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摘  要 

 

    本篇論文主要研究多反應變數迴歸模型在校準問題上的最適設計。眾

所周知的校準問題是由一已知的反應值(或稱目標值)推論與此反應值相對

應的未知控制變數的控制量，我們稱此控制量為校準點。一常見的作法是

利用控制變數與反應變數的迴歸函數反求校準點。以此種方法求得的校準

點的估計量稱為古典估計量。文獻上，已有許多討論校準問題的論文，但

是與最適設計相關的論文卻相對較少，且都僅止於討論單反應變數的最適

校準設計。在這篇論文裡，我們主要考慮的模型為一具有一個控制變數，

但同時有多個具相關性的反應變數的線性迴歸模型。我們的主要目的是對

一組給定的反應變數的目標值反求控制量的預測值時，可得到較佳估計校

準點的最適校準設計。由於要達到各目標值的校準點可能互異，因此我們

考慮的最適校準點為滿足最小化反應期望值與目標值差異的加權平方和的

校準點。為了得到一個能準確的預測此控制量校準點的有效設計，我們選

取最適校準設計的準則為能最小化校準點與它的估計量的差異的均方平均

值的設計。在這個準則下，我們提出具有雙反應變數的簡單線性迴歸模型

及二次迴歸模型的最適校準設計。 
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Abstract

In this dissertation we first consider a parallel linear model with correlated

dual responses on a symmetric compact design region and construct locally

optimal designs for estimating the location-shift parameter. These locally

optimal designs are variant under linear transformation of the design space

and depend on the correlation between the dual responses in an interesting

and sensitive way.

Subsequently, minimax and maximin efficient designs for estimating the

location-shift parameter are derived. A comparison of the behavior of effi-

ciencies between the minimax and maximin efficient designs relative to locally

optimal designs is also provided. Both minimax or maximin efficient designs

have advantage in terms of estimating efficiencies in different situations.

Thirdly, we consider a linear regression model with a one-dimensional

control variable x and an m-dimensional response variable y = (y1, · · · , ym).

The components of y are correlated with a known covariance matrix. The

calibration problem discussed here is based on the assumed regression model.

It is of interest to obtain a suitable estimation of the corresponding x for a

given target T = (T1, · · · , Tm) on the expected responses. Due to the fact that

there is more than one target value to be achieved in the multiresponse case,

the m expected responses may meet their target values at different respective

control values. Consideration includes the deviation of the expected response

E(yi) from its corresponding target value Ti for each component and the op-

timal value of calibration point x, say x0, is considered to be the one which

minimizes the weighted sum of squares of such deviations within the range of

i



x. The objective of this study is to find a locally optimal design for estimat-

ing x0, which minimizes the mean square error of the difference between x0

and its estimator. It shows the optimality criterion is approximately equiva-

lent to a c-criterion under certain conditions and explicit solutions with dual

responses under linear and quadratic polynomial regressions are obtained.

Key words and phrases: Approximate design; Bioassay; C-criterion; Clas-

sical estimator; Efficiency; Equivalence theorem; Locally optimal design;

Location-shift parameter; Maximin efficient design; Minimax design; Mul-

tivariate calibration; Prediction; Relative potency; Scalar optimal design.
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Introduction

In this dissertation optimal designs for calibrations in multiresponse regres-

sion models are our primary goal of investigation. The calibration problem

has a long history receiving significant attention in statistics and other sci-

entific disciplines. Both the design and analysis aspects of the calibration

problem are of interest to experimenters and statisticians. The well-known

problem of calibration is making inference about an unknown control value

from a single observed response. A natural estimate of the control value is

given by solving the regression function, which is called the classical estimate.

In the past numerous literatures have focused on calibration problems, but

not much have been investigated concerning optimality of designs. In this

work, we consider a linear regression model with a one-dimensional control

variable and a multi-dimensional response variable. The responses are con-

sidered to be correlated with a known covariance matrix. We are interested

in making inverse prediction of the model for a given target on the expected

responses. In order to find an efficient design for making accurate prediction,
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the optimality criterion has been chosen to minimize the mean square error

of the difference between the control value and its estimator in this work.

At first we consider a bioassay experiment that measures a response from

different doses of the standard and test preparations. There are many liter-

atures in bioassays, see for example, Govindrajulu [19] and Kshirsagar and

Yuan [25]. Design papers for general bioassays are relatively scarce and they

include Buonaccorsi [7], Finney [17], Kshirsagar and Yuan [25], and Smith

and Ridout [33]. As is often the case in bioassay experiments, the expected

responses for the standard and test preparations are assumed to be simple

linear parallel models relative to the logarithm of the dosage, see Finney [17]

for example. Chai et al [8] and Kshirsagar and Yuan [25] were one of the

few who addressed specific design issues for parallel line bioassays. Their

interest, however, was on incomplete block designs, which is not the focus

here.

The interest here is in estimating the potency of the test preparation

relative to the standard, which by definition is the amount of the standard

equivalent in effect to one unit of the test. This parameter is important be-

cause it is widely used to measure the location-shift between the standard

and test preparations in parallel line assays. We follow Kiefer and Wol-

fowitz’s [22] approach and focus on continuous designs. A continuous design

is a probability measure with finite number of support points on a given

compact design space. A main advantage of continuous designs is that they

can be readily verified if they are optimum among all designs defined on the

design space using equivalence theorems. Details of the continuous design

2



framework and equivalence theorems are discussed in design monographs, see

Fedorov [15] or Pukelsheim [30], for example.

We proposes optimal designs for the parallel line bioassay experiment

when the responses from the standard and test preparations may be corre-

lated. Such assumptions are realistic if observations come from each litter or

observations are made from the same subjects under two experimental con-

ditions. We provide closed form formulae of optimal designs for estimating

the relative potency. Since some type of prior information concerning the

relative potency is needed for the experiment designs, the optimal designs

are called locally optimal designs.

To put the robustness of the designs into consideration to overcome the

problem that the locally optimal designs depend on the unknown relative

potency which may be quite sensitive if the prior knowledge departure from

the true value is to consider other types of design criterion such as the mini-

max and maximin efficient criteria. The maximin efficient criterion has been

introduced by Müller [27]. There have been some research related to min-

imax and maximin efficient designs, see for example, Dette and Sahm [14],

Dette and Biedermann [12] and Dette and Melas [13], where their interests

were mainly in nonlinear regression models with single response.

In this dissertation, closed form formulae for minimax and maximin effi-

cient designs are provided for estimating the relative potency. A necessary

and sufficient condition for the minimax design has been presented by Fe-

dorov [16] with only an indication of the proof. A modified general equiva-

lence theorem using a directional derivative approach can be found in Müller

3



and Pázman [28]. The candidate designs are verified to be optimal through

the corresponding equivalence theorem. A comparison of the efficiencies be-

tween minimax and maximin efficient designs is also provided.

Moreover, in drug-testing experiments a suitable design for dose-finding

when both efficacy and toxicity responses are available is also arresting. We

thus consider the calibration problem of a linear regression model with one

control variable and multi-response variables. The responses are considered

to be correlated with a known covariance matrix. It is of interest to obtain a

suitable estimation of the corresponding control value for a given target on

the expected responses.

Concerning the single response calibration problem, Ott and Myers [29],

along with providing corresponding design problems, have discussed the es-

timation of the independent variable in a regression situation for a measured

value of the dependent variable. Buonaccorsi [6] has examined the effects of

the choice of designs on calibration in a simple linear regression model. Bar-

low, Mensing and Smiriga [2] have computed the optimal Bayes design for a

calibration model. Bai and Huang [1] have discussed a consistent estimator

for locating the maximizer of a non-parametric regression function.

Beside the single response calibration problem, the multiresponse calibra-

tion problem also arises in many applications. In Brown [5] the problem of

calibration making inferences about an unknown explanatory variable from a

single random observed response vector has been discussed. An example for

determining the viscosity of the paint samples by using two measurements on

certain optical properties of the samples have been described. In Chang et al.

4



[9] a real example concerning production of the shadow mask which affects

the quality of screen image in a monitor or TV set is described, where one of

the criteria to determine the fitness of a produced mask depends on whether

two response variables, the size of the hole and the depth of the hole, meet

the target values. It is of interest to find the optimal setting of the line speed,

the input variable x. We therefore investigate in general the calibration de-

sign problems for multiresponse-univariate polynomial regression models in

this dissertation.

In the following, Chapter 2 centers around the locally optimal designs

for estimating the location-shift parameter of parallel models with dual re-

sponses. Minimax and maximin efficient designs for estimating the location-

shift parameter in the previous chapter are studied in Chapter 3. In Chapter

4, results are presented for designing experiments in the estimation of control

values for given target responses. An example discussed in Brown [5] is used

to illustrate the procedure to exhibit the optimal calibration design.

5



2

Optimal Designs for Estimating

the Location-shift Parameter of

Parallel Models with

Correlated Responses

This chapter considers a parallel linear model with correlated dual responses

on a symmetric compact design region and construct locally optimal designs

for estimating the location-shift parameter. The D-optimal designs for the

additive model are invariant under linear transformation of the design space

but locally optimal designs for estimating the location shift do not share this

property. The latter optimal designs depend on the correlation between the

dual responses in an interesting and sensitive way.

6



2.1. INTRODUCTION

Key words and phrases: Approximate design; Bioassay; Locally optimal de-

sign; Location-shift parameter; potency.

2.1 Introduction

Consider a bioassay experiment that measures a response from different doses

of the standard and test preparations. The interest is in estimating the

potency of the test preparation relative to the standard, which by defini-

tion is the amount of the standard equivalent in effect to one unit of the

test. Specifically, suppose that the dose interval of interest is [a, b] and a

dose from this interval is administered to an experimental unit. The re-

sponse y at this dose level, d, is measured and its expectation under the

standard preparation is E(y1|d) = F1(d), ∀d ∈ [a, b], where F1 is some

known functional with unknown parameters. Suppose, as is often the case

in bioassay experiments, the expected response for the test preparation is

E(y2|d) = F2(d) = F1(τ d), ∀d ∈ [a, b], and τ is an unknown constant repre-

senting the relative potency between the standard and test preparations.

It is common practice to assume the regression function F1(d) is linearly

related to x = log(d), see Finney [17] for example. This implies

E(y1|d) = F (d) = θ0 + θ1 log(d) = θ0 + θ1x

E(y2|d) = F (τd) = θ0 + θ1(log(d) + log(τ)) = θ0 + θ1(x− µ),

where µ = − log(τ). Therefore, these two simple linear models are parallel

with common slope θ1. The covariance matrix between the two responses

7



2.1. INTRODUCTION

from the standard and test preparations is

Cov(y1, y2) = Σ = σ2((1 − ρ)I2 + ρJ2),

where I2 is the 2 × 2 identity matrix and J2 is a 2 × 2 matrix of one’s,

and there is no loss in generality to assume that σ2=1. We also assume

throughout that all models in the paper satisfy the parallelism assumption.

Some test procedures for testing the hypothesis of parallelism are given in

Smith and Choi [34].

There is much research in bioassays, see for example, Govindrajulu [19]

and Kshirsagar and Yuan [25]. Design papers for general bioassays are rel-

atively scarce and they include Buonaccorsi [7], Finney [17], Kshirsagar and

Yuan [25], and Smith and Ridout [33]. Chai et al [8] and Kshirsagar and

Yuan [25] were one of the few who addressed specific design issues for paral-

lel line bioassays. Their interest, however, was on incomplete block designs,

which is not the focus here.

This paper proposes optimal designs for a parallel line bioassay experi-

ment when the responses from the standard and test preparations may be

correlated. Such assumptions are realistic if observations come from each

litter or observations are made from the same subjects under two experi-

mental conditions. We provide closed form formulae for optimal designs for

estimating the relative potency.

We follow Kiefer and Wolfowitz’s [22] approach and focus on continuous

designs. A continuous design ξ is a probability measure with finite number

of support points on a given compact design space. If the design has all its

mass at the point x, we denote the design by δx. A generic design on m

8



2.2. LOCATION-SHIFT PARAMETER

points is denoted by ξ = w1δx1 + w2δx2 + · · ·+ wmδxm , where each xi in the

design space is weighted wi > 0, and
∑m

i=1wi = 1. A main advantage of

continuous designs is that they can be readily verified if they are optimum

within all designs on the design space X using equivalence theorems. Details

of the continuous design framework and equivalence theorems are discussed

in design monographs, see Fedorov [15] or Pukelsheim [30], for example.

In the next section we discuss optimal designs for estimating the logarithm

of the relative potency. This parameter is important because it is widely used

to measure the location-shift between the standard and test preparations in

parallel line assays. Section 2.3 provides an application and a discussion.

2.2 Location-shift parameter

Throughout we focus on the parallel model with dose as the control variable

and the dose level x1 for the standard preparation and the dose level x2 for

the test preparation may be different,


E(y1|x1) = θ01 + θ1x1

E(y2|x2) = θ02 + θ1x2 = θ01 + θ1(x2 − µ).
(2.1)

We assume that after appropriate scaling, xi ∈ Xi = [−1, 1], i = 1, 2.

When ρ = 0, the two responses are uncorrelated and they do not have to be

observed in pairs. We may thus relax our designs to include different number

of observations, say n1, n2 for the two responses respectively. In this case,

different designs, ξ1 and ξ2, can be assigned to each response. Designs ξ for

9



2.2. LOCATION-SHIFT PARAMETER

such a setup can be expressed as

ξ = p1ξ1 + p2ξ2, (2.2)

where p1 = n1/n, p2 = n2/n, n = n1 + n2, and ξi, i = 1, 2, represents the

design for the ith response on [−1, 1].

If the dual responses from different preparations are observed in paired

for different doses. The dual responses are assumed to be correlated, that is

ρ �= 0. We have for design point x = (x1, x2) ∈ X = X1 × X2 = [−1, 1]2. A

design in this case is denoted by

ξ =
m∑
i=1

wiδxi
, (2.3)

where xi ∈ X .

