · · 0
...

. . .
...

0 · · · p−1
(q−1)q






F−1Fg(x)

=
∑

ℓ∈T

g2
ℓ (x)

pℓ

,
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where pℓ = (p + 1)/N if ℓ ∈ T and pℓ = p/N , ℓ /∈ T .

Gaffke and Krafft (1982) proved the exact D-optimality of the above candidate designs

for quadratic regression on [a, b], based on the geometric-arithmetic means inequality of

the information matrix i.e.

det(M(ξ1))

det(M(ξ2))
≤

[

1

k
Tr(M−1(ξ2)M(ξ1))

]k

, (3)

where ξ1 and ξ2 are two arbitrary designs defined on [a, b]. Note that

Tr(M−1(ξ2)M(ξ1)) =
1

N

N
∑

i=1

f ′(xi)M
−1(ξ2)f(xi) =

1

N

N
∑

i=1

d(xi, ξ2),

where xi, i = 1, . . . , N are the corresponding design points of ξ1.

Gaffke (1987) and Huang (1987) independently verified Salaevskii’s conjecture for the

most of the cases of polynomial regression. In the following we provide some lemmas

analogous to that in Huang (1987) which will be useful to prove the main results.

Lemma 1. There exists p0 ∈ N such that for all p ≥ p0

∑

ℓ∈T

g2
ℓ (x) ≤

p0

p0 + 1
+

R2(x)

p0 + 1
≤

p

p + 1
+

R2(x)

p + 1
, (4)

where

R2(x) = max{g2
ℓ (x), ℓ ∈ T}, ∀x ∈ Sq−1. (5)

Note that (4) can be rewritten in another form as

1 − R2(x)

1 −
∑k

ℓ∈T
g2

ℓ (x)
≤ p0 + 1. (6)

The proofs of Lemma 1 for q = 2 and 3 are deferred to Section 3.

Let

Aℓ = {x|R2(x) = g2
ℓ (x), x ∈ Sq−1}, ℓ ∈ T, (7)
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then we define the region AT used in Lemma 2 where

AT =
⋃

ℓ∈T

Aℓ, T ⊂ T.

Lemma 2. For all p ≥ p0, p ∈ N, let ξ∗N,T be as defined in (2) with T ⊂ T, N = kp + t,

then

1

N
d(x, ξ∗N,T ) ≤

1

p + 1
, ∀x ∈ AT ,

1

N
d(x, ξ∗N,T ) ≤

1

p
, ∀x /∈ AT .

Conjecture 1. For N = kp + t ≥ kp0, where 1 ≤ t ≤ k − 1, and p0 is defined as in (4),

each of the ξ∗N,T designs is exact D-optimal.

The key steps of proving Conjecture 1 is based on the fact that if conditions in Lemmas

1 and 2 hold, then for any exact design with N trials supported on {x1, . . . ,xN}, there is

T ⊂ T such that n1 ≥ t(p + 1) where n1 is the amount of trials in AT , 1 ≤ n1 ≤ N , and

for design ξ∗N,T ,

1

N

N
∑

i=1

d(xi, ξ
∗
N,T ) ≤

n1

p + 1
+

N − n1

p
=

N(p + 1) − n1

p(p + 1)

≤
N(p + 1) − t(p + 1)

p(p + 1)
= k.

This implies that det(M(ξ)) ≤ det(M(ξ∗N,T )) by (3).

Hence, Lemma 2 and Conjecture 1 will hold for Scheffé’s quadratic models if p0 defined

in Lemma 1 can be found.

In the following we find the exact D-optimal designs for Scheffé’s quadratic models

with two or three ingredients. We will show in two steps. First we will identify the

maximum functions R(x) in the design region and use it to partition Sq−1 into several

regions according to which gℓ(x) is the maximum functioin. Then we can find p0 defined
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in Lemma 1 such that inequality (1) holds. Later, we find exact D-optimal designs for

some sample sizes.

3 Two and three ingredients

In this section we would like to find the minimum sample size such that Conjecture 1

holds for two and three ingredients. Lemma 1 is the main tool to derive the results.

3.1 Two ingredients

We start from experiments with two ingredients that q = 2. Then the model is

E[y(x)] = β1x1 + β2x2 + β12x1x2, x ∈ S1.

