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摘要 

 

    近來有些研究報告顯示生理資料具有長相關和自我相似的特性。此二特性可

分別用長相關參數 d 和自我相關係數 H 量化來表示。Peng（1995）藉由分類

所得到的心律資料進行分析，研究具有致命病變者其長相關係數的特性。分數布

朗運動（Fractional Brownian Motion，簡稱 FBM）和分數差分ARMA（Fractional 

ARIMA，簡稱 FARIMA）是兩個著名具有自我相似特性的隨機過程，我們有興趣了

解自我相似過程，是否適用於對心率的資料建模，以用來了解病人的健康狀況。

本文利用 Jones 和 Shen（2004）所提出的嵌入分歧過程（Embedded Branching 

Process，簡稱 EBP）方法估計參數 H，以及利用自我相似過程最適度檢定，對

模擬的 FBM 和 FARIMA 過程做檢定，來討論其適用性，並進一步修訂此檢定量

之分佈。最後，針對模擬的 FARIMA 過程和從高雄榮總醫院得到的心率資料，比

較不同估計方法求得的參數 H。 

 

 

關鍵字：自我相似過程、Hurst 參數、嵌入分歧過程、 R/S 方法、趨勢波動分析

方法、分數差分 ARMA、 I（d）過程、分數布朗運動 
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Abstract

Recently there have been reports that certain physiological data seem to have

the properties of long-range correlation and self-similarity. These two properties

can be characterized by a long-range dependent parameter d, as well as a self-

similar parameter H. In Peng et al (1995), the alteration of long-range corre-

lations with life-threatening pathologies are studied by analyzing the heart rate

data of different groups of subjects. The self-similarity properties of two well-

known processes, namely the Fractional Brownian Motion (FBM) and the Fractional

ARIMA (FARIMA), are of interest to see if it is suitable to be used to model the

heart rate data in order to examine the health conditions of some patients. The

Embedded Branching Process (EBP) method for estimating parameter H and a

goodness of fit test for examining the self-similarity of a process based on the EBP

method are proposed in Jones and Shen (2004). In this work, the performance

of the goodness of fit test are examined using simulated data from the FBM and

FARIMA processes. A modification of the distribution of the test statistics under

null hypothesis is proposed and has been modified to be more appropriate. Some

simulation comparisons of different estimation methods of the parameter H for some

FARIMA processes are also presented and applied to heart rate data obtained from

Kaohsiung Veterans General Hospital.

Keywords: self-similar process, Hurst parameter, Embedded Branching Process

(EBP), R/S method, Detrended Fluctuation Analysis (DFA), Fractional ARIMA

(FARIMA), I(d) process, Fractional Brownian Motion (FBM).
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] and Ĥ = 0.905822. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 15 : Histogram for R/S values of the Nile River data with k = 10, 20,

..., 300, and t = 0, 50, ..., 50[N−k
50

]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 16 : DFA plot for Nile River data with n = [100.7], [100.8],...,[102.5]. . . . . . .44

v



1. Introduction

Recently there have been reports that certain physiological data seem to have

the properties of long-range correlation and self-similarity characterized by a long-

range dependent parameter d and a self-similar parameter H respectively. In Beran

(1994), a nice description about self-similarity has been given, where it is described

that a geometric shape is called self-similar if the same geometric structures are

observed, independently of the distance from which one looks at the shape. In Bate

(1996), it has been explained in another way that while considering a superbly ac-

curate map of the coast line of Great Britain, if we use a zoom facility to set the

scale of magnification we might observe that, no matter what scale we chose, the

observed images would appear similar. In Figure 1, an example with self-similar

structure taken from physionet is exhibited.

In Kolmogorov (1941), self-similar processes were introduced in theoretical con-

text. At that time, statisticians did not seem to be aware of the existence or statisti-

cal relevance of such processes until ”self-similar” was first explained in statistics by

Mandelbrot et al. (1969a, b, c). In Feder (1988), it has mentioned that Hurst first

applied scale invariant techniques to time-series data when he studied the water level

of the Nile River. Leland et al. (1994) established in a statistically rigorous manner

the self-similarity characteristic of Ethernet traces. They illustrated some of the

most striking differences between self-similar models and the standard models for

packet traffic considered in the literature. This phenomena is due to the traces being

self-similar in nature, which implies that they also exhibit long range dependency

(LRD). But, the Poisson, ARMA and Markov processes are unable to exhibit LRD.

Now, self-similarity has been observed in time series obtained from network traffic,

high-frequency finance, electroencephalograph and electrocardiograph traces, wind

and rainfall patterns, etc..

This work is structured as follows. Self-similarity properties of two well-known

processes, namely the Fractional Brownian Motion (FBM) and the Fractional ARIMA

(FARIMA), are introduced in Section 2. The Embedded Branching Process (EBP)

or Crossing Tree method for estimating the Hurst parameter is described in Section

3. The goodness of fit test based on the EBP method for examining a self-similar

process is discussed and a modification of the goodness of fit test is proposed in

Section 4. Some statistical analysis results of the simulated data and heart rate

data are presented in Section 5. Some conclusion remarks are given in Section 6.
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Figure 1: Self-similar structure. (This figure is excerpted from Physionet.)

2. Self-similar processes

In this section, first we introduce definitions of stationary increments, indepen-

dent increment, and self-similarity. Next are the properties of stationary increment

of self-similar processes. In the last part of this section, two processes with self-

similar properties are presented, namely the FBM and the FARIMA. For more

details about the theory of self-similarity see Beran (1994).

First, we introduce three definitions as follows:

Definition 1 : stationary increments

If for any k time points t1, . . . , tk and for any k ≥ 1, the distribution of (Yt1+c −
Yt1+c−1, . . . , Ytk+c − Ytk+c−1) does not depend on c ∈ R, then we can say that the

process {Yt, t > 0} has stationary increments.

Definition 2 : independent increments

If for any k time points t1, . . . , tk and for any k ≥ 1, Yt1 − Yt0 , . . . , Ytk − Ytk−1
are in-

dependent, then we can say that the process {Yt, t > 0} has independent increments.

Definition 3 : self-similarity

A stochastic process {Yt, t > 0} is defined as self-similar process iff

Yt
d
= a−HYat for all a > 0 and t > 0, (1)

where the Hurst index H is a measure of the relative rates of space and time scaling

present in such a process, and
d
= denotes equal in distribution.