In this section, we consider optimal designs for estimating the location-

shift parameter µ in model (2.1). The location-shift parameter µ can be

expressed as

µ =
θ01 − θ02

θ1
=
l′1θ
l′2θ

=
β1

β2
,

where θ = ( θ01 θ02 θ1 )′ , l1 = ( 1 −1 0 )′ , l2 = ( 0 0 1 )′, β1 =

l′1θ and β2 = l′2θ.

Let f1(x1) = ( 1 0 x1 )′ and f2(x2) = ( 0 1 x2 )′ , the information

matrix for design ξi is

M(ξi) =

∫
Xi

fi(xi)fi(xi)
′dξi(xi),

i = 1, 2. When ρ = 0, we measure the worth of a design ξ as defined in (2.2)

by its information matrix

M(ξ) = p1M1(ξ1) + p2M2(ξ2)

10



2.2. LOCATION-SHIFT PARAMETER

=




p1 0 p1c1

0 p2 p2d1

p1c1 p2d1 p1c2 + p2d2


 , (2.4)

where ci =
∫
X1
x1

idξ1, di =
∫
X2
x2

idξ2, i = 1, 2.

When ρ �= 0, the regression function F (x) of θ is F (x) = ( I2 X )′ ,

where matrix X = (x1 x2 )′ . The information matrix of a design as defined

in (2.3) is

M(ξ) =

∫
X
F (x)Σ−1F (x)′dξ(x), (2.5)

where Σ is the covariance matrix for the dual responses. It is straightforward

to verify that

M(ξ) =
1

1 − ρ2




1 −ρ c1 − ρd1

−ρ 1 d1 − ρc1

c1 − ρd1 d1 − ρc1 c2 + d2 − 2ργ


 , (2.6)

where ci =
∫
X x

i
1dξ, di =

∫
X x

i
2dξ, i = 1, 2, and γ =

∫
X x1x2dξ.

Letting β = ( β1 β2 )′ and L′ = ( l1 l2 ), we have the covariance matrix

of the estimator of β as follows

Cov(β̂) ≈
(
l′1M(ξ)−1l1 l′1M(ξ)−1l2

l′2M(ξ)−1l1 l′2M(ξ)−1l2

)
= LM(ξ)−1L′,

By McDonald and Studden [26], the approximate variance of the ratio of

the two estimated parameters is

Var(β̂1/β̂2) ≈ ( h1 h2 )LM(ξ)−1L′ (h1 h2 )′ ,

where hi = ∂h/∂βi, i = 1, 2, with h(β1, β2) = β1/β2. In our case, we have

Var(β̂1/β̂2) ≈ 1

β2
2

( 1 −β1/β2 )LM(ξ)−1L′ ( 1 −β1/β2 )′

=
1

β2
2

c′M(ξ)−1c,

11



2.2. LOCATION-SHIFT PARAMETER

with c = ( 1 −1 −µ )′. This means that the best design for estimating

µ is a locally c-optimal design. Here and throughout the rest of the paper,

we construct locally c-optimal designs on the design space X . This means

that the dosage levels for both preparations have to be on the logarithmic

scale and appropriately standardized. Optimal designs for estimating µ on

other design spaces will have to be reconstructed because, unlike D-optimal

designs, these designs are not invariant under linear transformation on the

design space.

Theorems 2.2.1 and 2.2.2 below present locally optimal designs for es-

timating µ when the two responses are uncorrelated. Recall that ci =∫
X1
xidξ1 and di =

∫
X2
xidξ2. Many of the optimal designs found in the fol-

lowing are by first restricting attention to a subclass of designs and among

these designs, find the smallest non-trivial lower bound for the determinant

of the inverse of the information matrix, or the variance of the estimate of

interest. The optimal design is then found by constructing a design that

attains the lower bound.

Theorem 2.2.1 Suppose model (2.1) holds, ρ = 0, |µ| ≤ 2 and ξ∗1 and ξ∗2

are two designs supported on {−1, 1}. The design ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2 is a locally

optimal design for estimating µ provided d1 − c1 = µ.

Proof. When ρ = 0, a direct calculation shows

M(ξ) =




p1 0 p1c1

0 p2 p2d1

p1c1 p2d1 p1c2 + p2d2


 .

12
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Recalling that c = (1,−1,−µ)′, we have

c′M(ξ)−1c =
1

p1
+

1

p2
+

(µ− (d1 − c1))
2

p1c2 + p2d2 − p1c21 − p2d2
1

. (2.7)

For any two designs ξ∗1 and ξ∗2 on [−1, 1], we have |d1−c1| ≤ 2 and 1
p1

+ 1
p2

≥ 4.

This means that from (2.7), we can find a design ξ∗ such that p1 = p2 = 1
2

and µ = d1 − c1.

Theorem 2.2.2 Suppose model (2.1) holds, ρ = 0 and |µ| > 2. If designs

ξ∗1 and ξ∗2 are supported on {−1, 1} and if ξ∗ = p1ξ
∗
1 + p2ξ

∗
2 satisfies: (i)

1
|µ| < p1 < 1 − 1

|µ| , and (ii) −µc1p1 = µd1p2 = 1, where p2 = 1 − p1, then ξ∗

is a locally optimal design for estimating µ. Moreover, c
T
M(ξ∗)−1c = µ2.

Proof. It is straightforward to verify from (2.7) that

c′M(ξ)−1c ≥ 1

p1

+
1

p2

+
(µ− (d1 − c1))

2

1 − p1c
2
1 − p2d

2
1

,

with equality if the design ξ is supported on {−1, 1}. In particular, equality

is attained for the optimal designs ξ∗1 and ξ∗2 . For 1
|µ| < p1 < 1 − 1

|µ| , define

h(p1, c1, d1) =
1

p1
+

1

p2
+

(µ− (d1 − c1))
2

1 − p1c21 − p2d2
1

.

If we take partial derivatives of the function h with respect to c1 and d1 and

set them equal to 0, we have

µ = [d1(p1c1 + p2d1) − 1]/(p1c1) = [1 − c1(p1c1 + p2d1)]/(p2d1).

It follows that p1c1 + p2d1 = (p1c1 + p2d1)(p1c
2
1 + p2d

2
1) and because p1c

2
1 +

p2d
2
1 �= 1, we must have p1c1 + p2d1 = 0. By assumption, it follows that

13
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−µp1c1 = 1 = µp2d1 and the optimal design ξ∗ satisfies c′M(ξ∗)−1c =

h(p1,
−1
µp1
, 1
µp2

) = µ2.

Example 2. Suppose model (2.1) holds, ρ = 0 and µ = 3. If we take an

equal number of observations from the test and standard preparations, i.e.

p1 = p2 = 1
2
, and use designs ξ∗1 = 5

6
δ−1 + 1

6
δ1 for the standard preparation,

ξ∗2 = 1
6
δ−1+ 5

6
δ1 for the test preparation, we have 1

3
< p1 <

2
3
, c1 = −2

3
,d1 = 2

3
,

and condition (ii) of the theorem holds. It follows that the average of these

two designs, i.e. the design equally supported at ±1 is locally optimal for

estimating µ.

Table 2.1 and Table 2.2 display selected optimal designs constructed from

Theorems 2.2.1 and 2.2.2. For example, in Table 2.1, the third row shows

that when µ = −0.5, the designs for the two preparations are ξ∗1 = δ1 and

ξ∗2 = 0.25δ−1 + 0.75δ1. In addition, they have the property that d1 − c1 =

0.5 − 1 = −0.5 = µ and consequently, the design ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2 is locally

optimal for estimating µ. Alternatively, if we take ξ∗1 = 0.75δ−1 + 0.25δ1 and

ξ∗2 = δ−1 as shown in the fourth row, the design ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2 also satisfies

d1 − c1 = −1 − (−0.5) = −0.5 = µ and hence is also locally optimal for

estimating µ.

The next three results concern correlated responses from the test and

standard preparations with ρ �= 0 and |ρ| < 1.

14
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Table 2.1: The optimal design ξ∗ for model (2.1) with Σ = I2 and a given µ,

|µ| ≤ 2.

Design points of ξ∗1 Design points of ξ∗2

µ −1 1 −1 1

−0.5 0.000 0.500 0.125 0.375

0.375 0.125 0.500 0.000

0.0 0.500 0.000 0.500 0.000

0.000 0.500 0.000 0.500

0.5 0.500 0.000 0.375 0.125

0.125 0.375 0.000 0.500

1.0 0.500 0.000 0.250 0.250

0.250 0.250 0.000 0.500

1.5 0.500 0.000 0.125 0.375

0.375 0.125 0.000 0.500

2.0 0.500 0.000 0.000 0.500

0.500 0.000 0.000 0.500

Theorem 2.2.3 Suppose model (2.1) holds, 0 < |ρ| < 1 and |µ| ≤ 2. If a

design ξ∗ satisfies d1 − c1 = µ, ξ∗ is a locally optimal design for estimating

µ.

Proof. From (2.6), it is straightforward to calculate that

c′M(ξ)−1c = 2(1 − ρ) +
(1 − ρ2)(µ− (d1 − c1))

2

c2 + d2 − 2ργ − c21 − d2
1 + 2c1d1ρ

. (2.8)

15



2.2. LOCATION-SHIFT PARAMETER

Table 2.2: The optimal design ξ∗ for model (2.1) with Σ = I2 and a given µ,

|µ| > 2.

Design points of ξ∗1 Design points of ξ∗2

µ −1 1 −1 1

2.5 0.500 0.100 0.000 0.400

0.400 0.000 0.100 0.500

3.0 0.500 0.167 0.000 0.333

0.333 0.000 0.167 0.500

4.0 0.500 0.250 0.000 0.250

0.250 0.000 0.250 0.500

5.0 0.500 0.300 0.000 0.200

0.200 0.000 0.300 0.500

If |µ| ≤ 2, we observe that

(c2 + d2 − 2γρ) − (c21 + d2
1 − 2c1d1ρ)

=

∫
( x1 x2 ) Σ−1 ( x1 x2 )′ dξ − ( c1 d1 )Σ−1 ( c1 d1 )′

=

∫
( x̃1 x̃2 ) Σ−1 ( x̃1 x̃2 )′ dξ > 0,

where x̃i = xi −
∫
xidξ, i = 1, 2. It follows that c′M(ξ)−1c ≥ 2(1 − ρ), and

equality holds if d1 − c1 = µ. The desired result follows.

Theorem 2.2.4 Suppose model (2.1) holds, 0 < ρ < 1 and |µ| > 2. The

design ξ∗ = (1
2

+ 1
µ
)δ(1,−1) + (1

2
− 1

µ
)δ(−1,1) is a locally optimal design for

estimating µ.

16
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Proof. From the general expression of c′M(ξ)−1c in (2.8), we have

c′M(ξ)−1c ≥ 2(1 − ρ) + (1 − ρ2)
(µ− (d1 − c1))

2

2 − 2ργ − c21 − d2
1 + 2c1d1ρ

= 2(1 − ρ) + (1 − ρ2)g(c1, d1, γ),

with equality if ξ is supported on (−1,−1), (−1, 1), (1,−1), and (1, 1). Now

we want to find designs with c1, d1 that minimize g(c1, d1, γ). For fixed γ and

ρ, we first take partial derivatives of g(c1, d1, γ) with respect to c1, d1, and

set them to 0. A straightforward argument shows the optimal design must

have c1 = −d1. Under this constraint, let

h(d1, γ) = g(−d1, d1, γ) =
(µ− 2d1)

2

2 − 2ργ − (2d2
1 + 2ρd2

1)
(2.9)

and one may directly verify that d∗1 = 2(1−ργ)
µ(1+ρ)

minimizes the function h(d1, γ)

because ∂2h
∂d21

= (1+ρ)2µ4

(1−ργ)2(−4+4ργ+µ2+ρµ2)
> 0 when γ ≥ −1 > 4−µ2(1+ρ)

4ρ
. Hence

with the additional condition that γ = −1, h(d∗1, γ) attains its minimum

value. Consequently, the locally optimal design for estimating µ is ξ∗ =

(1/2 + 1/µ)δ(1,−1) + (1/2 − 1/µ)δ(−1,1) because it has the property that c1 =

−d1 = −2/µ and γ = −1.

The next result allows us to construct locally optimal design when |µ| > 2

and −1 < ρ < 0. The proof is more complicated and is deferred to the Ap-

pendix.

Theorem 2.2.5 Suppose model (2.1) holds, −1 < ρ < 0 and |µ| > 2. Con-

sider a design of the form ξ = w1δ(−1,−1) + w2δ(−1,1) + w3δ(1,−1) + w4δ(1,1).

17
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The design ξ∗ is a locally optimal design for estimating µ if

(i) w1 = w4 = µ−2
2(µ+µρ−2ρ)

, w2 = 1−2w1 and w3 = 0 provided 2 < µ ≤ 2−2/ρ,

(ii) w1 = w4 = µ+2
2(µ+µρ+2ρ)

, w2 = 0 and w3 = 1 − 2w1 provided −2 + 2/ρ ≤

µ < −2,

(iii) w1 = w4 = 1/2 and w2 = w3 = 0 provided |µ| > 2 − 2/ρ.

Note that the optimal design has at most three design points in each case.

2.3 An application and discussions

Darby [11] analyzed a data set on the assay of the antibiotic tobramycin

where the same levels of dose were used in both the standard and test prepa-

rations. The range of the variable x (logdose) in the study was between −1.8

and −3, which is not symmetric about 0. However, the c-optimal design on

the interval [−3,−1.8] for estimating µ can still be found by applying results

in Section 2.2. In Theorem 2.2.1, we have shown that if the first moments

c1 and d1 of the design satisfy d1 − c1 = µ, then the design is optimal for

estimating µ. In this assay, one may verify that c1 and d1 are both inside the

range [−3,−1.8]; in fact, −1.2 ≤ d1 − c1 ≤ 1.2. If it is known from prior ex-

perience that the location-shift parameter µ is approximately zero, we would

be interested in designs such that the design points on the test and standard

preparations are the same and that d1 − c1 = 0 approximately. Such designs
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are optimal or nearly optimal for estimating µ by Theorem 2.2.1. More-

over, as long as µ is inside the interval [−1.2, 1.2], any design that satisfies

d1−c1 = µ is c-optimal. If ρ �= 0 and µ exceeds the maximum possible values

of d1 − c1, the design problem will have to be specifically worked out. This

is a drawback of designs that lack invariance property under a linear change

of the design space. D-optimal designs have the invariance property and so

they can be constructed on any interval once the optimal design is worked

out on the interval [−1, 1].