For this model, the approximate D-optimal design ξ∗ is given by

ξ∗ =





(

1
0

) (

0
1

) (

1/2
1/2

)

1/3 1/3 1/3





and the quadratic orthonormal polynomials with respect to ξ∗ are g2
1(x), g2

2(x) and g2
12(x)

as defined in Section 2.

For q = 2, we find R2(x) as defined in (5) and the regions Aℓ as defined in (7) with

respect to g2
1(x), g2

2(x) and g2
12(x). Then Theorem 1 holds for the special case with q = 2

as below.

Theorem 1. The design ξ∗N,T as defined in (2) is an exact D-optimal design in Scheffé’s

quadratic models with two ingredients where T ⊂ T = {1, 2, 12} if N ≥ 3.

Proof. Firstly, we identify the sets Aℓ, ℓ ∈ T as defined in Section 2. Let g2
1(x) ≥ g2

2(x)

and g2
1(x) ≥ g2

12(x) then we have A1 = {x|5
6
≤ x1 ≤ 1,x ∈ S1}. Similarly, it can be

found that A2 = {x|0 ≤ x1 ≤ 1
6
,x ∈ S1} and A12 = {x|1

6
≤ x1 ≤ 5

6
,x ∈ S1}. Let
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L(x) = (1 − R2(x))/(1 −
∑

ℓ∈T
g2

ℓ (x)) and L′(x) and L′′(x) denote the first and second

order derivative of L(x). Note that in A1, L(x) = (1 − g2
1(x))/(1 −

∑

ℓ∈T
g2

ℓ (x)). Since

x2 = 1 − x1, then for x ∈ A1 we have

L(x) =
1 + x1 + 4x3

1

6(1 − 2x1)2x1
,

and

L′(x) =
1 − 6x1 − 4x2

1 − 8x3
1

6x2
1(−1 + 2x1)3

.

It is easy to see that L′(x) < 0 by x ∈ A1, then L(x) is monotone decreasing in A1

and the maximum of L(x) is 28/15 ≈ 1.8667 on x1 = 5/6. Since L(x) is symmetric

with x1 = x2, the maximum of L(x) in A2 is also 28/15. Similarly for all x ∈ A12,

L(x) = (1 − g2
12(x))/(1 −

∑k

ℓ∈T
g2

ℓ (x)), then

L(x) =
1 + x1 − 4x2

1

6x1 − 6x2
1

,

and

L′′(x) =
−1 + 3x1 − 3x2

1

3(−1 + x1)3x3
1

.

Also we find that L′′(x) > 0, ∀x ∈ A12, then L(x) is convex in A12 and the maximum of

L(x) is 28/15 on x1 = 1/6 and x1 = 5/6. From (6) we have p0 = 1 and by Lemma 2,

Conjecture 1 holds for Scheffé’s quadratic models with two ingredients if the total trials

N ≥ kp0 = 3. �

3.2 Three ingredients

Now we discuss the case with ingredients q = 3, the Scheffé’s model turns to

E[y(x)] = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3, x ∈ S2.
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Then the approximate D-optimal design is given by

ξ∗ =













1
0
0









0
1
0









0
0
1









1
2
1
2

0









1
2

0
1
2









0
1
2
1
2





1/6 1/6 1/6 1/6 1/6 1/6









,

and the corresponding orthonormal polynomials are {gℓ(x), ℓ ∈ T} where gℓ(x), ℓ ∈ T

are defined as in Section 2 and T = {1, 2, 3, 12, 13, 23}. Similarly, we must identify the

regions of Aℓ for every g2
ℓ (x), ℓ ∈ T. In order to find each Aℓ, ℓ ∈ T, we first define the

following sets A∗
i and A∗

ij; for i = 1, . . . , k,

A∗
i =

{

x|x ∈ Sq−1, g2
i (x) ≥ g2

j (x), 1 ≤ j ≤ q, j 6= i
}

where gi(x) is the corresponding orthonormal polynomial with gi(xi
∗) = 1, and for 1 ≤

i < j ≤ k,

A∗
ij = {x|x ∈ Sq−1, g2

ij(x) ≥ g2
kl(x), g2

ij(x) ≥ g2
i (x),

g2
ij(x) ≥ g2

j (x), 1 ≤ k < l ≤ q, kl 6= ij}

where gij(x) is the corresponding orthonormal polynomial with gij(xij
∗) = 1.