According to Definition 3, {Yt, t > 0} is a self-similar process if for any posi-

tive scalar a, the rescaled process, a−HYat, is equal in distribution to the original

process {Yt, t > 0}. This means that, for any sequence of time points t1, . . . , tk,

and any positive constant a, a−H(Yat1 , Yat2 , . . . , Yatk) has the same distribution as

2



(Yt1 , Yt2 , . . . , Ytk). Thus, typical sample paths of a self-similar process look qualita-

tively the same, irrespective of the distance from which we look at them.

2.1. Properties of stationary increment of self-similar processes

For the purpose of illustration, we summarize some of the useful results on the

properties of stationary increment of self-similar processes from Beran (1994).

Suppose that Yt is a self-similar process with self-similarity parameter H. To

simplify notation, assume E(Yt) = 0 and a of the equation (1) is equal to t−1, i.e.

Yt
d
= tHY1. If H = 0, then Yt is equal to Y1 for all t > 0. The trivial case where

Yt is a constant almost surely for every t, i.e. Yt is not stationary unless H = 0 is

excluded in the work. For the purpose of modeling data that look stationary, we

only consider self-similar process with stationary increments. If H < 0, Yt is not a

measurable process.

Hence, in the following, consider a self-similar process {Yt, t > 0} with stationary

increment Xt, H > 0 and Y0 = 0 with probability 1 in particular. The variance of

the increment process Xt = Yt − Yt−1 is denoted by

σ2 = E[X2
t ]− (E[Xt])

2 = E[(Yt − Yt−1)
2] = E[(Y1 − Y0)

2] = E[Y 2
1 ].

Then for s < t,

E[(Yt − Ys)
2] = E[(Yt−s − Y0)

2] = E[Y 2
t−s] = E[(t− s)2HY 2

1 ]

= (t− s)2HE[Y 2
1 ] = σ2(t− s)2H .

On the other hand,

E[(Yt − Ys)
2] = E[Y 2

t ] + E[Y 2
s ]− 2E[YtYs] = σ2t2H + σ2s2H − 2γy(t, s),

where γy(t, s) = Cov(t, s) is the covariance function of Yt. Hence,

γy(t, s) =
1

2
σ2[t2H − (t− s)2H + s2H ]. (2)

The covariance between Xt and Xt+k is equal to

γ(k) = Cov(Xt, Xt+k) = Cov(X1, Xk+1)

=
1

2
σ2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
for k ≥ 0. (3)

3



The correlation are given by

ρ(k) =
1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
for k ≥ 0. (4)

Now, we consider the different cases of H:

1. For 0 < H < 1/2, the correlations are summable, i.e.

∞∑

k=−∞
ρ(k) = 0.

The process {Xt, t > 0} has short-range dependence.

2. For H = 1/2, all correlations are equal to zero, i.e. the process {Xt, t > 0} are

uncorrelated.

3. For 1/2 < H < 1, this means that the correlations decay to zero so slowly that

∞∑

k=−∞
ρ(k) = ∞.

The process {Xt, t > 0} has long memory or long-range dependence.

4. For H = 1, all correlations are equal to 1, i.e. no matter how far apart in time

the observations are.

5. For H > 1, ρ(k) diverges to infinity. This contradicts that ρ(k) must be between

−1 and 1. (see Appendix B.1.)

Finally, it can be seen that if covariances exist and limk→∞ ρ(k) = 0, then

0 < H < 1.

2.2. Processes with self-similar properties

There are two important processes with self-similar properties illustrated in this

part, namely the Fractional Brownian Motion (FBM) and the Gaussian Fractional

ARIMA (FARIMA) or Gaussian ARFIMA.
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2.2.1. Brownian Motion and Fractional Brownian Motion

Let B(t) be a stochastic process with continuous sample paths and satisfies

(i) B(t) is Gaussian,

(ii) B(0) = 0 almost surely,

(iii) B(t) has independent increments,

(iv) E[B(t)−B(s)] = 0, and

(v) Var[B(t)−B(s)] = σ2(t− s) for s < t.

Then B(t) is called (standard) Brownian motion.

In fact, Brownian motion B(t) is self-similar with H = 1/2. It can also be shown

that for all a > 0, {a−1/2B(at)} is also a Brownian motion. Note that as B(t) is a

Gaussian process, the distribution of the process is fully specified by the mean and

covariances. From (ii) and (iv) we have

E[B(at)] = E[B(at)−B(0)] = 0 = a
1
2 E[B(t)].

Consider the covariance Cov(B(t), B(s)) for t > s. Because B(t) − B(s) is

independent of B(s)−B(0) = B(s), we can write

Cov(B(t), B(s)) = E[B(t)B(s)] = E[(B(t)−B(s))(B(s)−B(0)) + B2(s)]

= E[B2(s)] = Var(B(s)−B(0)) = σ2s.

Therefore, for any a > 0

Cov(B(at), B(as)) = E[a1/2(B(t)− E(B(t))) · a1/2(B(s)− E(B(s)))] = a · Cov(B(t), B(s))

= aσ2s = Cov(a1/2B(t), a1/2B(s)).

In Section 2.1., we know that if Yt is a self-similar process with stationary incre-

ments and suppose that E[Y 2
1 ] < ∞. Then

E[YtYs] =
1

2
[t2H − (t− s)2H + s2H ]E[Y 2

1 ] for s < t.

Let 0 < H ≤ 1. A Gaussian process {BH(t), t ≥ 0} is called fractional Browian motion

if E[BH(t)] = 0 and

E[BH(t)BH(s)] =
1

2
[t2H − (t− s)2H + s2H ]E[BH(1)2] for s < t.

Hence, for H = 1/2, the self-similar process B 1
2
(t) turns out to be ordinary

Brownian motion. One of the important properties of the FBM is its exact self-

similarity. In Figure 2, simulated series of fractional Brownian motion with

H = 0.5, H = 0.7, and H = 0.9 are presented.
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Figure 2: Simulated series of fractional Brownian motion with H = 0.5, H = 0.7,

and H = 0.9.

2.2.2. Gaussian Fractional ARIMA (FARIMA)

A Gaussian FARIMA(p, d, q) process with φ(B) and θ(B) respectively being the

autoregressive and the moving average coefficients and together with the white noise

is defined by

φ(B)(1−B)dXi = θ(B)εi, i ≥ 1,

where B is the backward operator, Bεi = εi−1, and the εt are independent, identically

distributed Gaussian random variables with mean zero and variance σ2 i.e. εi ∼
WN(0, σ2) and

φ(B) = 1− φ1B − · · · − φpB
p,

θ(B) = 1− θ1B − · · · − θqB
q.