We note that the information matrices for the optimal designs in Theo-

rem 2.2.3 are actually non-singular even though they have only two support

points. This is because under the given bivariate structure, both responses

were observed at two levels -1 and 1 of the dose variables x1 and x2 and the

common slope parameter for the parallel model can be estimated with in-

formation from both responses. The nonsingularity of the other information

matrices of the optimal designs could be similarly explained.

There are other design issues for the parallel line model not yet addressed

here. First, we focused only on symmetrical design spaces; occasionally a

non-symmetrical design space is used, see Kent-Jones and Meiklejohn [21] for

example. Second, we have assumed the variances of the responses from both

preparations are equal. If these variances are unequal, the locally optimal de-

signs found here may not apply. Moreover if the assumption of parallelism of

the two regression functions needs to be examined beforehand, the T-optimal

design criterion for discriminating between two rival multiresponse models

used in Ucinski and Bogacka [35] may also be considered. Although under
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our model, the results are relatively simple and therefore are not discussed

further here. Third, if the researcher is primarily interested to estimate µ

but would also like to have information for the remaining parameters, or con-

cerned with both discrimination of models and estimation at the same time,

multiple objective designs may be considered, see Cook and Wong [10] and

the many references in Wong [37] for more details. Finally, optimal designs

for estimating the relative potencies with more than two responses will be

discussed in the future.

2.4 Appendix

2.4.1 Proof of Theorem 2.2.5

The following Lemmas are needed for the proof of Theorem 2.2.5, which

deals with the case when the dual responses are negatively correlated and

µ is large in magnitude. It is helpful to recall from Theorem 2.2.4 that an

optimal design for estimating µ on X must satisfy c1 = −d1. Accordingly,

we focus on designs of the form, ξ = w1δ(−1,−1)+w2δ(−1,1)+w3δ(1,−1)+w1δ(1,1).

Lemma 2.4.1. Suppose model (2.1) holds, −1 < ρ < 0 and µ > 2. If the de-

sign ξ = w1δ(−1,−1)+w2δ(−1,1)+w3δ(1,−1)+w1δ(1,1) satisfies w2+w3 = α, where

α is a fixed constant, and 0 ≤ α < 2−2ρ
µ+µρ−4ρ

, the design ξ∗ = w1δ(−1,−1) +

αδ(−1,1) + w1δ(1,1) with w1 = (1 − α)/2 minimizes cTM(ξ)−1c.

Proof. Since α is fixed, we have d1 = α−2w3 and γ = 1−2α. The function
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h(d1, γ) in (2.9) can be rewritten as

h1(w3;α) = h(α− 2w3, 1 − 2α)

=
(µ− 2α + 4w3)

2

2 − 2ρ(1 − 2α) − 2(1 + ρ)(α− 2w3)2
. (2.10)

It is easy to verify that the derivative of h1(w3;α) is

ḣ1(w3;α)

=
2(µ+ 4w3 − 2α)(2 − αµ+ 2µw3 − 2ρ+ 4αρ− αµρ+ 2µw3ρ)

(−1 + α2 − 4αw3 + 4w2
3 + ρ− 2αρ+ α2ρ− 4αw3ρ+ 4w2

3ρ)
2

≥ 2(µ− 2α)(2 − αµ− 2ρ+ 4αρ− αµρ)

(−1 + α2 − 4αw3 + 4w2
3 + ρ− 2αρ+ α2ρ− 4αw3ρ+ 4w2

3ρ)
2

> 0 (2.11)

for 0 ≤ w3 ≤ α and 0 ≤ α < 2−2ρ
µ+µρ−4ρ

. Thus h1(w3;α) is increasing in [0, α]

and the minimum of h1(w3;α) occurs when w3 = 0.

Lemma 2.4.2. Suppose model (2.1) holds, −1 < ρ < 0 and µ > 2. Suppose

ξ = w1δ(−1,−1) + w2δ(−1,1) + w1δ(1,1) satisfies 0 ≤ w2 ≤ 2−2ρ
µ+µρ−4ρ

and w1 =

(1 − w2)/2.

(i) If 2 < µ ≤ 2−2/ρ, the design ξ∗ with w1 = µ−2
2(µ+µρ−2ρ)

and w2 = µρ−2ρ+2
µ+µρ−2ρ

minimizes c′M(ξ)−1c.

(ii) If µ > 2 − 2/ρ, the design ξ∗ with w1 = 1/2 and w2 = 0 minimizes

c′M(ξ)−1c.

Proof. Consider the design ξ = w1δ(−1,−1) +w2δ(−1,1) +w1δ(1,1) with d1 = w2

and γ = 1 − 2w2. The function h(d1, γ) in (2.9) becomes

h2(w2) = h(w2, 1 − 2w2)

=
(µ− 2w2)

2

2 − 2ρ(1 − 2w2) − 2(1 + ρ)w2
2

(2.12)
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and it is straightforward to verify that w∗
2 = µρ−2ρ+2

µ+µρ−2ρ
is a critical number

of h2(w2) in interval [0, 2−2ρ
µ+µρ−4ρ

] such that the second derivative ḧ2(w
∗
2) =

(µ−2ρ+µρ)4

(µ−2)(2+µ−2ρ+µρ)
is positive. The first part of the theorem is proved. The

second part of the theorem follows because when µ > 2− 2/ρ, the derivative

of h2(w2) is positive for all w2 ∈ [0, 2−2ρ
µ+µρ−4ρ

]. Therefore, w∗
2 = 0 minimizes

h2(w2).

Lemma 2.4.3. Suppose model (2.1) holds, −1 < ρ < 0 and µ > 2.

Suppose the design ξ = w1δ(−1,−1) + w2δ(−1,1) + w3δ(1,−1) + w1δ(1,1) satisfies

w2+w3 = α, α is a fixed constant and 2−2ρ
µ+µρ−4ρ

≤ α ≤ 1. Then the design ξ∗ =

w1δ(−1,−1) + (α − w∗
3)δ(−1,1) + w∗

3δ(1,−1) + w1δ(1,1) with w∗
3 = µ(1+ρ)α−4ρα−2+2ρ

2µ(1+ρ)

and w1 = (1 − α)/2 minimizes c′M(ξ)−1c.

Proof. Direct calculus shows that the restriction α > 2−2ρ
µ+µρ−4ρ

on the deriv-

ative of h1(w3;α) in (2.11) implies that

w∗
3 =

µ(1 + ρ)α − 4ρα− 2 + 2ρ

2µ(1 + ρ)

and satisfies ḣ1(w
∗
3;α) = 0 and

ḧ1(w
∗
3;α) =

4µ4(1 + ρ)2

(1 − ρ+ 2αρ)2(µ2 + 4ρ− 8αρ+ µ2ρ− 4)
> 0.

The lemma is proved.

Proof of Theorem 2.2.5 Consider µ > 2. By Lemmas 2.4.1 to 2.4.3,

we only need to show that h1(w
∗
3;α) in (2.10) and h2(w

∗
2) in (2.12) satisfy

h1(w
∗
3;α) > h2(w

∗
2) for all α in the range 2−2ρ

µ+µρ−4ρ
≤ α ≤ 1. Additional

22



2.4. APPENDIX

calculation shows that if 2 < µ ≤ 2 − 2/ρ,

h1(w
∗
3;α) − h2(w

∗
2)

=
−4 + µ2 + 4ρ− 8αρ+ µ2ρ

2(1 + ρ)(1 − ρ+ 2αρ)
− 1

2
(µ− 2)(2 + µ− 2ρ+ µρ)

> (µ− 2)ρ2(2 + µ− 2ρ+ µρ)/(2(1 − ρ2)) > 0,

and if µ > 2 − 2/ρ, we have

h1(w
∗
3;α) − h2(w

∗
2)

=
−4 + µ2 + 4ρ− 8αρ+ µ2ρ

2(1 + ρ)(1 − ρ+ 2αρ)
− µ2

2 − 2ρ

>
2(−µρ+ ρ− 1)

(1 − ρ)(1 + ρ)
> 0.

Hence inequality h1(w
∗
3;α) > h2(w

∗
2) holds for µ > 2. Thus parts (i) and

(ii) of the theorem are proved. The remaining parts of the theorem can be

proved analogously by considering the case when µ is less than −2.
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3

Minimax and Maximin

Efficient Designs for Estimating

the Location-shift Parameter of

Parallel Models with Dual

Response

In this chapter minimax designs and maximin efficient designs for estimating

the location-shift parameter of a parallel linear model with correlated dual

responses over a symmetric compact design region are derived. A compari-

son of the behavior of efficiencies between the minimax and maximin efficient

designs relative to locally optimal designs is also provided. Both minimax or

maximin efficient designs have advantage in terms of estimating efficiencies
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in different situations.

Key words and phrases: Bioassay; Efficiency; Equivalence theorem; Locally

optimal design; Location-shift parameter; Maximin efficient design; Minimax

design; Relative potency.

3.1 Introduction

Consider a bioassay experiment designed to estimate the relative potency of

a test preparation relative to a standard. By definition, the relative potency

is the amount of the standard equivalent of one effective unit. In a bioassay

experiment, suppose that a dose of a standard preparation is chosen and ad-

ministered to an experimental unit and the response y1 at this dose level, d,

is measured. In the bioassay, a commonly used function to describe the rela-

tion between the dose and the expected response is E(Y1|d) = θ0 + θ1 log(d).

The expected response for the test preparation is E(Y2|d) = θ0 + θ1 log(τd),

where τ , which represents the relative potency is unknown. Finney [17] and

Brown [4] have provided a more detailed description.

Let xi = log(di) ∈ Xi ⊂ R, i = 1, 2, be the dosage levels for the standard

and the test preparations on logarithmic scale respectively, the expected

responses can be expressed as

E(Y1|d1) = θ01 + θ1x1;

E(Y2|d2) = θ02 + θ1x2 = θ01 + θ1(x2 − µ), (3.1)

where µ = − log(τ) ∈ B ⊂ R denotes the location-shift parameter. In such
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a design, if all the responses are uncorrelated, we may assign a p1 proportion

of responses to the standard preparation and a p2 proportion to the test, in

which case, a design point is denoted by x, x ∈ X1 ∪X2. On the other hand,

if dual responses are observed from two preparations with different doses

d1 and d2, a design point is denoted by x = (x1, x2), x ∈ X1 × X2. If the

dual responses are correlated, then the covariance matrix between the dual

responses is denoted by Σ = Cov(Y1, Y2) = σ2((1 − ρ)I2 + ρJ2), where I2 is

the 2 × 2 identity matrix and J2 is a 2 × 2 matrix of one’s, and without loss

of generality, assume that σ2=1. Throughout, we assume that Xi = [−1, 1],

i = 1, 2 and the unknown parameter vector θ̃ = (θ01, θ02, θ1).

The form of the dose-response relationship assumed above has been dis-

cussed by Finney [17] and Gaines Das [18] with further discussions of the

statistical issues concerning the design and analysis of parallel line assays.

Huang et al. [20] discussed the situation where the design aspects under

the assumptions that the dual responses may be correlated, and provided

locally optimal designs for estimating the location-shift parameter µ. An op-

timal design is called ”locally optimal”, when some type of prior information

concerning the parameter values is needed for the design of an experiment.

Other types of design criterion such as the maximin efficient criterion has

been introduced by Müller [27], which put the robustness of the designs into

consideration to overcome the µ-dependence of the locally optimal design.

There has been some research related to minimax and maximin efficient de-

signs, see for example, Dette and Sahm [14], Dette and Biedermann [12] and

Dette and Melas [13], where their interest was mainly in nonlinear regression
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models with single response. In this work, closed form formulae for two types

of optimal designs are provided for estimating µ: the minimax design and

the maximin efficient design. The interesting point of this work is that both

minimax and maximin efficient designs do not depend on the specific value

of the correlation coefficient ρ, when ρ is positive, but they are highly de-

pendent on ρ, when ρ is negative. Even more, the maximin efficient designs

do not depend on the range of µ when the responses are uncorrelated or the

dual responses are positively correlated. The efficiency performances of the

two designs relative to the locally optimal design also appear in an attractive

manner.

In the next section, we introduce the definitions of the minimax and

maximin efficient designs, and the corresponding equivalence theorem. A

necessary and sufficient condition for the minimax design has been presented

by Fedorov [16] with only an indication of the proof. Wong [36] provided a

unified approach for the construction of minimax design. A modified general

equivalence theorem using a directional derivative approach can be found in

Müller and Pázman [28]. Sections 3.3 and 3.4 give the minimax and maximin

efficient designs for various ranges of possible values for the unknown para-

meter respectively. A comparison of the efficiencies between the two designs

is also provided in Section 3.4. Section 3.5 ends with discussion.

3.2 Preliminaries

A design measure ξ with finite support points on a compact design space

T is denoted by ξ =
∑m

i=1wiδti
, where δti

denotes the one-point measure
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on ti, each ti ∈ T is weighted wi > 0 and
∑m

i=1wi = 1. Let Ξ be the

set of all possible designs on T . When designs are chosen by the criterion,

Ψ(γ, ξ) : Γ×Ξ −→ R, which under circumstances depends on some parameter

γ, and if Ψ(γ, ξ) is a convex criterion for all γ ∈ Γ, then an optimal design

should minimize the maximum with respect to γ. The definition of a minimax

design is given below.