For example, we have A∗
1 and A∗

12 being the sets that

A∗
1 = {x|x ∈ S2, g2

1(x) ≥ g2
12(x), g2

1(x) ≥ g2
13(x)},

A∗
12 = {x|x ∈ S2, g2

12(x) ≥ g2
1(x), g2

12(x) ≥ g2
2(x),

g2
12(x) ≥ g2

13(x), g2
12(x) ≥ g2

23(x)}.

It is obvious that
⋃

ℓ∈T

A∗
ℓ = Sq−1.

For q = 3, by comparing the functions g2
i (x) w.r.p g2

j (x) as well as with g2
ij(x), we have

A∗
i = {x|x ∈ S2, xi ≥

1

2
+ 2xj , j 6= i, }, i = 1, 2, 3,
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as well as for 1 ≤ i < j ≤ 3,

A∗
ij = {x|x ∈ S2, xi ≤

1

2
+ 2xj , xj ≤

1

2
+ 2xi,

xi ≥ xk, xj ≥ xk, k 6= i, j, k = 1, 2, 3}.

In the following Lemma 3, it shows that Ai = A∗
i and Aij = A∗

ij .

Lemma 3. For all x ∈ A∗
ℓ , g2

ℓ (x) is the maximum among all g2
i (x) where ℓ, i ∈ T. That

is Aℓ = A∗
ℓ .

Proof. Because in S2, g2
2(x) and g2

3(x) are symmetric with g2
1(x) for x1 = x2 and

x1 = x3, g2
13(x) and g2

23(x) are symmetric with g2
12(x) for x2 = x3 and x1 = x3, we only

need to verify that g1(x) is the maximum in A1 and g12(x) is the maximum in A12. Firstly,

form the definition of A∗
1, we have for all x ∈ A∗

1, g1(x) ≥ g12(x) and g1(x) ≥ g13(x). Now

we verify that g2
12(x) ≥ g2

23(x), ∀x ∈ A∗
1 which in turns implies g1(x) ≥ g23(x). Note that

g2
12(x) can be expressed as

g2
12(x) = 16x2

1x
2
2 = 16(1 − x2 − x3)

2x2
2

= 16x2
2x

2
3 + 16(1 + x2

2 + x2
3 − 2(x2 + x3) + 2x2x3)x

2
2.

Since x2 + x3 ≤
1
2
, for all x ∈ A∗

1, we have

g2
12(x) ≥ 16x2

2x
2
3 = g2

23(x).

Similarly, it can be shown that

g2
12(x) = 16x2

1x
2
2

≥ 16x2
2(

1

2
(1 + 4x2))

2 = 4x2
2(1 + 4x2)

2

≥ 4x2
2(x2 −

1

2
)2 = g2

2(x)
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then g2
1(x) ≥ g2

23(x) and g2
1(x) ≥ g2

2(x). Again, as g2
1(x) ≥ g2

13(x), ∀x ∈ A∗
1, it implies

g2
1(x) ≥ g2

23(x) and g2
1(x) ≥ g2

3(x). Therefore g2
1(x) is the maximum function on A∗

1 and

A∗
1 ⊂ A1. Secondly, from definition of A∗

12 is given above where

A∗
12 = {x|x ∈ S2, x1 ≤

1

2
+ 2x2, x2 ≤

1

2
+ 2x1, x1 ≥ x3, x2 ≥ x3}.

We now check g2
12(x) ≥ g2

3(x) on A∗
12 by expressing in the follow

g2
12(x) − g2

3(x) = (4x1x2 + 2x3(x3 − 1/2))(4x1x2 − 2x3(x3 − 1/2)).

Because for all x ∈ A∗
12, x3 ≤ 1/3, then (4x1x2 − 2x3(x3 − 1/2)) ≥ 0. In fact as x3 =

1 − x1 − x2, the other part 4x1x2 + 2x3(x3 − 1/2) can be rewritten as h(x1, x2) where

h(x1, x2) = 1 + 2x2
1 − 3x2 + 2x2

2 + x1(8x2 − 3).

In order to find the extrme value of h(x1, x2) in A∗
12 we try to find the critical points.

The critical points of h(x1, x2) is (1
4
, 1

4
, 1

2
) and is not in A∗

12. Hence the location of the

minimum of h(x1, x2) is on the boundary of A∗
12 and the minimum value is 9

32
at (1

8
, 3

4
, 1

8
)

or (3
4
, 1

8
, 1

8
). Then g2

12(x) − g2
3(x) ≥ 0, x ∈ A∗

12 and R(x) = g2
12(x) in A∗

12. Then we have

A∗
12 ⊂ A12.