For fractional d we interpret (1− B)−d by using formal power series expansion,

as follows:

(1−B)−d =
∞∑
i=0

Γ(i + d)

Γ(d)Γ(i + 1)
Bi, i = 1, 2, . . . ,

where Γ denotes the gamma function. The auto-covariance function of this process

satisfies, for −1/2 < d < 1/2,

γ(h) ∼ Cdh
2d−1 as h →∞,
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where Cd = π−1Γ(1− 2d) sin πd.

A FARIMA process is a symptotically self-similar process. A FARIMA(0, d, 0) is

a special case of FARIMA(p, d, q) processes and it is also called a I(d) process. The

difference between a FARIMA and an ARIMA lies in d of FARIMA is a fraction

and d of ARIMA is an integer.

Figure 3 shows sample paths of several FARIMA processes and we can see there

are many different types of behavior. The parameter d determines the behaviors

of long-range dependence, whereas p, q, and the corresponding parameters in φ(B)

and θ(B) take account of more flexible modelling of short-range properity.

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

x t

FARIMA(0,0.2,0)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

x t

FARIMA(1,0.2,0) with AR parameter 0.7

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

t

x t

FARIMA(1,0.2,1) with AR parameter 0.7 and MA parameter 0.7

Figure 3 : Simulated series of a fractional ARIMA(0,0.2,0) process (above),

a fractional ARIMA(1,0.2,0) process with AR parameter 0.7 (median),

and a fractional ARIMA(1,0.2,1) process with AR parameter 0.7

and MA parameter 0.7 (below).

3. Method for estimation of the Hurst parameter

A measure of a self-similar process is the Hurst parameter. In this section,

the main method for estimating the Hurst parameter to be introduced is the EBP
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method. In addition, three estimation methods are summarized in Appendix B.3.,

namely the R/S method, DFA method, and Moment method. An example of using

the above methods to estimate the Hurst parameter for the data of yearly minimal

water level of the Nile River is presented in Appendix B.4..

3.1 Embedded branching process (EBP) or crossing tree

Most of the current estimators view the process at regularly spaced points in

time. However, many processes are observed only when there is a change in value.

That is, we observe crossings of the process rather than observing it at regular

times. If we only observe the process at regular time points, then we may not see

all the small crossings (see Figure 4). Therefore, Jones and Shen (2004) proposed

the method of Embedded Branching Process (EBP), which builds a tree of crossings

that encodes the sample path.

Figure 4 : The left figure gives a sample path and all its crossings and the right

figure gives crossings observed if the process is sampled at regular time (the solid

dots). (This figure is excerpted from the manuscript of Jones and Shen, namely

self-similar processes via the crossing tree.)

To begin with, we construct a crossing tree from a given continuous process X(t)

and fix a base scale δ. Without loss of generality, we assume that X(0) = 0. For

n = 0, 1, . . ., let T n
0 = 0 and T n

k+1 = inf{t > T n
k : X(t) ∈ δ2nZ, X(t) 6= X(T n

k )} be

the hitting times of the δ2n-size crossings of the process. There is a natural tree

structure to the crossings, as each crossing of size can be decomposed into a sequence

of crossings of size. Let Zn
k be the number of subcrossings of size 2n−1δ that make

up the k-th crossing of size 2nδ and N(n) is the total number of crossings of size

2nδ. Then, N(n) ≥ ∑N(n+1)
k=1 Zn+1

k .
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If the process X(t) is self-similar, spatially, and temporally homogeneous, then

the Zn
k , n ≥ 0, k ≥ 1, are identically distributed. Build the crossing tree up from the

bottom, then count family sizes, Zn = {Zn
1 , Zn

2 , . . .}. If Zn is ergodic, then we can

estimate the distribution of Zn
k empirically. Let µ = E(Zn

k ) and if X is self-similar,

then

X(t)
d
= 2−kX(µkt) = (µk)− log 2/ log µX(µkt).

Hence, H = log 2/ log µ.

In practice, if Zn is ergodic, then µ̂n =
∑N(n)

k=1 Zn
k /N(n) is a consistent estimator

for µ, i.e. E(µ̂n) → µ as N(n) →∞. The estimator at scale 2nδ is

Ĥn =
log 2

log µ̂n

.

If we believe that self-similarity holds over scales 2mδ to 2nδ, then we can combine

these levels to get a more accurate estimate

µ̂m,n =
N(m)µ̂m + N(m + 1)µ̂m+1 + · · ·+ N(n)µ̂n

N(m) + N(m + 1) + · · ·+ N(n)

=

∑N(m)
k=1 Zm

k +
∑N(m+1)

k=1 Zm+1
k + . . . +

∑N(n)
k=1 Zn

k

N(m) + N(m + 1) + . . . + N(n)
,

Ĥm,n =
log 2

log µ̂m,n

.

In fact, µ̂m,n is the mean of the total number of subcrossings for scales 2mδ to 2nδ.

The analysis about the 100(1 − α)% confidence interval for µ and more details

are presented in Jones and Shen (2004). On the other hand, the method of the test

statistic for examining a self-similar process is introduced in Section 4. Based on

the above illustration, the estimation of parameter H for the EBP method can be

summarized as follows:

Step 1. Select a δ.

Step 2. When at time t the difference with the former value is equal to 2nδ,

n = 0, 1, 2, . . ., we keep a record of time t.

Step 3. Calculate the number of subcrossings, Zn
k , of size 2n−1δ that make up the

k-th crossing of size 2nδ and N(n) is the total number of crossings of size 2nδ.
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Step 4. Calculate µ̂n =
∑N(n)

k=1 Zn
k /N(n).

Step 5. Calculate µ̂m,n which is the mean of all Zj
k across scale 2mδ to 2nδ.

Step 6. Calculate Ĥm,n = log 2
log bµm,n

.

Figure 5 : The figures for EBP method. Top figure gives a sample path and all its

crossings. Bottom figure gives a crossing tree.

Next, in order to understand the procedures to estimate parameter H for the

EBP method, an example is given:

Example 1: Estimation of the Hurst parameter

For a simulated process, choose δ = 4. Using the EBP method, we keep a record

of time t when the difference with the former value is equal to 2nδ, n = 0, 1, 2, . . ..

Then, we can obtain Figure 5.

In Figure 5, the solid line is a sample path. We use the dotted line, the square

line, and the dashed line to show the change of 20δ = δ, 21δ = 2δ, and 22δ = 4δ,
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respectively.

By calculation, the results of the number of subcrossings are as follows:

Z1
1 = 4, Z1

2 = 2, Z1
3 = 6, Z1

4 = 4;

Z2
1 = 2, Z2

2 = 2.

In this case, N(1) = 4, N(2) = 2,

µ̂1 =
4∑

k=1

Z1
k

N(1)
= 4, and µ̂2 =

2∑

k=1

Z2
k

N(2)
= 2.