Definition 3.2.1 ξ∗ is a minimax design with respect to Ψ(γ, ξ) in Ξ if and

only if ξ∗ ∈ arg min{maxγ∈Γ Ψ(γ, ξ); ξ ∈ Ξ}.

As shown by Huang et al. [20], an optimal design for minimizing the

asymptotic variance of the estimate of the location-shift parameter µ in model

(3.1) depends on the unknown parameter µ, and only a locally optimal design

can be found. In this particular case, set

Ψ(µ, ξ) = c(µ)′M(ξ)−1c(µ) (3.2)

to be the asymptotic variance of the estimate of µ with c(µ) = (1,−1,−µ)′,

µ ∈ B. A minimax design minimizes the maximum of the asymptotic vari-

ance.

When the experimental responses are uncorrelated, that is ρ = 0, two dif-

ferent designs, ξ1 and ξ2, can be assigned to each response. In this case, design

ξ can be expressed as ξ = p1ξ1 + p2ξ2, where each pi > 0, and p1 + p2 = 1.

We measure information on θ̃ contained in ξ by its information matrix

M(ξ) = p1M1(ξ1) + p2M2(ξ2)

=




p1 0 p1c1

0 p2 p2d1

p1c1 p2d1 p1c2 + p2d2


 (3.3)
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where Mi(ξi) =
∫
Xi
fi(xi)fi(xi)

′dξi, i = 1, 2, f1(x1) = ( 1 0 x1 )′, f2(x2) =

( 0 1 x2 )′ and ci =
∫
X1
x1

idξ1, di =
∫
X2
x2

idξ2, i = 1, 2. The asymptotic

variance of the estimate of µ is

c(µ)′M(ξ)−1c(µ) =
1

p1

+
1

p2

+
(µ− (d1 − c1))

2

p1c2 + p2d2 − p1c12 − p2d1
2 . (3.4)

The responses from different preparations are observed in pairs for differ-

ent doses d1 and d2. The dual responses are then assumed to be correlated,

that is ρ �= 0. A design in this case is denoted by ξ =
∑m

i=1wiδxi
, xi ∈ X1×X2.

The information matrix of design ξ is M(ξ) =
∫
X1×X2

F (x)Σ−1F (x)′dξ, where

F (x) = ( I2 X )′, matrix X = ( x1 x2 )′. That is

M(ξ) =
1

1 − ρ2




1 −ρ c1 − ρd1

−ρ 1 d1 − ρc1

c1 − ρd1 d1 − ρc1 c2 + d2 − 2ργ


 ,

recall ci =
∫
X1×X2

x1
idξ, di =

∫
X1×X2

x2
idξ, i = 1, 2, and the variance of µ is

c(µ)′M(ξ)−1c(µ)

= 2(1 − ρ) +
(1 − ρ2)(µ− (d1 − c1))

2

c2 + d2 − 2ργ − c12 − d1
2 + 2c1d1ρ

. (3.5)

A straightforward extension of the equivalence theorem for minimax designs

in Müller and Pázman [28] is described below, when responses are observed

in pairs from model (3.1) with correlation coefficient ρ �= 0.

Theorem 3.2.1 Let M(ξ∗) be regular and

Λ = arg maxµ∈B c(µ)′M(ξ∗)−1c(µ)

be a finite set. If λ : Λ −→ [0, 1] with
∑

µ∈Λ λ(µ) = 1, and if

∑
µ∈Λ

λ(µ)
c(µ)′M(ξ∗)−1M(δx)M(ξ∗)−1c(µ)

c(µ)′M(ξ∗)−1c(µ)
≤ 1, (3.6)
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for all x = (x1, x2) ∈ X1 × X2, then ξ∗ is a minimax design in Ξ. The

converse is true if B is compact.

When ρ = 0, apply the inequality (3.6) with the asymptotic variance in

(3.4) and the information matrix in (3.3) for all x = x ∈ X1 ∪ X2.

An alternative concept to the minimax design is the maximin efficient de-

sign introduced by Müller [27]. This design maximizes the minimum relative

efficiency with respect to the locally optimal design.

Definition 3.2.2 Let ξ∗µ ∈ arg min{c(µ)′M(ξ)−1c(µ); ξ ∈ Ξ} denote the lo-

cally optimal design for µ ∈ B. The efficiency of design ξ relative to design

ξ∗µ is defined as Φ(µ, ξ) =
c(µ)′M(ξ∗µ)−1c(µ)

c(µ)′M(ξ)−1c(µ)
. Then a design measure η∗ is called

maximin efficient for µ in Ξ if and only if η∗ ∈ arg max{minµ∈B Φ(µ, ξ); ξ ∈

Ξ}.

In Definition 3.2.2, it can be seen that a maximin efficient design η∗ is

also minimax in terms of the weighted variances, (see Müller and Pázman

[28]), since

η∗ ∈ arg max{min
µ∈B

Φ(µ, ξ); ξ ∈ Ξ}

= arg min{max
µ∈B

Φ(µ, ξ)−1; ξ ∈ Ξ}

= arg min{max
µ∈B

c(µ)′M(ξ)−1c(µ)

c(µ)′M(ξ∗µ)−1c(µ)
; ξ ∈ Ξ}.

Denoting Υ(µ, ξ) = c(µ)′M(ξ)−1c(µ)
c(µ)′M(ξ∗µ)−1c(µ)

and knowing that it is an convex cri-

terion, by the equivalence theorem of minimax design presented by Müller

and Pázman [28] we obtain the equivalence theorem for ρ �= 0 described as

follows.
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Theorem 3.2.2 Let M(η∗) be regular and

Λ = arg maxµ∈B
c(µ)′TM(η∗)−1c(µ)

c(µ)′M(ξ∗µ)−1c(µ)

be a finite set. If λ : Λ −→ [0, 1] with
∑

µ∈Λ λ(µ) = 1, and if

∑
µ∈Λ

λ(µ)
c(µ)′M(η∗)−1M(δx)M(η∗)−1c(µ)

c(µ)′M(η∗)−1c(µ)
≤ 1, (3.7)

for all x = (x1, x2) ∈ X1 × X2, then η∗ is a maximin efficient design in Ξ.

The converse is true if B is compact.

When ρ = 0, the results may be obtained by applying the inequality (3.7)

with the asymptotic variance in (3.4) and the information matrix in (3.3) for

all x = x ∈ X1 ∪ X2.

3.3 Minimax designs

In this section we assume that the location-shift parameter µ is located on

interval [−b, b] or [0, b], b > 0. If prior experience cannot be used to indicate

the sign of µ clearly, then the symmetrical interval [−b, b] can be considered

for µ. The minimax designs are presented below for cases for µ ∈ [−b, b] or

[0, b] respectively.

Theorem 3.3.1 Suppose model (3.1) holds and µ ∈ [−b, b]. The design ξ∗

is a minimax design for µ if (i) ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2, ξ

∗
1 = ξ∗2 = 1

2
δ−1 + 1

2
δ1

provided ρ = 0; (ii) ξ∗ = 1
2
δ(−1,1) + 1

2
δ(1,−1) provided 0 < ρ < 1; (iii) ξ∗ =

1
2
δ(−1,−1) + 1

2
δ(1,1) provided −1 < ρ < 0.
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When µ ∈ [0, b], b > 0, the minimax designs described below are found

by first restricting attention to a subclass of designs and finding the designs

that minimize the largest upper bound for the variance of the estimate.

Theorem 3.3.2 Suppose model (3.1) holds with ρ = 0, µ ∈ [0, b] and ξ∗i is

a design supported on Xi, i = 1, 2. The design ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2 is a minimax

design for µ if (i) ξ∗1 = (1
2
+ b

8
)δ−1 +(1

2
− b

8
)δ1 and ξ∗2 = (1

2
− b

8
)δ−1 +(1

2
+ b

8
)δ1

provided 0 < b ≤ 2
√

2; (ii) ξ∗1 = (1
2
+ 1

b
)δ−1 +(1

2
− 1

b
)δ1 and ξ∗2 = (1

2
− 1

b
)δ−1 +

(1
2

+ 1
b
)δ1 provided b > 2

√
2.

The next two results concern correlated responses from the standard and

test preparations where ρ �= 0 and |ρ| < 1.

Theorem 3.3.3 Suppose model (3.1) holds with 0 < ρ < 1 and µ ∈ [0, b].

The design ξ∗ is a minimax design for µ if (i) ξ∗ = (1
2
+ b

8
)δ(−1,1)+(1

2
− b

8
)δ(1,−1)

provided 0 < b ≤ 2
√

2; (ii) ξ∗ = (1
2
+ 1
b
)δ(−1,1)+(1

2
−1
b
)δ(1,−1) provided b > 2

√
2.

Theorem 3.3.4 Suppose model (3.1) holds with −1 < ρ < 0 and µ ∈ [0, b].

The design ξ∗ = w1δ(−1,−1) +w2δ(−1,1) +w1δ(1,1) is a minimax design for µ if

(i) w1 = 1
2
− b

8
, w2 = b

4
provided 0 < b ≤ 3ρ+

√
8+ρ2

1+ρ
;

(ii) w1 = b−2
2b−4ρ+2bρ

, w2 = 2−2ρ+bρ
b−2ρ+bρ

provided
3ρ+

√
8+ρ2

1+ρ
< b ≤ 2 − 2

ρ
;

(iii) w1 = 1
2
, w2 = 0 provided b > 2 − 2

ρ
.

All the results described above are proved by similar arguments and there-

fore only the proof of Theorem 3.3.4 is provided and is deferred to the Ap-

pendix A.
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3.4 Maximin efficient designs

In this section, we investigate the maximin efficient designs and compare the

efficiencies with the minimax designs obtained in section 3.3. From Definition

3.2.2, it can easily be seen that a maximin efficient design η∗ satisfies

η∗ ∈ arg min{max
µ∈B

Φ(µ, ξ)−1},

therefore it is also minimax in terms of the weighted variances, i.e. the in-

verse of efficiencies with respect to the locally optimal design. Under various

conditions of ρ and b, the maximin efficient designs are derived and presented

as follows. For the corresponding locally optimal designs ξ∗µ under different

ρ and µ values, the values of Ψ(µ, ξ∗µ) as defined in (3.2) are listed in Table

3.1.

In the case of µ ∈ [−b, b], we obtain that the maximin efficient designs

are the same as the minimax designs.

Theorem 3.4.1 Suppose model (3.1) holds with µ ∈ [−b, b]. The designs ξ∗

in Theorem 3.3.1 are maximin efficient designs for µ.

When 0 < µ ≤ 2, Ψ(µ, ξ∗µ) is a constant equals to 4 provided ρ = 0 and to

2(1−ρ) provided ρ �= 0, therefore, the maximin efficient designs are the same

as the minimax design provided µ ∈ [0, b] and 0 < b ≤ 2. Those minimax

designs can be found in Theorems 3.3.2 to 3.3.4. When b > 2, the maximin

efficient designs are different from the minimax designs and are presented in

the following theorems.
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3.4. MAXIMIN EFFICIENT DESIGNS

Table 3.1: The values of Ψ(µ, ξ∗µ) = c(µ)′M(ξ∗µ)
−1c(µ) for the corresponding

locally optimal designs ξ∗µ under different ρ values

ρ µ Ψ(µ, ξ∗µ)

ρ = 0 |µ| ≤ 2 4

|µ| > 2 µ2

0 < ρ < 1 |µ| ≤ 2 2(1 − ρ)

|µ| > 2 (1 − ρ)µ2/2

−1 < ρ < 0 |µ| ≤ 2 2(1 − ρ)

2 < |µ| ≤ 2 − 2
ρ

(1 − ρ)(|µ| + |µ|ρ− 2ρ)2/2

|µ| > 2 − 2
ρ

(µ2 + µ2ρ+ 4 − 4ρ)/2

Theorem 3.4.2 Suppose model (3.1) holds with µ ∈ [0, b], b > 2. The design

η∗ is a maximin efficient design for µ if (i) η∗ = 1
2
η∗1 + 1

2
η∗2, η

∗
1 = 3

4
δ−1 + 1

4
δ1

and η∗2 = 1
4
δ−1 + 3

4
δ1 provided ρ = 0; (ii) η∗ = 3

4
δ(−1,1) + 1

4
δ(1,−1) provided

0 < ρ < 1.

When ρ ≥ 0 and b > 2, the maximin efficient designs are not dependent on

ρ and b. This property is invariant when −1 < ρ < 0 provided 2 < b ≤ 2− 2
ρ
.

Theorem 3.4.3 Suppose model (3.1) holds for −1 < ρ < 0 and µ ∈ [0, b].

The design η∗ = w1δ(−1,−1) +w2δ(−1,1) +w1δ(1,1) is a maximin efficient design

for µ if (i) w1 = 1
4
, w2 = 1

2
provided 2 < b ≤ 2− 2

ρ
; (ii) w1 = (b−2)2(1−ρ)

4(b2−2b+2bρ+4−4ρ)
,

w2 = 1 − 2w1 provided b > 2 − 2
ρ
.

34



3.5. DISCUSSIONS

The proof of Theorem 3.4.1 is provided and is deferred to the Appendix

B. The others are proved by similar arguments. Tables 3.2 and 3.3 display

the efficiencies of the minimax designs ξ∗ and the maximin efficient designs η∗

relative to locally optimal designs under various conditions. A comparison of

the behavior of the efficiencies between a minimax design ξ∗ and a maximin

efficient design η∗, where ρ = 0.2, and µ ∈ [0, 8] is shown, for example, in

Fig. 3.1. It is evident that the efficiencies of ξ∗ and η∗ are quite different.

The lower bound of the efficiencies of η∗ is higher than ξ∗ since the maximin

efficient criterion is to maximize the minimum efficiency. Nevertheless, the

efficiencies of ξ∗ are higher than η∗ and approximates to 1 when µ tends to

0 or b. From Tables 3.2 and 3.3 and Fig. 3.1, an experimenter may need to

decide which optimal criterion to use.