From the above discussions we have A∗
ℓ ⊂ Aℓ, ℓ ∈ T. It is follows that A∗

ℓ = Aℓ, ℓ ∈ T

since ∪ℓ∈TA∗
ℓ = Sq−1. �

From Lemma 3 there is a partition on the design region as in Figure 1 and this partition

is P = {A1, A2, A3, A12, A13, A23}. In the following we prove that Lemma 1 is ture for

p0 = 2.

Lemma 4. When p ≥ 2 the inequality in (4) holds for x ∈ S2.

Proof. Let

Q(x) =
k

∑

i=1

g2
i (x) −

R2(x)

p0 + 1
,
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(1
2 , 0, 1

2 )

(0, 0, 1)

(0, 1
2 , 1

2)

(0, 1, 0)(1
2 , 1

2 , 0)(1, 0, 0)

A1

A12

A2

A13 A23

A3

Figure 1: (2,2)-lattice

and we want to prove Q(x) ≤ 2/3. It is obvious that Q(x) is symmetric with x1 = x2,

x2 = x3, and x1 = x3. To find the maximums of Q(x) for every x ∈ Ai, is is sufficient to

find the maximum of Q(x) in A1 and A12. Then we only need to consider the regions in

A1 and A12. Note that ∀x ∈ A12,

Q(x) =
k

∑

i=1

g2
i (x) −

g2
12(x)

p0 + 1
.

Let the parametric representation of x in A12 be (t− s, t + s, 1− 2t) where 1/3 ≤ t ≤ 1/2

and −at ≤ s ≤ at, at ∈ R
+. All parametric vectors for a fixed t are parallel to the vector

from (1, 0, 0) to (0, 1, 0). Then Q(x) can be expressed with a new function q12(s, t) as

q12(s, t) =
1

3
(3 + 56s4 − 36t + 258t2 − 696t3 + 632t4 + 2s2(51 − 228t + 232t2)).

Because q12(s, t) is a 4th degree polynomial with the highest coefficient to be positive for
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A′
1

A′
12

(1, 0, 0) (5
6 , 1

6 , 0) (1
2 , 1

2 , 0)

(1
3 , 1

3 , 1
3 )

(3
4 , 1

8 , 1
8)

Figure 2: Subregion of A1 and A12

s and is symmetric with s = 0, then for a fixed t and at the maximum of q12(s, t) will be

attained at s = 0, s = at or s = −at. Hence, if we want to find the maximum of Q(x)

on A12, it is just to find the maximum of Q(x) on the boundary of A′
12, the half region

of A12, see Figure 2. It is obvious that the boundary of A′
12 is composed of four segments

and the boundary of A′
1 is composed of three segments. In the following we would like

to find the maximum of Q(x) on the boundary of A′
12 and the segments are specified in

the following. To this end let p(s, t) or p(t) denote the parametric vector of x on each

segment.

(i) For segment from (5/6, 1/6, 0) to (1/6, 5/6, 0)

It is apparent that the maximum of Q(x) on this segment will occur at (5/6, 1/6, 0),

(1/6, 5/6, 0) or (1/2, 1/2, 0). Since Q(x) = 2/3 at (1/2, 1/2, 0) and Q(x) = 4/9 at
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(5/6, 1/6, 0) and (1/6, 5/6, 0), the maximum is 2/3 in the segment.

(ii) For segment from (1/3, 1/3, 1/3) to (1/2, 1/2, 0)

Let s = 0,

q12(0, t) = 1 − 12t + 86t2 − 232t3 +
632t4

3
,

1

3
≤ t ≤

1

2
,

then

q′12(0, t) =
4

3
(−9 + 129t− 522t2 + 632t3).

By Bolzano Theorem, we are assured the interval where three roots of t for q′12(0, t) = 0

locate, because q′12(1/2) = 16/3 and q′12(1/3) = −64/81, q′12(1/4) = 2/3 and q′12(1/10) =

−334/375. Hence q′12(0, t) is positive in 1/3 ≤ t ≤ 1/2 and the maximum will be attained

at t = 1/3 or 1/2. Moreover q′12(0, 1/3) = 137/243 and q′12(0, 1/2) = 2/3 then the

maximum of Q(x) in this segment is 2/3.