Hence,

µ̂1,2 =
N(1)µ̂1 + N(2)µ̂2

N(1) + N(2)
=

10

3
,

and

Ĥ1,2 =
log 2

log(10/3)
≈ 0.575717.

4. Goodness of fit test for examining a self-similar process

In Jones and Shen (2004), a goodness of fit test for the self-similar process based

on the EBP method is introduced first, and we evaluate the proposed test in the

section. The goodness of fit test is stated first in the following.

4.1 The method of goodness of fit test and an example

Let pn(x) = P(Zn
k = x), and let p̂n be the empirical distribution of Zn

k obtained

from Zn. To test the hypothesis pm = pm+1 = · · · = pn, results for testing with con-

tingency tables are employed. Take h bins {2}, {4}, . . . , {2h − 2}, {2h, 2h + 2, . . .}.
Because the number of the subcrossings with larger increments is quite sparse, we

merge some of them into the same bin. It means that the number of subcrossings

equals to 2h, 2h + 2 and the larger ones are merged. Hence, the observed value of

the number of subcrossings can be divided into h bins.

Let p̂j
k be the frequency Zj falling into bin k and p̂k be the frequency for the

combined sequences Zm ∪ · · · ∪Zn falling into bin k. Then the test statistic used is

Tm,n =
n∑

j=m

h∑

k=1

N(j)
(p̂j

k − p̂k)
2

p̂k

=
n∑

j=m

h∑

k=1

(N(j)p̂j
k −N(j)p̂k)

2

N(j)p̂k

∼ χ2
(n−m−1)(h−1),
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where N(j)p̂j
k and N(j)p̂k are the corresponding observed and expected values re-

spectively . If Zm, . . . , Zn are independent, then Tm,n is asymptotically chi-squared

distributed, with (n−m−1)(h−1) degrees of freedom. If the observed value of Tm,n

is larger than the χ2
α,(n−m−1)(h−1) percentage point, then we will reject the hypothesis

of self-similarity across scales 2mδ to 2nδ, at the 100(1− α)% level.

Based on the above illustration, the goodness of fit test for examining a self-

similar process can be summarized as follows:

Step 1. Choose a δ.

Step 2. When at time t the difference with the former value is equal to 2jδ,

j = 0, 1, 2, . . ., we keep a record of time t.

Step 3. Calculate the number of subcrossings, Zj
k, of size 2j−1δ that makes up the

k-th crossing of size 2jδ and N(j) is the total number of crossings of size 2jδ.

Step 4. Using the contingency tables to compute p̂j
k and p̂k for level j and bin k.

Step 5. Evaluate the test statistic

Tm,n =
n∑

j=m

h∑

k=1

N(j)
(p̂j

k − p̂k)
2

p̂k

.

If Tm,n > χ2
α,(n−m−1)(h−1), then we reject the hypothesis at the 100(1−α)%

level.

Next, in order to understand the procedure of the goodness of fit test for examin-

ing a self-similar process, details of the above computation procedure are illustrated

in the following example.

Example 2: Test statistic for self-similarity

Assume that we have the number of subcrossings as follows:

Z1 = (Z1
1 , Z

1
2 , . . . , Z

1
n1

) = (2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 6, 4, 2, 4, 6, 2, 2, 8, 2, 2, 4, 4, 4, 6,

2, 2, 2, 2, 6, 4, 6, 8, 2, 6, 2, 2, 2, 6)

Z2 = (Z2
1 , Z

2
2 , . . . , Z

2
n2

) = (2, 2, 2, 6, 4, 2, 2, 2, 4, 2, 2, 4, 6, 2, 2, 8, 2, 4, 6, 2, 8, 6, 4, 2, 2, 2)

Z3 = (Z3
1 , Z

3
2 , . . . , Z

3
n3

) = (2, 2, 2, 6, 4, 2, 4, 2, 2, 4, 6, 2, 2, 8, 2, 4, 6, 2)
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According to Z1, there are 23 points of the number of subcrossings equal to 2, i.e.

Z1
1 , Z

1
2 , . . . , Z

1
n1

fall in bin {2} is equal to 23. The number of Z1
r , r = 1, 2, . . . , n1, fall

in bin {4}, {6} and {8} respectively are 9, 7, 2. Calculations for other scales are the

same. Then we can obtain a table of the summary of the number of subcrossings as

follows:

Table 1 : The summary of the number of subcrossings.

k = 1 k = 2 k = 3 k = 4 N(j)

j = 1 23 9 7 2 41

j = 2 15 5 4 2 26

j = 3 10 4 3 1 18

N(k) 48 18 14 5 85

In this case, there are four bins, i.e. h = 4. For the purpose of convenient illustration,

we define some more notation as follows:

N(j, k) = the total number of the subcrossings equal to 2k for scale 2jδ,

N(k) = the total number of the subcrossings equal to 2k for scale 2mδ to 2nδ, and

N = the total number of the subcrossings for all j and k,

where

N(j) = N(j, 1) + N(j, 2) + · · ·+ N(j, h),

N(k) = N(m, k) + N(m + 1, k) + · · ·+ N(n, k), and

N =
n∑

j=m

h∑

k=1

N(j, k) =
n∑

j=m

N(j) =
h∑

k=1

N(k).

Then, we can calculate

p̂j
k =

N(j, k)

N(j)
and p̂k =

N(k)

N
.

The contingency table turns to

Table 2: The contingency table of Example 2.

k = 1 k = 2 k = 3 k = 4

bp1
k 0.56098 0.21951 0.17073 0.04878

bp2
k 0.57692 0.19231 0.15385 0.07692

bp3
k 0.55556 0.22222 0.16667 0.05556

bpk 0.56471 0.21176 0.16471 0.05882

Hence, the test statistic is

T 1,3 =
3∑

j=1

4∑

k=1

N(j)
(p̂j

k − p̂k)
2

p̂k

= 0.32439 < χ2
0.05,3 = 7.81473.

Therefore, according to the statement mentioned above, we will not reject the hy-

pothesis of self-similarity across scales 21δ to 23δ at the 95% level.
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4.2. A modification of the goodness of fit test

As mentioned above, the statistic Tm,n =
∑n

j=m

∑h
k=1 N(j)

(bpj
k−bpk)2

bpk
is stated to

have the chi-square distribution with degree of freedom (n−m− 1)(h− 1). We are

interested in the performances of the goodness of test provided in Jones and Shen

(2004). Hence, we use the simulated data from the FBM and FARIMA processes

to examine the statement. The δ we choose is equal to a constant times EFBM and

EFARIMA, respectively, which are defined as follows:

Assume {Xt, t > 0} is a FBM process, then EFBM is estimated by

EFBM = Ê(|Xt −Xt−1|) =
1

N − 1

N∑
t=2

|Xt −Xt−1|,

where N is the length of the process.