3.5 Discussions

Under a situation in which observations are made for the same subject with

k experimental periods, it is of interest to simultaneously estimate the cor-

responding relative potency for each period. We may then generalize the

parallel model for k responses, k ≥ 3. In this case, assume that the covari-

ance matrix of k responses is Σk = (1 − ρ)Ik + ρJk. The expected responses

for design points xk = (x1, · · · , xk)T ∈ X1 × · · · × Xk can be expressed as

E(Yi|xi) = θ0i + θ1xi = θ01 + θ1(xi − µi), i = 1, · · · , k,

where µ1 = 0, µi ∈ B, i = 2, · · · , k are the location-shift parameters for

each period. The information matrix for the unknown parameter vector θ̃k =
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Table 3.2: Efficiencies of the minimax design ξ∗ relative to the locally optimal

design for parameter µ provided µ ∈ [0, b] under different ρ values

ρ b µ efficiency of ξ∗

0 ≤ ρ < 1 0 < b ≤ 2
√

2 0 < µ ≤ 2 16−b2
4(µ2−bµ+4)

2 < µ ≤ b µ2(16−b2)
16(µ2−bµ+4)

b > 2
√

2 0 < µ ≤ 2 4(b2−4)
b(bµ2−8µ+4b)

2 < µ ≤ b µ2(b2−4)
b(bµ2−8µ+4b)

−1 < ρ < 0 0 < b <
3ρ+

√
8+ρ2

1+ρ
0 < µ ≤ 2 (4−b)(4+b−4ρ+bρ)

4(4−bµ+µ2−4ρ+2bρ−bµρ+µ2ρ)

2 < µ ≤ b (4−b)(4+b−4ρ+bρ)(µ−2ρ+µρ)2

16(4−bµ+µ2−4ρ+2bρ−bµρ+µ2ρ)

3ρ+
√

8+ρ2

1+ρ
< b ≤ 2 − 2/ρ 0 < µ ≤ 2 16p∗(1−p∗−p∗ρ)

8p∗(µ−2ρ+µρ)+(µ−2)2 (1+ρ)
†

2 < µ ≤ b 4p∗(1−p∗−p∗ρ)(µ−2ρ+µρ)2

8p∗(µ−2ρ+µρ)+(µ−2)2 (1+ρ)

b > 2 − 2/ρ 0 < µ ≤ 2 4(1−ρ)
4+µ2−4ρ+µ2ρ

2 < µ ≤ 2 − 2/ρ (1−ρ)(µ−2ρ+µρ)2

4+µ2−4ρ+µ2ρ

2 − 2/ρ < µ ≤ b 1

† p∗ = b−2
2b−4ρ+2bρ
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Table 3.3: Efficiencies of the maximin efficienct design η∗ relative to the

locally optimal design for parameter µ provided µ ∈ [0, b] under different ρ

values

ρ b µ efficiency of η∗

0 ≤ ρ < 1 0 < b ≤ 2 0 < µ ≤ 2 16−b2
4(µ2−bµ+4)

b > 2 0 < µ ≤ 2 3
3+(µ−1)2

2 < µ ≤ b 3µ2

12+4(µ−1)2

−1 < ρ < 0 0 < b < 2 0 < µ ≤ 2 (4−b)(4+b−4ρ+bρ)
4(4−bµ+µ2−4ρ+2bρ−bµρ+µ2ρ)

2 < b ≤ 2 − 2/ρ 0 < µ ≤ 2 1
1+(µ−1)2(1+ρ)/(3−ρ)

2 < µ ≤ b (µ−2ρ+µρ)2

4+4(µ−1)2(1+ρ)/(3−ρ)

b > 2 − 2/ρ 0 < µ ≤ 2 16w∗(1−w∗−w∗ρ)
(µ−2)2(1+ρ)+8w∗(µ−2ρ+µρ)

††

2 < µ ≤ 2 − 2/ρ 4w∗(1−w∗−w∗ρ)(µ−2ρ+µρ)2

(µ−2)2(1+ρ)+8w∗(µ−2ρ+µρ)

2 − 2/ρ < µ ≤ b 4w∗(1−w∗−w∗ρ)(4+µ2−4ρ+µ2ρ)
(1−ρ)((µ−2)2(1+ρ)+8w∗(µ−2ρ+µρ))

†† w∗ = (b−2)∗(1−ρ)
4(4−2b+b2−4ρ+2bρ)
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Figure 3.1: Plots of Φ(µ, ξ∗) versus Φ(µ, η∗) for ρ = 0.2 and µ ∈ [0, 8]

(θ01, · · · , θ0k, θ1) of design ξ becomes Mk(ξ) =
∫
X1×···×Xk

F (xk)Σ
−1
k F (xk)

Tdξ.

Take the mean dispersion of the estimates of the location-shift parameters

as the criterion

Ψ(u, ξ) = tr{C(u)′M(ξ)−1C(u)},

where matrix C(u) = (1k−1 − Ik−1 − u)T , 1k−1 is a (k − 1)-dimensional

vector of one’s and u = (µ2 · · · µk)T is the location-shift parameter vector.

Provided that ρ = 0 and µi ∈ [−b, b], b > 0, i = 2, · · · , k, the minimax design

ξ∗ assigns the same design with the same weights to the test preparation at

different periods, that is

ξ∗ =

√
k − 1 − 1

k − 2
ξ∗1 +

k∑
i=2

k − 1 −
√
k − 1

(k − 1)(k − 2)
ξ∗i ,

where ξ∗i = 1
2
δ−1+ 1

2
δ1, for each i. In the other cases, closed form formulae for

optimal designs are not easy to find. Wong [36] provided an approach for the

construction of minimax variance optimal designs. It would be interesting

to know how the optimal designs would behave. For example, when k = 3,
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ρ = 0 and µ1, µ2 ∈ [0, b], after some numerical computations it is found that

when 0 < b < 2.714, the minimax design is ξ∗ = (
√

2−1)ξ∗1 +
∑3

i=2(1−
√

2
2

)ξ∗i ,

where ξ∗1 = (1
2

+ b
8
)δ−1 + (1

2
− b

8
)δ1 and ξ∗2 = ξ∗3 = (1

2
− b

8
)δ−1 + (1

2
+ b

8
)δ1.

Compared with the minimax design for dual responses, the design for the

test preparation is simply replicated at later k − 1 periods. The number of

the periods and the endpoint of the range of µ will affect only the weighting

at its support points.

In this work, it is noteworthy that one of the characteristics of these op-

timal designs is that with a positive ρ, the optimal designs are supported

on points (−1, 1) and (1,−1) and with a negative ρ, the design points are

(−1,−1) and (1, 1) and (−1, 1). It seems when the two responses are posi-

tively correlated, the optimal designs choose end points with opposite signs,

and vice versa for responses with a negative correlation.

Lastly, it is observed that the minimax and maximin efficient designs are

invariant with scale changes on the design regions Xi, i = 1, 2 and the range

of µ simultaneously, that is, if Xi, i = 1, 2 is extended to [−a, a] and the range

of µ is [−ab, ab] or [0, ab], then the optimal designs are invariant, except the

design points are changed to the corresponding new vertices.

3.6 Appendix

3.6.1 Proof of Theorem 3.3.4

To recall from Huang et al. [20] that when −1 < ρ < 0, an optimal design for

estimating µ must satisfy c1 = −d1. Accordingly, we focus on designs of the
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form, ξ = w1δ(−1,−1)+w2δ(−1,1)+w3δ(1,−1)+w1δ(1,1). The asymptotic variance

in (3.5) becomes Ψ(µ, ξ) = 2(1−ρ)+ (1−ρ2)(µ−2d1)2

2−2ργ−2d21(1+ρ)
, where γ =

∫
X1×X2

x1x2dξ.

To find the minimax design, the process is divided into two parts.

Part (I) Consider B = [0, b], 0 < b ≤ 4.

(1) Let ξ ∈ Ξ1 = {ξ| b
4
≤ d1 ≤ 1}, we have

arg max
µ∈B

Ψ(µ, ξ) = {0}.

The design ξ∗1 = (1
2
− b

8
)δ(−1,−1)+

b
4
δ(−1,1)+(1

2
− b

8
)δ(1,1) is a minimax

design in Ξ1 with Ψ(µ, ξ∗1) = 16(1−ρ)(2−2ρ+bρ)
(4−b)(4+b−4ρ+bρ)

.

(2) Let ξ ∈ Ξ2 = {ξ| − 1 < d1 ≤ b
4
}, we have

arg max
µ∈B

Ψ(µ, ξ) = {b}.

(i) if 0 < b ≤ 3ρ+
√

8+ρ2

1+ρ
, the design

ξ∗2 = (
1

2
− b

8
)δ(−1,−1) +

ii

4
δ(−1,1) + (

1

2
− b

8
)δ(1,1)

is a minimax design in Ξ2 with

Ψ(µ, ξ∗2) =
16(1 − ρ)(2 − 2ρ+ bρ)

(4 − b)(4 + b− 4ρ+ bρ)
;

(b) if
3ρ+

√
8+ρ2

1+ρ
< b ≤ 4, the design

ξ∗3 =
b− 2

2b− 4ρ+ 2bρ
δ(−1,−1) +

2 − 2ρ+ bρ

b− 2ρ+ bρ
δ(−1,1)

+
b− 2

2b− 4ρ+ 2bρ
δ(1,1)

is a minimax design in Ξ2 with Ψ(µ, ξ∗3) = 1
2
(1−ρ)(b−2ρ+bρ)2.

40



3.6. APPENDIX

We observe from the above that when
3ρ+

√
8+ρ2

1+ρ
< b ≤ 4, Ψ(µ, ξ∗3) is

less than Ψ(µ, ξ∗1). It follows that ξ∗1 is a minimax design in Ξ provided

0 < b ≤ 3ρ+
√

8+ρ2

1+ρ
and ξ∗3 is a minimax design in Ξ provided

3ρ+
√

8+ρ2

1+ρ
<

b ≤ 4.

Part (II) Consider B = [0, b], b > 4. The minimax designs can be found by

using the similar technic as in part (I). We have arg maxµ∈B Ψ(µ, ξ) =

{b}.

(1) if 4 < b ≤ 2− 2
ρ
, the design ξ∗3 = b−2

2b−4ρ+2bρ
δ(−1,−1) + 2−2ρ+bρ

b−2ρ+bρ
δ(−1,1) +

b−2
2b−4ρ+2bρ

δ(1,1) is a minimax design in Ξ;

(2) if b > 2− 2
ρ
, the design ξ∗4 = 1

2
δ(−1,−1) + 1

2
δ(1,1) is a minimax design

in Ξ with Ψ(µ, ξ∗4) = 1
2
(4 + b2 − 4ρ+ b2ρ).

Combining the results in Part (I) and (II), we obtain the minimax de-

signs described in theorem 3.3.4. This candidate design can be verified

to be the minimax design through equivalence theorem 4.1, as shown

in the following. If 0 < b ≤ 3ρ+
√

8+ρ2

1+ρ
, we have Λ = {0, b}. Take

λ(b) = 2(4−4ρ+bρ)
(4−b)(4+b−4ρ+bρ)

and λ(0) = 1 − λ(b),

∑
µ∈Λ

λ(µ)
c(µ)′M(ξ∗)−1M(e(x1,x2))M(ξ∗)−1c(µ)

Ψ(µ, ξ∗)

=
1

((4 − b)(4 + b− 4ρ+ bρ)(2 − 2ρ+ bρ))
·

(32 − 4b2 + b2x2
1 + b2x2

2 − 64ρ+ 32bρ− b3ρ+ 2b2x1ρ

+b2x2
1ρ− 2b2x2ρ− 2b2x1x2ρ+ b2x2

2ρ+ 32ρ2 − 32bρ2

+12b2ρ2 − b3ρ2 + 2b2x1ρ
2 − 2b2x2ρ

2 − 2b2x1x2ρ
2)
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≤ 32 − 2b2 − 64ρ+ 32bρ− b3ρ+ 32ρ2 − 32bρ2 + 10b2ρ− b3ρ2

(4 − b)(4 + b− 4ρ+ bρ)(2 − 2ρ+ bρ)

= 1,

∀ (x1, x2) ∈ X1×X2. The others results are proved by similar arguments

and are omitted here.

3.6.2 Proof of Theorem 3.4.1

Throughout, we denote that IA(µ) = 1, if µ ∈ A and IA(µ) = 0, if µ /∈ A,

and verify the candidate designs to be maximin efficient through inequality

(3.7).

(1) Consider ρ = 0,

i) if b < 2, then Ψ(µ, ξ∗µ) = 4 is a constant and

η∗ ∈ arg min{max
µ∈B

Υ(µ, ξ); ξ ∈ Ξ}

= arg min{max
µ∈B

Ψ(µ, ξ)

4
; ξ ∈ Ξ}

= arg min{max
µ∈B

Ψ(µ, ξ); ξ ∈ Ξ}

which implies a minimax design is a maximin efficient design for

µ ∈ [−b, b], b < 2.

ii) if b > 2, the minimax design is ξ∗ = 1
2
ξ∗1 + 1

2
ξ∗2, with ξ∗1 = ξ∗2 =

1
2
δ−1 + 1

2
δ1, we obtain that Ψ(µ, ξ∗) = µ2 + 4, then

Υ(µ, ξ∗) = (µ2 + 4)(
1

4
I{|µ|≤2}(µ) +

1

µ2
I{|µ|>2}(µ)),

and Λ = {−2, 2}.

Consider the one-point measures δx1 with x1 ∈ X1 on the first
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regression of the parallel model, it yields that

c(µ)′M(ξ∗)−1M(δx1)M(ξ∗)−1c(µ)

= ((1,−1,−µ)M(ξ∗)−1(1, 0, x1)
T )2

= (µx1 − 2)2.

Take λ(−2) = λ(2) = 1
2
, then

∑
µ∈Λ

λ(µ)
c(µ)′M(ξ∗)−1M(δx1)M(ξ∗)−1c(µ)

c(µ)TM(ξ∗)−1c(µ)

=
1

2

(2x1 + 2)2 + (2x1 − 2)2

(22 + 4)
≤ 1,

∀x1 ∈ X1. Similar result can be obtained when the one-point

measures δx2 with x2 ∈ X2 on the second regression of the parallel

model is taken. The desired result follows.