(iii) For segment from (1/3, 1/3, 1/3), to (3/4, 1/8, 1/8)

Let the parametric vector of x be (1− t, t, t) where 1/8 ≤ t ≤ 1/3, and let p(t) = Q(x)

then

p(t) =
1

3
(1 − 36t + 242t2 − 632t3 + 584t4)

and

p′(t) =
4

3
(−9 + 121t− 474t2 + 584t3).

That is, there is only one real root 0.129911 for p′(t) = 0. Hence maximum can be found

on t = 1/8, t = 1/3, or t = 0.129911. The maximum of Q(x) is 127/243 at t = 1/3.

(iv) For segment from (3/4, 1/8, 1/8) to (5/6, 1/6, 0)

Let the parametric vector of x be (5/6− t/12, 1/6− t/24, t/8) where 0 ≤ t ≤ 1, and let

p(t) = Q(x) then

p(t) =
1

124416
(65536 − 45184t + 35376t2 − 6832t3 + 433t4).
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and

p′′(t) =
1

10368
(5896 − 3416t + 433t2).

Because p′′(t) is positive for 0 ≤ t ≤ 1, p(t) is convex and the maximum can be obtained

with t = 0 or t = 1 and the maximum value is 128/243 with t = 0, then the maximum of

Q(x) is 2/3.

From the above (i)-(iv), we see that the maximum of Q(x) on the boundary of A′
12 is

less than or equal to 2/3, then the maximum of Q(x) on A12 is 2/3.

In A1, we can obtain the maximum of Q(x) with the same procedure. It can be found

that Q(x) is convex on each segment of the boundary of A1 and the maximum is 2/3 at

(1, 0, 0). Then Q(x) is also less than or equal to 2/3 in S2 and the proof is complete. �

From Lemma 4 and Theorem 1, exact D-optimal design in Scheffé’s quadratic models

for q = 3 and N ≥ 12 is stated explicity in Theorem 2.

Theorem 2. ξ∗n in (2) is an exact D-optimal design in Scheffé’s quadratic models with

three ingredients for sample size N ≥ 12.

4 Four or more ingredients

In Section 3, we have discussed cases with two and three ingredients. For four or more

ingredients the same method as in Section 3 can be used, but it is more complicated to

calculate the maximum on the subregion with respect to those orthonormal polynomials.

In (4), we can see that the right side of the inequality is an increasing function of p for

fixed R2(x). If a real solution p ∈ R can be found for the equality in (4) holds for each

x ∈ Sq−1 as expressed in (8), the minimum integer upper bound for these p, called p0



Conclusion 16

can be obtained, then Conjecture 1 will hold in Sq−1. Here p0 is the same as defined in

Lemma 1.
∑

ℓ∈T

g2
ℓ (x) =

p

p + 1
+

R2(x)

p + 1
= 1 −

1 − R2(x)

p + 1
, x ∈ Sq−1. (8)

We try to compute the p0 numerically by generating 100000 points uniformly on the

design regions Sq−1 and solve for p in (7) with each generated x in Sq−1, then find the

corresponding p0 through the maximum p resulted from the 100000 points. Table 1 lists

the maximum p values for ingredients from 4 to 9.

Table 1: Maximum p for ingredients from 4 to 9

ingredients 3 4 5 6 7 8 9
p 1.16143 1.14157 1.10068 1.10919 1.12676 1.13648 1.10333

It is obvious that in this table p is always less than 7/6, where 7/6 is also the p value

for (7) to hold when x is on the centroids of depth 3. Hence the integer supremum of p

seems to be 2 for every ingredient. For this result we propose a conjecture below.

Conjecture 2. For any finite sample size N ≥ kp0, p0 = 2, k = q(q + 1)/2, and q is

the ingredient, there is at least one design as defined in (2) for mixture experiments in

Scheffé’s quadratic models to be exact D-optimal.

5 Conclusion

In Section 3 we prove the exact D-optimality of candidate designs for mixture experi-

ments with ingredients q = 2 and q = 3 for most of the sample size N . For experiments

with the number of ingredients range from 4 to 9, we obtain the numerically computed
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p0, or the smallest sample size N for the candidate designs to be exact D-optimal. The

proofs for the general cases will be investigated in the future.
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