Because the FARIMA process is the stationary increment of a self-similar process,

hence the corresponding self-similar process is the accumulation of FARIMA process.

Assume {Wt, t > 0} is a FARIMA process, then EFARIMA is estimated by

EFARIMA = Ê(|Yt − Yt−1|) = Ê(|Wt|) =
1

N − 1

N∑
t=2

|Wt|,

where Yt =
∑t

i=1 Wi and N is the length of the process. In fact, Ê(|Wt|) is approx-

imately equal to the mean of the absolute value of the FARIMA process.

The δ we choose is respectively equal to EFBM times 3, 2.5, 2, 1.5, 1, and 0.5. Ac-

cording to the different δ, the acceptance percentage of the chi-square distribution

with the degree of freedom (n−m− 1)(h− 1) are computed.
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Figure 6 : Histogram (left) and quantile-quantile plot of chi-square distribution

(right) for the FBM processes with H = 0.5, δ = 3E, level= 1 ∼ 3, mh = 6,

N = 10000 and 1000 replications by using the EBP method.
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From the results for the simulated data, we find that the histogram of the statis-

tics T obtained from 1000 replications and the chi-square distribution with degree of

freedom (n−m− 1)(h− 1) does not seem to work. One result is presented in Fig-

ure 6 where data are from the FBM processes with H = 0.5, δ = 3E, level= 1 ∼ 3,

mh = 6, N = 10000 and 1000 replications.

Hence, we think the distribution of T should be modified, and conjecture that

it may be as a constant times the chi-square distribution with degree of freedom ν,

i.e.

T
d∼ cχ2

ν .

Then, E(T ) = cν and Var(T ) = c2(2ν). Moment estimators for ĉ and ν̂ may

be computed by equating E(T ) and Var(T ) respectively. Therefore, we can obtain

estimates for ĉ and ν̂ as

ĉ =
S2

2T
and

ν̂ =
T

ĉ
=

2T
2

S2
,

where T and S2 are the mean and variance of the simulated data with many repli-

cations, respectively.

Figure 7 is a quantile-quantile plot of chi-square distribution after adjustment

for the FBM processes with H = 0.5, δ = 3E, level= 1 ∼ 3, mh = 6, N = 10000

and 1000 replications, where the data are the same as in Figure 6.
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Figure 7 : Quantile-quantile plot of chi-square distribution after

adjustment for the FBM processes with H = 0.5, δ = 3E,

level= 1 ∼ 3, mh = 6, N = 10000 and 1000 replications.

Next, we use the ĉ and ν̂ to recompute the acceptance percentage of the FBM

and FARIMA processes. For the simulated data of the FBM processes with H = 0.5,
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the results are summarized in Table 3. First, some notation of Table 3 are explained.

The level=m ∼ n means the hypothesis of self-similarity across scales 2mδ to 2nδ.

mh means that we take mh/2 = h bins, i.e. {2}, {4}, . . . , {mh,mh + 2, . . .}.
d.f. is the degree of freedom, (n −m − 1)(h − 1). Percentage and new percentage

respectively are the acceptance percentage of the chi-square distribution with the

degree of freedom (n−m− 1)(h− 1) and ν. The results of the FBM processes with

H = 0.6, 0.7, 0.8 and 0.9 are presented in Appendix A.1. In addition, the results for

the FARIMA processes with H = 0.5, 0.6, . . . , 0.9 are showed in Appendix A.2.

Table 3 : The simulated data for FBM processes with H = 0.5, N = 10000, and 1000 replications.

(E = EFBM)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 5.23148 65.60% 1.19301 4.38510 94.70%

0.02394 8 3 7.90665 59.10% 1.49233 5.29818 94.90%

( 2.5E ) 1∼ 3 6 2 6.50947 53.50% 1.39602 4.66288 95.00%

0.01995 8 3 9.23086 48.30% 1.46594 6.29689 94.70%

( 2E ) 1∼ 3 6 2 9.37397 31.20% 1.74337 5.37693 95.20%

0.01596 8 3 12.63190 25.70% 1.83356 6.88928 94.60%

( 1.5E ) 1∼ 3 6 2 16.65948 5.50% 1.90437 8.74803 94.90%

0.01197 8 3 21.01984 3.80% 2.09537 10.03156 94.80%

1∼ 4 6 4 20.91565 5.90% 1.85678 11.26448 94.70%

8 6 27.60088 5.70% 2.30902 11.95350 95.20%

2∼ 4 6 2 5.23148 65.60% 1.19301 4.38510 94.70%

8 3 7.90665 59.10% 1.49233 5.29818 94.90%

( E ) 1∼ 3 6 2 44.44594 0.00% 2.12666 20.89937 95.10%

0.00798 8 3 52.34066 0.00% 2.25752 23.18500 95.30%

1∼ 4 6 4 54.50931 0.00% 2.06316 26.42034 95.20%

8 6 65.94730 0.00% 2.32671 28.34359 95.10%

1∼ 5 6 6 59.28502 0.00% 2.06048 28.77241 95.70%

8 9 73.44489 0.00% 2.39851 30.62108 94.50%

2∼ 4 6 2 9.37397 31.20% 1.74337 5.37693 95.20%

8 3 12.63187 25.70% 1.83356 6.88928 94.60%

2∼ 5 6 4 12.13049 39.00% 1.68749 7.18847 95.10%

8 6 16.96073 32.20% 1.83050 9.26561 94.40%

3∼ 5 6 2 4.44821 77.10% 1.06475 4.17771 95.20%

8 3 6.79273 69.80% 1.13548 5.98223 94.80%

( 0.5E ) 1∼ 3 6 2 238.41102 0.00% 2.20166 108.28708 95.90%

0.00399 8 3 262.80240 0.00% 2.33707 112.44960 95.30%

1∼ 4 6 4 304.39327 0.00% 2.42363 125.59402 94.90%

8 6 342.67274 0.00% 2.82784 121.17805 94.50%

1∼ 5 6 6 331.56042 0.00% 2.48617 133.36211 95.30%

8 9 379.45595 0.00% 3.08415 123.03406 94.80%

2∼ 4 6 2 44.44594 0.00% 2.12666 20.89937 95.10%

8 3 52.34066 0.00% 2.25752 23.18500 95.30%

2∼ 5 6 4 54.50931 0.00% 2.06316 26.42034 95.20%

8 6 65.94730 0.00% 2.32671 28.34359 95.10%

3∼ 5 6 2 9.37397 31.20% 1.74337 5.37693 95.20%

8 3 12.63187 25.70% 1.83356 6.88928 94.60%
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From the results of FBM and FARIMA processes, we can find that the percent-

age of acceptance with larger δ are larger than that with smaller δ. After adjusting

ĉ and ν̂, the new percentages of acceptance are close to 95% for all conditions cho-

sen. It means that the adjustment is useful for the FBM and FARIMA processes.