(2) Consider 0 < ρ < 1,

i) if b ≤ 2, then Ψ(µ, ξ∗µ) = 2(1 − ρ) is a constant which implies a

minimax design is a maximin efficient design for µ ∈ [−b, b], b < 2,

as in (1)(i) of the proof of Theorem 3.4.1.

ii) if b > 2, the minimax design is ξ∗ = 1
2
δ(−1,1) + 1

2
δ(1,−1), we obtain

that Ψ(µ, ξ∗) = (1 − ρ)(2 + µ2/2), and

Υ(µ, ξ∗) = (1 − ρ)(2 + µ2/2){ 1

2(1 − ρ)
I{|µ|≤2}(µ)

+
1

(1 − ρ)µ2/2
I{|µ|>2}(µ)},
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and Λ = {−2, 2}. Take λ(−2) = λ(2) = 1
2
, then

∑
µ∈Λ

λ(µ)
c(µ)′M(ξ∗)−1M(δ(x1,x2))M(ξ∗)−1c(µ)

c(µ)TM(ξ∗)−1c(µ)

=
(1 − ρ)(x2

1 + x2
2 − 2ρx1x2 + 2ρ+ 2)/(1 + ρ)

(1 − ρ)(2 + 22/2)
≤ 1,

∀(x1, x2) ∈ X1 × X2. Hence, ξ∗ is maximin efficient.

(3) Consider −1 < ρ < 0, the minimax design is ξ∗ = 1
2
δ(−1,−1) + 1

2
δ(1,1), we

obtain that Ψ(µ, ξ∗) = 2(1 − ρ) + (1 + ρ)µ2/2, and

Υ(µ, ξ∗) = [2(1 − ρ) + (1 + ρ)µ2/2]{ 1

2(1 − ρ)
I{|µ|≤2}(µ)

+
1

(1 − ρ)(|µ| − 2ρ+ |µ|ρ)2/2
I{2<|µ|≤2−2/ρ}(µ)

+
1

2(1 − ρ) + (1 + ρ)µ2/2
I|µ|>2−2/ρ(µ)}.

(i) If b ≤ 2, ξ∗ is maximin efficient.

(ii) If b > 2, then Λ = {−2, 2}. Taking λ(−2) = λ(2) = 1
2
, we obtain

that

∑
µ∈Λ

λ(µ)
c(µ)′M(ξ∗)−1M(δ(x1,x2))M(ξ∗)−1c(µ)

c(µ)TM(ξ∗)−1c(µ)

=
2 + x2

1 + x2
2 − 4ρ+ x2

1ρ− 2x1x2ρ+ x2
2ρ+ 2ρ2 − 2x1x2ρ

2

4(1 − ρ)

≤ 1.

Inequality (3.7) holds ∀(x1, x2) ∈ X1 × X2. Hence, ξ∗ is maximin

efficient.
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4

Optimal Designs for

Calibrations in

Multiresponse-univariate

Regression Models

This chapter considers a linear regression model with a one-dimensional con-

trol variable x and an m-dimensional response variable y = (y1, · · · , ym).

The components of y are correlated with a known covariance matrix. The

calibration problem discussed here is based on the assumed regression model.

This is of interest to obtain a suitable estimation of the corresponding x for

a given target T = (T1, · · · , Tm) on the expected responses. Due to the fact

that there is more than one target value to be achieved in the multiresponse

case, the m expected responses may meet their target values at different re-
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spective control values. Consideration includes the deviation of the expected

response E(yi) from its corresponding target value Ti for each component

and defines the optimal value of calibration point x, say x0, to be the one

which minimizes the weighted sum of squares of such deviations within the

range of x. The objective of this study is to find a locally optimal design

for estimating x0, which minimizes the mean square error of the difference

between x0 and its estimator. It shows the optimality criterion is equivalent

to a c-criterion under certain conditions and explicit solutions with dual re-

sponses under linear and quadratic polynomial regressions are obtained.

Key words and phrases: c-criterion, classical estimator, equivalence theorem,

locally optimal design, multivariate calibration, prediction, scalar optimal

design.

4.1 Introduction

In this work, optimal designs for calibration in multiresponse models are in-

vestigated. The calibration problem has a long history receiving significant

attention in statistics and other scientific disciplines (particularly in ana-

lytical chemistry). Both the design and analysis aspects of the calibration

problem are of interest to experimenters and statisticians. But before stating

our objectives toward finding optimal designs for calibration in multiresponse

models, we first review the design problem for calibration in a single response

experiment with simple linear regression model.
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Consider an experiment with simple linear regression model,

E(Y ) = β0 + β1x,

if n pairs of observations (xi, yi), i = 1, 2, · · · , n, are obtained, the objective

of calibration is to estimate the corresponding control value x0 to achieve a

given target value T . There are two estimators for estimating x0, the classical

estimator Xc and the inverse estimator XI defined respectively as

Xc = (T − b0)/b1,

where b0 and b1 are the least square estimators of β0 and β1 respectively, and

XI = c+ dT,

where d = [
∑n

i=1(xi − x̄)(yi − ȳ)]/[
∑n

i=1(yi − ȳ)2] and c = x̄− dȳ.

Ott and Myers [29], along with providing corresponding design problems,

have discussed the estimation of the independent variable in a regression

situation for a measured value of the dependent variable. Krutchkoff [24]

and Shukla [31] have compared the efficiencies of the classical and inverse

estimators based on the mean square errors (MSE). Berkson [3] has given an

expression for MSE when n is very large and showed that in some situations

the asymptotic MSE of the classical estimator is smaller than the inverse

estimator. Buonaccorsi [6] has examined the effects of the choice of designs

on calibration in a simple linear regression model again. Barlow, Mensing

and Smiriga [2] have computed the optimal Bayes design for a calibration

model. Bai and Huang [1] have discussed a consistent estimator for locating

the maximizer of a non-parametric regression function.
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Beside the single response calibration problem, the multiresponse calibra-

tion problem also arises in many applications. In Brown [5] the problem of

calibration making inferences about an unknown explanatory variable from a

single random observed response vector has been discussed. An example for

determining the viscosity of the paint samples by using two measurements on

certain optical properties of the samples have been described. In Chang et al.

[9] a real example concerning production of the shadow mask which affects

the quality of screen image in a monitor or TV set is described, where one of

the criteria to determine the fitness of a produced mask depends on whether

two response variables, the size of the hole and the depth of the hole, meet

the target values. It is of interest to find the optimal setting of the line speed,

the input variable x. We therefore investigate in general the calibration de-

sign problems for multiresponse-univariate polynomial regression models in

this work.

In the next section, we introduce scalar optimal design for multiresponse

linear regression model. In Section 4.3, by using the classical estimator, the

optimal designs for calibrations in various models with dual responses and

with uncorrelated or correlated responses are presented respectively. An ex-

ample has been given in Section 4.4 for illustration of how to obtain the

optimal designs by the related theorems. Section 4.5 concludes with discus-

sions.
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4.2 Scalar optimal design for multiresponse

linear regression model

4.2.1 Preliminaries

Consider a linear regression model with a one-dimensional control variable

x and an m-dimensional response variable Y(x) = (Y1(x), · · · , Ym(x)). With

X = [a, b] being the design space, we consider the following setting:

E[Yi(x)] =

d∑
j=0

βij x
j , 1 ≤ i ≤ m, (4.1)

where βij , i = 1, 2, · · · , m, j = 0, 1, · · · , d, are unknown parameters. Let Σ

be the covariance matrix of Y(x), β be the parameter vector,

β = (β ′
1, β

′
2, . . . , β

′
m)′ with β ′

i = (βi0, βi1, . . . , βid),

and b be the Gauss-Markov estimator of β. Let c = (c′1, c
′
2, · · · , c′m)′ denote a

coefficient vector with c′i = (ci0, · · · , , cid), i = 1, 2, · · · , m. A design problem

for an arbitrary linear function of the regression coefficients, c′β, is to find

a design on X which minimizes the variance of c′b, the design is called a

scalar optimal design or c-optimal design.

Let ξ =
∑n

k=1 pkδtk be a design that the measurements are taken at point

tk ∈ X with weight pk > 0, k = 1, 2, · · · , n and
∑n

k=1 pk = 1. Some notations

for model (4.1) under design ξ are established in the following:

Let Im be the m-dimensional identity matrix and

X = Im ⊗ f(x) with f(x) = ( 1, x, · · · , xd )′ , (4.2)
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where Im ⊗ f(x) denotes the right direct product of Im with f(x). The

information matrix of b under design ξ is expressed as

M(ξ) =

∫
X
XΣ−1X ′dξ. (4.3)

Let A(x) be the information matrix of a one-point measure δx. From

the equivalence theorem for scalar optimality in Pukelsheim ([30], p.52), it

is known that a design ξ∗ is c-optimal if and only if

Ψ(x) =
c′M(ξ∗)−1A(x)M(ξ∗)−1c

c′M(ξ∗)−1c
≤ 1, ∀x ∈ X ,

and Ψ(x) attains the maximum value 1 at each support point of ξ∗. For

any dth-degree polynomial regression model, the corresponding Ψ(x) is a

polynomial of order 2d. Therefore, for a c-optimal design, there may be at

most d+ 1 points which may achieve the maximum value of Ψ(x) including

the two endpoints on design space X (See e.g. Figure 4.1). Hence from now

on we will consider designs with exactly d+1 support points and denote the

support vector as t = (t1, t2, · · · , td+1), where −1 = t1 < t2 < · · · < td+1 = 1.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 4.1: Dependence of Ψ(x) on x for a c-optimal design of a polynomial

regression model of degree 3.
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The following technique for finding a c-optimal design is due to Fedorov

[15], p.146. Let F (t) be a square matrix of order d+ 1,

F (t) = ( f(t1) f(t2) · · · f(td+1) ) , (4.4)

and Fk(x) be a square matrix obtained from F (t) by deleting the kth column

f(tk) and replacing it by f(x). Then define the kth Lagrange interpolation

polynomial lk(x) with respect to nodes t1, t2, · · · , td+1 by

lk(x) =
|Fk(x)|
|F (t)| =

d+1∏
i=1
i�=k

x− ti
tk − ti

, k = 1, 2, · · · , d+ 1.

It follows that the power basis 1, x, · · · , xd is related to the basis l1(x), l2(x), · · · ,

ld+1(x) and satisfies f(x) = F (t)l(x), where l(x) = (l1(x), l2(x), · · · , ld+1(x))
′.

Then matrix X in (4.2) can be expressed as

X = Im ⊗ (F (t)l(x))

= (Im ⊗ F (t))(Im ⊗ l(x)) = FI(t)(Im ⊗ l(x)),

where FI(t) = Im ⊗ F (t).

4.2.2 Scalar optimal design

(1) Scalar optimal design with uncorrelated responses

If the m responses are uncorrelated with equal variance, assuming that Σ =

Im, then the information matrix in (4.3) turns to

M(ξ) =

∫
X
XX ′dξ = FI(t)[

∫
X
(Im ⊗ l(x))(Im ⊗ l(x)′)dξ]FI(t)′

= FI(t)(Im ⊗ P (ξ))FI(t)
′, (4.5)
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where P (ξ) =
∫
X l(x)l(x)

′dξ = diag(p1, p2, · · · , pd+1), is a diagonal matrix

with diagonal entries pk, k = 1, 2, · · · , d+ 1.

The variance of c′b under design ξ can be easily computed by using (4.5),

Var(c′b) = c′M(ξ)−1c = tr(M(ξ)−1cc′)

= tr([Im ⊗ P (ξ)−1][FI(t)
−1cc′(FI(t)′)−1])

where tr denotes the trace of the matrix. Since the m responses are uncorre-

lated, we may divide the variance into m subvariances, so the variance takes

the following form

Var(c′b) =
m∑
i=1

tr(P (ξ)−1F (t)−1cic
′
i(F (t)′)−1))

=
m∑
i=1

d+1∑
k=1

(F−1
[k] (t)ci)

2

pk
=

d+1∑
k=1

hk(t)

pk
,

where F−1
[k] (t) is the kth row of F (t)−1 and hk(t) =

∑m
i=1(F

−1
[k] (t)ci)

2.

The variance is minimized when pk = λ
√
hk(t), λ is a constant such that∑d+1

k=1 pk = 1. Then, a design ξ∗ is c-optimal if its support vector t∗ satisfies

t∗ ∈ arg min
t∈X d+1

d+1∑
k=1

√
hk(t) (4.6)

and the corresponding weights are

p∗k =

√
hk(t∗)∑d+1

k=1

√
hk(t∗)

, k = 1, 2, · · · , d+ 1.

This nicely exhibits that the weights depend on the support t∗, then the

optimal design problem is reduced to that of finding the optimal support

vector t∗.
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(2) Scalar optimal design with correlated responses

If them responses are correlated with covariance matrix Σ which is symmetric

positive definite, then there exists a symmetric positive definite matrix V of

rank m such that V 2 = Σ or denotes as V = Σ
1
2 . Let X̃ = XV −1, then we

may rewrite XΣ−1X ′ to the form X̃X̃ ′ and obtain that

X̃ = (Im ⊗ F (t))(Im ⊗ l(x))(V −1 ⊗ 1)

= (V −1 ⊗ F (t))(Im ⊗ l(x))

= FΣ(t)(Im ⊗ l(x))

where FΣ(t) = V −1 ⊗ F (t). A similar procedure as in subsection 4.2.2 (1)

yields

Var(c′b) = tr((Im ⊗ P (ξ)−1)(FΣ(t)−1cc′(FΣ(t)′)−1))

=
m∑
i=1

d+1∑
k=1

eik(t)

pk
=

d+1∑
k=1

h̃k(t)

pk
(4.7)

where eik(t) is the [(d+1)(i−1)+k]th diagonal element of FΣ(t)−1cc′(FΣ(t)′)−1

and h̃k(t) =
∑m

i=1 eik(t). The scalar optimal design is reduced in a similar

way as in the uncorrelated case.

4.3 Optimal designs for calibrations

The calibration problem discussed here is based on the assumed regression

model (4.1). It is of interest to find a suitable estimation of the corresponding

control value x for a given target T = (T1, · · · , Tm) on the expected responses.

Due to the fact that there is more than one target value to be achieved in the
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multiresponse case, and each response may meet its target value at different

control values, we therefore consider the deviation of the expected response

E(Yi(x)) from its corresponding target value Ti for each component and

define the optimal value of calibration point, say x0, to be the one which

minimizes the weighted sum of squares of such deviations within the range

of x. More explicitly, with wi > 0 and
∑m

i=1wi = 1, let

ψ(x) =

m∑
i=1

wi[E(Yi(x)) − Ti]
2,

then

x0 ∈ arg min
x∈X

ψ(x).

The weights wi
,s are chosen in a manner to reflect the impact of the deviation,

the technique, the price, or other considerations about the experiments.

The objective of this study is to find an optimal calibration design ξ∗,

which minimizes the MSE on the difference between x0 and its estimator x̂0.

That is, if Ξ is the set of all feasible designs on X then

ξ∗ ∈ arg min
ξ∈Ξ

E(x̂0 − x0)
2.

In the following, we will focus on dual responses regression models. We

assume that each target value is in the range of the corresponding regres-

sion function. If this is not the case, the outerpolation is used to find the

corresponding control value. If the optimal control value x0 is outside of the

design region then the closest endpoint to x0 is considered as the estimator

of x0.
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4.3.1 Simple linear regression model

(1) The optimal control value x0

Consider an experiment performed at an x ∈ X , assumed that the two re-

sponse variables are both with simple linear regression model,


E(Y1(x)) = β10 + β11x;

E(Y2(x)) = β20 + β21x.
(4.8)

Let si ∈ X denote the value such that

E(Yi(si)) = Ti = βi0 + βi1si, i = 1, 2, (4.9)

then

ψ(x) =

2∑
i=1

wi[βi1(x− si)]
2 =

2∑
i=1

wiβ
2
i1(x− si)

2

= (w1β
2
11 + w2β

2
21)[r(x− s1)

2 + (1 − r)(x− s2)
2], (4.10)

where r = w1β
2
11/(w1β

2
11 + w2β

2
21). It is clear that x0 is the vertex of the

parabola in (4.10), that is

x0 = φ(β) = rs1 + (1 − r)s2.

(2) The coefficient vector c
ββ,T

To estimate x0, we use the Gauss-Markov estimator x̂0 = φ(b). Using the

Taylor theorem and letting φ̇β = ∂
∂ββ
φ(β), the approximation of the corre-

sponding MSE under design ξ can be expressed as

E(x̂0 − x0)
2 ≈ φ̇′

βM(ξ)−1φ̇β = c′
β,T
M(ξ)−1c

β,T
,
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where c
β,T

= φ̇β = ( c′
β1,T

, c′
β2,T

)′ with

c′
β1,T

= φ̇′
β1

= (− r
β11

− r
β11

[(2r − 1)s1 + (2 − 2r)s2] ) , (4.11)

c′
β2,T

= φ̇′
β2

= (−1−r
β21

−1−r
β21

[2rs1 + (1 − 2r)s2] ) . (4.12)

See e.g. Silvey [32], p.57.

Note that s1, s2 depend on T1, T2 according to the formula (4.9). Since

vector c
β,T

contains the unknown parameter vector β, therefore, the optimal

design obtained in the following is also called a locally c-optimal design.

The problem of choosing a design minimizing the MSE has now turned to

find a scalar optimal design.

(3) The optimal calibration design

From the property of a scalar optimal design, it holds that for the linear

regression model (4.8) the support vector of an optimal design is t∗ = (−1, 1).

As defined in (4.4), we obtain

F (t∗) =

(
1 1

−1 1

)
and F (t∗)−1 =

( 1
2

−1
2

1
2

1
2

)
. (4.13)

Following from subsection 4.2.2 (1), we have the following Theorem.

Theorem 4.3.1 Consider the linear regression model (4.8) with Σ = I2, for

the given target expected response value T = (T1, T2), the optimal calibration

design is ξ∗ = p∗1δ−1 + p∗2δ1, with p∗k =
√
hk(t∗)/(

∑2
k=1

√
hk(t∗)), where

hk(t
∗) =

∑2
i=1(F

−1
[k] (t∗)c

ββi,T
)2, c

ββi,T
is as in (4.11) and (4.12), and F−1

[k] (t∗)

is the kth row of F (t∗)−1 in (4.13) with t∗ = (−1, 1), i, k = 1, 2.
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If the responses are correlated, let Λ = diag(λ1, λ2), where λi, i = 1, 2,

are the eigenvalues of Σ, and let Q be the orthogonal matrix consisting of

the corresponding eigenvectors such that Σ = QΛQ′, then take matrix

V = [vij ]2×2 = Σ
1
2 = QΛ

1
2Q′. (4.14)

Recalling formula (4.7) of Section 4.2.2(2), we have

FΣ(t)−1c
ββ,T

= (V ⊗ F (t)−1)

(
c

ββ1,T

c
ββ2,T

)

= (

(
v11 v12

v21 v22

)
⊗
( 1

2
1
2

−1
2

1
2

)
)

(
c

ββ1,T

c
ββ2,T

)
,

and obtain that h̃k(t) =
∑2

i=1(F
−1
[k] (t)ui)

2 with ui = vi1cββ1,T
+ vi2cββ2,T

. Then

the optimal calibration design with correlated responses is obtained by re-

placing hk(t) in Theorem 4.3.1 with h̃k(t).

4.3.2 Quadratic regression model

In this subsection we consider the calibration problem of quadratic regression

model, 


E(Y1(x)) = β10 + β11x+ β12x
2;

E(Y2(x)) = β20 + β21x+ β22x
2.

(4.15)

Through this section, for convenience, we assume that βi2 > 0, i = 1, 2.

That is geometrically, the two parabolas are concave up with corresponding

minimum point qi = −βi1/(2βi2), i = 1, 2, respectively. The other cases are

dealt in a same manner.
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(1) The optimal control value x0

For the quadratic model (4.15), it is possible that within X there may be

more than one control value which may attain the same target value in each

response. We therefore divide the discussions into three cases to find out the

location of x0 in order to decide the coefficient vector c.

Case 1: q1, q2 /∈ X .

If this is the case, then both of the regression functions are one-to-one

over the entire design interval X . Each function will assign the target value

Ti to the unique control value si in X which satisfies

E(Yi(si)) = Ti = βi0 + βi1si + βi2s
2
i , i = 1, 2.

The optimal control value x0 becomes

x0 ∈ arg min
x∈X

ψ(x) = arg min
x∈X

{
2∑
i=1

wi[βi1(x− si) + βi2(x
2 − s2

i )]
2}.

Since ψ is a polynomial in x, the minimum point x0 must be either a

critical point of ψ or an endpoint of X . If x0 is a critical point, then there

exists a number r ∈ (0, 1) which can be expressed as a function of β such

that

x0 = rs1 + (1 − r)s2,

which is illustrated in a more detail in Appendix A.

Case 2: q1 /∈ X and q2 ∈ X .
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In this case, the first quadratic function is one-to-one over X and will

assign the target value T1 to the unique control value s1. As for the second

function, assume that q2 ∈ (0, 1), we have the following two situations.

(i) If E(Y2(q2)) < T2 ≤ E(Y2(1)), then the function may assign T2 to two

different control values s2 and s̃2 which satisfy E(Y2(s)) = T2, s = s2, s̃2

(see e.g. Figure 4.2). Setting Φ = {1,−1, s1, s2, s̃2, q2}, if the minimum

point x0 is a critical point of ψ, then x0 will be located between two

points x̃1, x̃2 in Φ, which is illustrated in more details in Appendix B.

Similarly as in Case 1, we can find a number r ∈ (0, 1) expressed as a

function of ββ such that

x0 = rx̃1 + (1 − r)x̃2, x̃1, x̃2 ∈ Φ.

(ii) If E(Y2(1)) < T2 ≤ E(Y2(−1)) or T2 = E(Y2(q2)) then the function

will assign T2 to one control value s2 (see e.g. Figure 4.3). In a sim-

ilar manner as in (i), we have x0 = rx̃1 + (1 − r)x̃2, x̃1, x̃2 ∈ Φ =

{1,−1, s1, s2, q2}.

-1 1

T2

s�2 s2

T1

s1q2

Figure 4.2: The quadratic func-

tion assigns T2 to s2 and s̃2.

-1 1

T2

s2

T1

s1q2

Figure 4.3: The quadratic func-

tion assigns T2 to s2.
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Case 3: q1, q2 ∈ X .

Similarly, the ith regression function may assign Ti to one or two con-

trol values si and s̃i, i = 1, 2. Then x0 = rx̃1 + (1 − r)x̃2, x̃1, x̃2 ∈ Φ =

{1,−1, s1, s̃1, s2, s̃2, q1, q2}.

(2) The coefficient vector c
ββ,T

By the results obtained in subsection 4.3.2(1), let

φ(β) = x0 = rx̃1 + (1 − r)x̃2, x̃1, x̃2 ∈ Φ,

and φ(b) is used to estimate x0. Then the corresponding c vector for esti-

mating x0 can be expressed as c
β,T

= ( c′
β1,T

, c′
β2,T

)′, with c
βi,T

= φ̇βi
, i = 1, 2.

Though the explicit formula for x0 is not easy to find, but when x0 is a crit-

ical point then ψ̇(x0) = ψ̇(x)|x=x0 = 0 defines x0 implicitly as a function of

β. Using implicit differentiation,

φ̇βi
=
∂x0

∂βi
= −∂ψ̇(x0)

∂βi
/
∂ψ̇(x0)

∂x0
, (4.16)

c
β,T

can be obtained and is provided in Appendix C.

(3) The optimal calibration design

For a quadratic regression model, an optimal calibration design is with sup-

port vector t∗ = (−1, t∗2, 1). Now we have to determine the point t∗2.

It follows from (4.4),

F (t) =




1 1 1

−1 t2 1

1 t22 1



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4.3. OPTIMAL DESIGNS FOR CALIBRATIONS

and

F (t)−1 =
1

2(1 − t22)




t2 − t22 t22 − 1 1 − t2

2 0 −2

−t22 − t2 1 − t22 1 + t2


 , (4.17)

we obtain the following result from subsection 4.2.2(1).

Theorem 4.3.2 Consider the quadratic regression model (4.15) with Σ =

I2, for the given target expected response value T = (T1, T2), the optimal

calibration design is ξ∗ = p∗1δ−1 + p∗2δt∗2 + p∗3δ1, where

t∗2 ∈ arg min
t2∈(−1,1)

3∑
k=1

√
hk(t),

with hk(t) =
∑2

i=1(F
−1
[k] (t)c

ββi,T
)2, c

ββi,T
, i = 1, 2, is defined as in (4.16) and

F−1
[k] (t) is the kth row of F (t)−1 in (4.17), and p∗k =

√
hk(t∗)/(

∑3
k=1

√
hk(t∗)),

k = 1, 2, 3.

If the responses are correlated, the optimal calibration design is obtained

by replacing hk(t
∗) in Theorem 4.3.2 with h̃k(t

∗) =
∑2

i=1(F
−1
[k] (t∗)ui)2, where

ui = vi1cββ1,T
+ vi2cββ2,T

, and vij , i, j = 1, 2, are defined as in (4.14).

A special case of Theorem 4.3.2 is when the targets T1 and T2 are the

extreme values of the corresponding regression models, the points of ex-

tremum are si = −βi1/(2βi2), i = 1, 2. We obtain x0 = rs1 + (1 − r)s2 with

r = (1 + 3

√
w2β2

22

w1β2
12

)−1, w1 is the corresponding weight for achieving the first

target value. A similar procedure will lead to the optimal design.

Corollary 1 Consider the dual responses quadratic regression model (4.15).

Let the target expected response value Ti = βi0 − β2
i1/(4βi2), i = 1, 2, be the
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extreme values of the two regression function respectively, then the optimal

calibration design is c-optimal with scalar vector c
ββ,T

= ( c′
ββ1,T

c′
ββ2,T

)′, where

c′
ββ1,T

= ( 0 r
2β12

r
β12

(2
3
(1 − r)(s2 − s1) + s1) ) ,

c′
ββ2,T

= ( 0 1−r
2β22

1−r
β22

(2
3
r(s1 − s2) + s2) ) ,

and si = −βi1/(2βi2), i = 1, 2.

4.4 An example

In this section an example discussed in Brown [5] is used to illustrate the

procedure to exhibit the optimal calibration design of the multiresponse-

univariate regression model. In this example, x is a scalar representing the

viscosity of the paint samples, x ∈ X = [−1, 1]. The response y = (y1, y2)

is a bivariate observation vector consisting of two measurements on certain

optical properties of the samples: y1 is the spectrometer measurements of

incident light and y2 is the peak-height on a recording goniophotometer. We

apply data from Brown [5] to be our prior information for choosing optimal

calibration design in investigation. The sample covariance matrix for the

dual responses is

S =

(
0.01 −0.02

−0.02 1.51

)
and V = S

1
2 =

(
0.10 −0.02

−0.02 1.23

)
.

The correlation coefficient of the dual responses is ρ = −0.16. To standardize

the variation of the two responses, we choose w1 = 1
σ11
/( 1

σ11
+ 1

σ22
) = 0.99

and w2 = 1 − w1 = 0.01.

62



4.4. AN EXAMPLE

(1) Simple linear regression model

Following the procedure as in Brown [5], a linear regression model is fitted

first. Then for a given target T = (1.74, 39.31), it can be seen that following

the procedure discussed in subsection 4.3.1, we have

(i) x0 = φ(β) = rs1 + (1 − r)s2,

where r =
0.99β2

11

0.99β2
11+0.01β2

21
, s1 = 1.74−β10

β11
and s2 = 39.31−β20

β21
.