Since the method is quite robust for different δ, we choose δ according to computer

time for computation. Hence, in the following comparisons, the choice of δ and mh

respectively are 3E and 6.

Because the FBM process and FARIMA(0, d, 0) process or I(d) process are with

the same distribution under H = 0.5 or d = 0, the results should be similar by using

the EBP method. From Tables 3 and 16 (see Appendix A.2.), the results of them

are indeed consistent. In the following, we would like to compare them under the

same criterion and choose ĉ and ν̂ from the FBM process under different H since the

FBM and FARIMA process respectively are an exact and symptotically self-similar

process. Before making the comparison, we feel that the number of replications may

be not enough, hence the data of FBM process are simulated for 1000, 4000 and 9000

replications where 4000 replications are new 3000 replications add to the previous

1000 replications and 9000 replications are new 5000 replications add to the previ-

ous 4000 replications. After calculations of ĉ and ν̂, the results are shown in Figure 8.
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Figure 8 : The different ĉ and ν̂ values are obtained from 1000, 4000 and 9000

replications.
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From Figure 8, it seems the number of replications equal to 9000 is better than

that for 1000 and 4000. We think the behavior of ĉ should be monotone. According

to Figure 8, there seems to be a linear relationships between ĉ and H. However,

there are still variations at H = 0.55, 0.65, 0.75, 0.85 and 0.95. Therefore, it seems

the number of replications equal to 9000 may not be enough. The values of ĉ and ν̂

for 9000 replications are presented in Table 4.

Table 4 : The values of bc and bν for different H.

(9000 replications)

H criterion bc criterion bν critical value (cχ2
ν)

0.50 1.36955 4.01526 13.02780

0.55 1.30975 4.00576 12.43880

0.60 1.29337 3.98165 12.23260

0.65 1.31194 3.72080 11.84870

0.70 1.21961 3.75153 11.07650

0.75 1.19652 3.62136 10.60960

0.80 1.11920 3.70779 10.08400

0.85 1.11840 3.59623 9.87032

0.90 1.04966 3.71579 9.47126

0.95 0.99333 3.73646 8.99681

We use the least square fit to obtain the relationships between ĉ and H and ν̂

and H for 9000 replications. Figure 9(a) suggests that there seems to be a strong

statistical relationship between ĉ and H and the linear regression model appears

to be reasonable. The regression line of ĉ and H is ĉ = 1.78541 − 0.810033H and

R2 = 0.96045. The relationship between ν̂ and H is illustrated in Figure 9(b). The

regression function of ν̂ and H is ν̂ = 6.35639 − 6.51247H + 3.93668H2. Because

the R2 of quadratic and cubic regression model for the relationship between ν̂ and

H respectively are 0.972509 and 0.972548, it seems the quadratic regression model

may be enough to illustrate.
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Figure 9 : The relationships between ĉ and H and ν̂ and H with 9000 replications.
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In the following, we recompute the acceptance percentage of the FBM processes

for 1000, 4000 and 9000 replications according to the values of criterion ĉ and ν̂

mentioned above and the results are presented in Table 5.

Table 5 : The acceptance percentage of FBM processes under

criterion. (replications)

H FBM(1000) FBM(4000) FBM(9000)

0.50 93.90% 94.45% 94.68%

0.55 95.50% 95.08% 94.88%

0.60 94.20% 94.90% 94.88%

0.65 94.40% 94.93% 95.02%

0.70 94.80% 94.88% 94.93%

0.75 96.20% 94.93% 94.87%

0.80 95.80% 95.60% 94.90%

0.85 93.80% 94.70% 95.08%

0.90 95.20% 95.23% 95.03%

0.95 94.79% 94.72% 94.97%

Next, the data of FARIMA(0, d, 0), FARIMA(1, d, 1), FARIMA(1, d, 0) and FARIMA(0, d, 1)

processes are simulated with 1000 replications and AR parameter (φ1 = 0.5) or MA

parameter (θ1 = 0.5). The results of acceptance percentage of the above processes

are presented in Table 6.

Table 6 : The acceptance percentage of FARIMA(p, d, q) processes with 1000 replications under criterion.

H (d) FARIMA(0, d, 0) or I(d) FARIMA(1, d, 1) FARIMA(1, d, 0) FARIMA(0, d, 1)

0.5 (0.0) 94.40% 14.90% 32.70% 78.40%

0.6 (0.1) 96.40% 95.70% 44.50% 98.00%

0.7 (0.2) 96.30% 97.00% 63.10% 94.60%

0.8 (0.3) 96.40% 94.10% 79.20% 92.20%

0.9 (0.4) 94.50% 96.70% 88.40% 94.80%

According to Table 6, the acceptance percentage of FARIMA(0, d, 0) or I(d)

processes is approximate to 95% under the criterion ĉ and ν̂. It means that the

goodness of fit test is also suitable for the I(d) process. Now, we consider the cor-

responding parameters in φ(B) and θ(B). In the case with AR parameter and MA

parameter are included in FARIMA(p, d, q) processes, the acceptance percentages do

not seem to be good when there are only AR parameters present. Hence, the effect

of AR parameters of the FARIMA(1, d, 0) processes is eliminated through AR filter

with AR parameter equal to 0.5 and the acceptance percentage should be similar to

I(d) process. From Tables 6 and 7, the differences of acceptance percentage between

them are smaller.
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Table 7 : The acceptance percentage of FARIMA(1, d, 0)

processes and after AR filter with 1000 replications

under criterion.

H (d) FARIMA(1, d, 0) after AR filter

0.5 (0.0) 32.70% 95.60%

0.6 (0.1) 44.50% 96.50%

0.7 (0.2) 63.10% 96.50%

0.8 (0.3) 79.20% 95.80%

0.9 (0.4) 88.40% 95.40%

In Table 6, the acceptance percentage of FARIMA(1, 0, 1) is 14.90% which differs

from the FARIMA(1, d, 1) processes with d = 0.1, 0.2, 0.3 and 0.4. It is conjectured

that there may be some questions. We use the same method for the FARIMA(1, d, 1)

processes with H = 0.51 or d = 0.01 and 1000 replications. The result of the ac-

ceptance percentage is 96.00%. Hence, it seems that there may be some interesting

features about the acceptance percentage of the FARIMA(1, 0, 1) worth being inves-

tigated in the future.

5. Numerical Comparison and Application

In this section, we use six different methods to estimate the parameter H for

the simulated data of the FARIMA process and latter apply to the heart rate data

collected from ICU (intensive care unit) of the department of cardiovascular surgery

of Kaohsiung Veterans General Hospital. The six methods respectively are rescaled

adjusted range (R/S), EBP, Detrended Fluctuation Analysis (DFA), Absolute, Vari-

ance, and approximate MLE, where EBP method is introduced in Section 3 and

others are illustrated in Appendix.

5.1. Numerical Comparison

In this part, the Gaussian FARIMA(0, d, 0) or I(d) process with d = 0.2 are

simulated and the six methods are used to estimate the Hurst parameter, where

the so called absolute and variance method are based on the corresponding moment

method. In the expression of FARIMA(p, d, q),

φ(B)(1−B)dXi = θ(B)εi, i ≥ 1,

if the MLE method is used to estimate the parameter of FARIMA, then exten-

sive computations are required. Hence, Haslett and Raftery (1989) proposed the

method for estimating MLE under the normality assumption for the samples. Hence,

the relation between H and d is H = d + 1/2. It can be evaluated by the code

”arima.fracdiff” of the software S-plus. The results are illustrated in Table 8.
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Table 8 : The results of numerical evaluation for I(d) processes with d = 0.2 (H = 0.7),

N = 10000, and 20 replications.

R/S EBP DFA1 Absolute Variance approximate MLE

Mean 0.69724 0.72430 0.68440 0.68963 0.68893 0.697547605

Bias -0.00276 0.02430 -0.01560 -0.01037 -0.01107 -0.002452395

Standard deviation 0.01277 0.01313 0.01529 0.03948 0.03728 0.006116568

Based on the limited simulation results, it seems the MLE method has the small-

est bias and standard deviation. The results of the estimation of parameter H for

other methods are also close to H = 0.7. The estimation by the EBP method tends

to overestimate, and the others tend to underestimate the true parameters.

5.2. Application

The motivation for studying the self-similar process is from the need of analyz-

ing the heart rate data to examine the degree of self-similarity with respect to the

health condition of a person. It is observed that the variation of heart rate data is

non-stationary for instance there are variations in the heart rate when a person takes

a break. It is not easy to fit in with the assumption of stationary for the methods

of traditional analysis. Recently there have been several reports that certain physi-

ological data may display the properties of long-range correlation and self-similarity

which have some information in clinical medical research. After understanding the

self-similarity for heart rate data, we are interested in the relation between the de-

gree of self-similar and health. In Peng et al (1995), the relation between health and

H are as follows:

Table 9 : The relation between health and H.

Group state Number of people Age range (years) H (Mean ±S.D.)

1 healthy adults 29 20 ∼ 64 1.00±0.10

2 heart failure 15 22 ∼ 71 1.24±0.22

3 heart danger 10 35 ∼ 82 1.22±0.25

In Table 9, data from each subject contained approximately 24 hours of ECG

recording encompassing ∼ 105 heartbeats. The similar results are obtained when

the time series are divided into three consecutive subsets (of ∼ 8 hours each) and

repeated the above analysis, i.e. the value of H should not be affected by the sam-

pling time.

Similar analysis is applied to study the effect of physiologic aging. The relation

between H and age are presented in Table 10, where data from healthy subjects

underwent 2 hours of continuous supine resting ECG recording. In the group of

healthy young subjects, the value of H closes to 1.0. In healthy elderly subjects, the

interbeat interval time series showed two scaling regions. The the values of H are

0.5 and 1.5 over the short range and the longer range, respectively.
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Table 10 : The relation between age and H.

Group state Number of people Age range (years) H value

1 healthy young 10 21 ∼ 34 ≈ 1.00

2 healthy elder 10 68 ∼ 81 0.50 or 1.50

In the following, based on the assumption of self-similarity for the heart rate

data, the EBP method, R/S, DFA, and Moment method are used to estimate the

Hurst parameter for the heart rate data obtained from ICU of the department of

cardiovascular surgery of Kaohsiung Veterans General Hospital. The interval of time

is calculated after the operation until the patient leaves the ICU. All patients are

survivors except the patient of number hr10. According to the limited results, the

parameter H estimated from the DFA method are larger than others which is of

interest to see why this phenomena occurs on the real data.

Table 11 : Estimation of the Hurst parameter for different methods.

number N R/S EBP DFA Absolute Variance

hr1 1885 0.93163 0.973 1.1540 0.92561 0.90840

hr2 1439 1.03365 0.942 1.3748 0.81583 0.82765

hr3 916 1.05206 0.915 1.2049 0.75417 0.70349

hr4 1360 0.96912 0.994 1.3033 0.97632 0.97776

hr5 1460 0.98111 0.963 1.1272 0.94161 0.92978

hr6 3409 0.98145 0.980 1.3541 0.97920 0.96076

hr7 5910 0.91935 0.970 1.1500 0.95655 0.93985

hr8 7953 0.91536 0.902 1.0735 0.82384 0.80674

hr9 1264 0.95699 0.955 1.1598 0.91345 0.91952

hr10 2616 0.98161 0.976 1.4980 0.96137 0.94661

N is the length of the heart rate data for the patients.

6. Conclusion

In this thesis, a modification of the goodness of fit test is proposed in Section

4.2 and it is useful for the FBM and FARIMA processes. We should use the same

method for the processes without the property of self-similarity to see whether it is

sensitive to non self-similar processes, in other words whether it is a test with high

power. As the relationships between ĉ and H and ν̂ and H are illustrated, it seems

that the number of replications equal to 9000 may be not enough. Hence, larger

number of replications is needed.

From some results of simulation, the acceptance percentage of the FARIMA

processes may be affected by AR parameter or MA parameter. Therefore, the

FARIMA(p, d, q) processes with different coefficients of the parameter AR and MA

are needed to do the simulation. We recompute the acceptance percentage to see the

relationship between parameters and acceptance percentages. In last part of Section

4.2, some interesting features about the acceptance percentage of FARIMA(1, 0, 1)

do exist. Hence, more theoretical investigations and simulations are needed to see
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why this phenomena occurs.

If the real data can be fitted in I(d) process, we can obtain the estimation of d

and find the corresponding values of ĉ and ν̂ through the relationships between ĉ

and H and ν̂ and H. The real data can be tested whether it is a self-similar process

or not.
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Appendix A.