(ii) Applying the prior data β = (1.75,−0.13, 37.94,−1.69)′ to formula

(4.11) and (4.12), we obtain that

c
β,T

= (2.84,−2.96, 0.37,−0.06)′.

(iii) By formulas extended from Theorem 4.3.2 for correlated responses,

u1 = 0.10

(
2.84

−2.96

)
− 0.02

(
0.37

−0.06

)
=

(
0.28

−0.29

)
,

u2 =

(
0.40

−0.01

)
;

h̃1(t) =
2∑
i=1

(F−1
[1] (t)ui)

2 =
2∑
i=1

(( 1
2

−1
2
)ui)

2 = 0.12,

h̃2(t) = 0.04

This yields p∗1 =
√

0.12/(
√

0.12 +
√

0.04) = 0.63. Thus, the optimal

calibration design for target T = (1.74, 39.31) is ξ∗ = 0.63δ−1 + 0.37δ1.

Figure 4.4 is a plot of the posterior optimal weight p∗1 of design point

−1 as a function of T1 and T2. Note that the design concentrates mass at

high viscosity while the target values are both achieved at high viscosity,
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the converse is true, too. Figure 4.5 presents the efficiencies of the uniform

design ξu with the least design points, ξu = 1
2
δ−1+ 1

2
δ1, relative to the optimal

calibration design, where the efficiency is defined as

efficiency of design ξµ =
cT

β,T
M(ξ∗)−1c

β,T

cT
β,T
M(ξu)−1c

β,T

.

Note that the efficiency approaches to 1 while the viscosities of the two

targets are contrary, since in this situation an optimal calibration design

would distribute the supports approximately as an uniform design. Mean-

while, the closer to the endpoint −1 or 1 of the two viscosities are, the less

efficient the uniform design is.

1.65
1.7

1.75
1.8

1.85
T1

37

38

39

T2
0

0.2
0.4
0.6
0.8

p1
�

.65
1.7

1.75
1.8

1 8
T1

Figure 4.4: Plot of weight p∗1 with

respect to T1 and T2.

1.65
1.7

1.75
1.8

1.85
T1

37

38

39

T2

0.6

0.8

1

eff.

.65
1.7

1.75
1.8

1 8
T1

Figure 4.5: Plot of efficiency of

design ξu = 1
2
δ−1 + 1

2
δ1 relative to

the optimal calibration design.

(2) Quadratic regression model

The quadratic regression model is considered secondly as in Brown [5], the

optimal design for the same target T = (1.74, 39.31) is obtained as follows.
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(i) From the prior data β = (1.78,−0.13,−0.05, 38.61,−1.69,−1.01)′, we

obtain the following prior information on the two curves(
q1 q2 s1 s2 s̃2

−1.30 −0.83 0.28 −0.75 −0.92

)
.

The optimal control value is x0 = −0.07, which is located between s1

and s2, hence we may express it as x0 = 0.86s1 + 0.14s2.

(ii) Applying the prior data β to formulas derived in subsection 3.2.2, we

obtain the coefficient vector

c
β,T

= (4.41,−1.35, 0.15, 1.82,−1.07, 0.87)′.

(iii) Substituting c
β,T

into formulas h̃k(t) for quadratic model and setting

t = (−1, t2, 1), we get t∗2 = −0.02. After evaluating the correspond-

ing weight of design points by formulas extended from Theorem 4.3.2

for correlated responses, we obtain the optimal calibration design ξ∗ =

0.18δ−1 + 0.68δ−0.02 + 0.14δ1 for the given T.

Figures 4.6 to 4.9 are plots of the optimal design point t∗2 and optimal

weights p∗1, p
∗
2 and p∗3 as functions of target values T1 and T2 respectively. In

view of the geometric shape of those plots, the ridge and the valley occur

while the viscosities of the two targets are close, in that case, the optimal

designs concentrate the mass near the similar viscosity targets. Figure 4.10

gives efficiencies of the uniform design ξu = 1
3
δ−1 + 1

3
δ0 + 1

3
δ1 relative to

the optimal calibration design, the uniform design is less efficient than the
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optimal calibration design especially when the target optical values are at

closer viscosities.

Other than presenting results for quadratic model with two parabolas

with both apexes up, the case that the quadratic model with one with an

apex up and one with an apex down is also studied. The plots of the cor-

responding results are presented in Figure 4.11 to 4.15, which are similar to

Figure 4.6 to 4.10, but the ridge rotates about 90 degrees.

(3) Linear-quadratic regression model

In Brown [5], a null hypothesis for testing β12 = 0 was accepted, which

means there is no quadratic association between y1 and x. This has generated

a situation with linear and quadratic regressions for the dual responses. The

model is presented as follows:


E(Y1(x)) = β10 + β11x;

E(Y2(x)) = β20 + β21x+ β22x
2.

(4.18)

When the two regression functions are of different orders which makes it

difficult to separate the support points and their weights as in (4.7). The

method introduced above does not apply in this case, as we would need to

solve three unknown values t∗2, p
∗
1 and p∗2 simultaneously. At the moment,

following the procedure provided in previous section, we use computation

algorithm in Mathematica to find the optimal calibration design, which is

somewhat complicated. The optimal design for target T = (1.74, 39.31) is

ξ∗ = 0.31δ−1 + 0.68δ0.06 + 0.01δ1. The efficiency of the optimal design for

66



4.4. AN EXAMPLE

Quadratic model: β12 < 0, β22 < 0, ρ = −0.16

T1

T2
-0.5

0

0.5t2
�

T1

Figure 4.6: Plot of design point t∗2

corresponding to T1 and T2.

T1

T2
0

0.05
0.1

0.15
p1
�
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Figure 4.7: Plot of weight p∗1 cor-

responding to T1 and T2.
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1
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Figure 4.8: Plot of weight p∗2 cor-

responding to T1 and T2.
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0.4p3
�

T1

Figure 4.9: Plot of weight p∗3 cor-

responding to T1 and T2.
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0.4
0.5
0.6eff.
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Figure 4.10: Plots of efficiency of

design ξu = 1
3
δ−1 + 1

3
δ0 + 1

3
δ1 rela-

tive to the optimal calibration de-

sign.
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Quadratic model: β12 < 0, β22 > 0, ρ = −0.16

T1
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-0.5

0

0.5t2
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Figure 4.11: Plot of design point

t∗2 corresponding to T1 and T2.
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Figure 4.12: Plot of weight p∗1 cor-

responding to T1 and T2.

T1

T2
0.4
0.6
0.8
1

p2
�

T1

Figure 4.13: Plot of weight p∗2 cor-

responding to T1 and T2.
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Figure 4.14: Plot of weight p∗3 cor-

responding to T1 and T2.
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Figure 4.15: Plots of efficiency of

design ξu = 1
3
δ−1 + 1

3
δ0 + 1

3
δ1 rela-

tive to the optimal calibration de-

sign.
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quadratic model in (4.15) relative to the optimal design for linear-quadratic

model in (4.18) is 0.86.

4.5 Discussions

In this work, it is noteworthy that when the target control values s1 and s2 are

nearby, these optimal calibration designs are suggesting the experimenters to

take a higher proportion of the observations under the experimental condi-

tions that are near the target control values. The prior information used

for finding the optimal calibration designs is very helpful for increasing the

efficiency of the design while comparing to a uniform design. Krafft and

Schaefer [23] has shown that under rather mild assumptions the D-optimal

designs for a multiresponse-univariate linear regression model do not depend

on the covariance matrix of response variables. In this work, it is observed

that the level of the correlation of the dual responses does make some differ-

ences on the corresponding optimal calibration design. In Table 4.1, it shows

that the optimal designs concentrate more mass on design point t∗2 when the

two responses are positively correlated. Meanwhile, the efficiencies of the

uniform design ξµ and the optimal calibration design ξ∗0 with uncorrelated

responses relative to the optimal calibration design ξ∗ρ with correlation coef-

ficient ρ under quadratic model for target T = (1.74, 39.31) are presented.

In the last column of Table 4.1, it shows that the correlation of the dual

responses can not be neglected when the two responses are highly correlated;

but if the dual responses are more uncorrelated, then the optimal design for

uncorrelated responses can be considered. To simplify the expressions we
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Table 4.1: The efficiencies of designs ξµ and ξ∗0 relate to the corresponding

optimal calibration designs ξ∗ρ = p∗1δ−1 + p∗2δt∗2 + p∗3δ1 under quadratic models

with correlation coefficient ρ for target T = (1.74, 39.31).

ρ p∗1 p∗2 p∗3 t∗2 Efficiencies of the Efficiencies of

uniform design ξu design ξ∗0

-0.90 0.35 0.39 0.26 0.09 0.97 0.63

-0.60 0.25 0.56 0.19 0.01 0.80 0.89

-0.30 0.20 0.65 0.15 -0.01 0.68 0.97

0.00 0.16 0.72 0.12 -0.03 0.60 1

0.30 0.13 0.77 0.10 -0.04 0.53 0.98

0.60 0.09 0.84 0.07 -0.05 0.47 0.93

0.90 0.05 0.91 0.04 -0.06 0.40 0.83

have discussed the case with design interval X = [−1, 1]. It is observed that

the optimal designs are not invariant with scale changes on the design inter-

val, but the theoretical result remains invariant except changing support t

for a new scale.

There are other design issues for the polynomial regression models not

yet addressed here. First, we have found the optimal design for calibra-

tions on models with response functions up to the same order; occasionally a

multiresponse polynomial model with unequal orders is used, see Chang [9]

for example. The advantage of the procedure in finding the scalar optimal

design in Section 2 is that the optimal weights may be obtained once the

support points are determined which simplifies the problem significantly. If
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the orders of the model are unequal, the information matrix M(ξ) fails to

factor into two parts, matrix of design points and matrix of weights sepa-

rately. The computation of finding optimal calibration designs becomes an

ill specified problem. We therefore need an efficient algorithm to find the

numerical solution.

Second, the optimal calibration designs presented here are only locally

optimal, since the prior information concerning the model and the corre-

sponding parameter values are needed for the design of an experiment and

different targets deduce different optimal designs. If we have to calibrate

more than one target simultaneously, some kind of robust design may be

helpful to overcome the target-dependence of the calibration optimal design.

Third, we focus only on models with one-dimensional control variable;

sometimes a multiresponse-multivariate design is used, see Brown [5] for

example. Moreover if the regression function is nonlinear, computational

methods for constructing optimal designs would be needed. All these design

issues for calibrations will be discussed in the future.

4.6 Appendix

4.6.1 The optimal control value for q1, q2 /∈ X

Let mi(x) = βi1 + 2βi2x, be the derivative of the ith quadratic function in

(4.15) with respect to x, i = 1, 2. Note that

ψ(x) =
2∑
i=1

wi(x− si)
2[βi1 + βi2(x+ si)]

2
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=

2∑
i=1

1

4
wi(x− si)

2(mi(x) +mi(si))
2,

then the derivative of ψ(x) with respect to x is

ψ̇(x) =
2∑
i=1

1

2
wi{(x− si)(mi(x) +mi(si))

2 (4.19)

+ 2βi2(x− si)
2(mi(x) +mi(si))}

=
2∑
i=1

wi(x− si)(mi(x) +mi(si))mi(x). (4.20)

Since the two regression functions are assumed to be monotonic on X ,

hence (mi(x) + mi(s1))mi(x) > 0, ∀x ∈ X , i = 1, 2. Thus ψ̇(x) = 0 holds

only when x is between s1 and s2. If x0 is a critical point, then we can find

a number r ∈ (0, 1) expressed as a function of β such that x0 = rs1+(1−r)s2.

4.6.2 The optimal control value for q1 /∈ X and q2 ∈ X

Since q1 /∈ X , it follows [m1(x) + m1(s1)]m1(x) > 0, ∀x ∈ X . Recalling

from (4.20) and letting ψ̇2(x) = (x−s2)(m2(x)+m2(s2))m2(x), the equation

ψ̇(x) = 0 holds only when x− s1 and ψ̇2(x) have opposite signs.

Setting s2 > s̃2, we obtain the sign analysis of ψ̇2(x) in Table 4.2. It yields

ψ̇2(x) < 0 if −1 < x < s̃2 or q2 < x < s2, and on the contrary ψ̇2(x) > 0 if

s̃2 < x < q2 or s2 < x < 1. Thus, the critical points x0 will be either in the

set

[s1, 1] ∩ ([−1, s̃2] ∪ [q2, s2])

or

[−1, s1] ∩ ([s̃2, q2] ∪ [s2, 1]).
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Table 4.2: The sign analysis of ψ̇2(x)

Interval (x− s2)[m2(x) +m2(s2)]m2(x) ψ̇2(x)

−1 < x < s̃2 (−)(−)(−) −

s̃2 < x < q2 (−)(+)(−) +

q2 < x < s2 (−)(+)(+) −

s2 < x < 1 (+)(+)(+) +

We conclude that x0 ∈ (x̃1, x̃2), x̃1, x̃2 ∈ Φ, (x̃1, x̃2) is the smallest interval

contains x0.

4.6.3 The coefficient vector

The derivative φ̇βi
= ∂x0

∂βi
= −∂ψ̇(x0)

∂βi
/∂ψ̇(x0)

∂x0
, i = 1, 2, in (4.16) can be obtained

after computation of the following derivatives.

∂ψ̇(x0)

∂βi0
= 2wimi(x0),

∂ψ̇(x0)

∂βi1
= 2wi(x0mi(x0) + E(Yi(x0)) − Ti),

∂ψ̇(x0)

∂βi2
= 2wi(x

2
0mi(x0) + 2x0(E(Yi(x0)) − Ti)),

∂ψ̇(x0)

∂x0

=
2∑
i=1

2wi(m
2
i (x0) + 2βi2(E(Yi(x0)) − Ti)).
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