A.1. The simulated data for FBM processes with H = 0.6, . . . , 0.9,

N = 10000, and 1000 replications.

Table 12 : The simulated data for FBM processes with H = 0.6, N = 10000 and 1000 replications.

(E = EFBM)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 5.07511 68.80% 1.33150 3.81158 94.50%

0.00953 8 3 7.36337 62.60% 1.37636 5.34989 94.70%

( 2.5E ) 1∼ 3 6 2 5.75921 61.10% 1.41374 4.07373 94.40%

0.00794 8 3 8.24590 55.40% 1.40521 5.86808 95.00%

( 2E ) 1∼ 3 6 2 7.86477 41.00% 1.59560 4.92903 94.70%

0.00635 8 3 10.61740 36.90% 1.75029 6.06607 95.20%

( 1.5E ) 1∼ 3 6 2 12.42827 15.70% 1.69255 7.34292 96.00%

0.00476 8 3 15.63542 13.70% 1.73973 8.98728 95.70%

1∼ 4 6 4 16.59289 18.40% 1.82868 9.07372 95.40%

8 6 21.60027 16.40% 2.01796 10.70401 95.40%

2∼ 4 6 2 5.10358 69.00% 1.35440 3.76815 94.70%

8 3 7.45608 62.00% 1.44338 5.16569 94.90%

( E ) 1∼ 3 6 2 29.71977 0.10% 1.97296 15.06355 94.50%

0.00318 8 3 34.50849 0.10% 2.08953 16.51495 95.20%

1∼ 4 6 4 38.35180 0.00% 2.10939 18.18150 94.30%

8 6 45.57338 0.10% 2.32321 19.61660 94.40%

1∼ 5 6 6 43.30282 0.20% 2.18188 19.84652 94.80%

8 9 52.72637 0.20% 2.46561 21.38471 94.50%

2∼ 4 6 2 7.66515 42.20% 1.53659 4.98843 95.20%

8 3 10.38906 36.90% 1.51996 6.83507 95.40%

2∼ 5 6 4 10.60203 48.90% 1.48261 7.15093 94.80%

8 6 14.73018 42.00% 1.56556 9.40886 94.80%

3∼ 5 6 2 4.42083 74.30% 1.15686 3.82140 94.40%

8 3 6.50468 70.40% 1.21264 5.36409 94.70%

( 0.5E ) 1∼ 3 6 2 148.23837 0.00% 2.13321 69.49061 95.00%

0.00159 8 3 159.90620 0.00% 2.26585 70.57216 95.00%

1∼ 4 6 4 194.07488 0.00% 2.45699 78.98895 95.30%

8 6 212.53213 0.00% 2.75134 77.24674 95.50%

1∼ 5 6 6 216.66349 0.00% 2.58407 83.84589 95.70%

8 9 240.72707 0.00% 3.07215 78.35791 95.70%

2∼ 4 6 2 29.71977 0.10% 1.97296 15.06355 94.50%

8 3 34.50849 0.10% 2.08953 16.51495 95.20%

2∼ 5 6 4 38.35180 0.00% 2.10939 18.18150 94.30%

8 6 45.57338 0.10% 2.32321 19.61660 94.40%

3∼ 5 6 2 7.66515 42.20% 1.53659 4.98843 95.20%

8 3 10.38906 36.90% 1.51996 6.83507 95.40%
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A.1. (continued)

Table 13 : The simulated data for FBM processes with H = 0.7, N = 10000 and 1000 replications.

(E = EFBM)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 4.57172 74.40% 1.24992 3.65760 95.00%

0.00379 8 3 6.97619 66.60% 1.41862 4.91759 94.40%

( 2.5E ) 1∼ 3 6 2 5.13301 67.80% 1.35788 3.78017 95.00%

0.00316 8 3 7.59092 61.10% 1.41147 5.37803 94.90%

( 2E ) 1∼ 3 6 2 6.04199 58.70% 1.48699 4.06323 94.70%

0.00253 8 3 8.58621 51.20% 1.49858 5.72955 94.40%

( 1.5E ) 1∼ 3 6 2 8.78456 34.30% 1.51903 5.78301 95.30%

0.00190 8 3 11.36885 31.90% 1.53707 7.39646 95.40%

1∼ 4 6 4 12.32379 37.80% 1.69649 7.26428 94.60%

8 6 16.48180 35.20% 1.76782 9.32325 95.60%

2∼ 4 6 2 4.54993 75.60% 1.10507 4.11733 94.60%

8 3 6.87375 65.60% 1.18582 5.79662 94.80%

( E ) 1∼ 3 6 2 18.43814 3.60% 1.92606 9.57300 95.50%

0.00126 8 3 21.45353 3.70% 1.93123 11.10874 95.70%

1∼ 4 6 4 24.76186 4.80% 2.26749 10.92040 94.90%

8 6 29.78593 4.20% 2.33320 12.76612 95.60%

1∼ 5 6 6 29.07373 6.80% 2.47252 11.75876 94.70%

8 9 36.16144 5.80% 2.66935 13.54689 96.00%

2∼ 4 6 2 6.13322 57.90% 1.46439 4.18825 94.90%

8 3 8.59203 51.60% 1.47507 5.82483 95.10%

2∼ 5 6 4 8.81527 62.20% 1.62108 5.43791 94.50%

8 6 12.73613 55.80% 1.69367 7.51983 94.60%

3∼ 5 6 2 4.08534 79.60% 1.12290 3.63822 95.00%

8 3 6.43525 71.70% 1.22644 5.24708 95.80%

( 0.5E ) 1∼ 3 6 2 83.22702 0.00% 2.00095 41.59376 94.70%

0.00063 8 3 89.05101 0.00% 2.01822 44.12348 94.70%

1∼ 4 6 4 111.35274 0.00% 2.40799 46.24303 96.60%

8 6 120.45567 0.00% 2.47996 48.57167 95.60%

1∼ 5 6 6 127.00740 0.00% 2.85067 44.55352 95.80%

8 9 139.76516 0.00% 2.99990 46.58993 95.70%

2∼ 4 6 2 18.43814 3.60% 1.92606 9.57300 95.50%

8 3 21.45353 3.70% 1.93123 11.10874 95.70%

2∼ 5 6 4 24.76186 4.80% 2.26749 10.92040 94.90%

8 6 29.78593 4.20% 2.33320 12.76612 95.60%

3∼ 5 6 2 6.13322 57.90% 1.46439 4.18825 94.90%

8 3 8.59203 51.60% 1.47507 5.82483 95.10%
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A.1. (continued)

Table 14 : The simulated data for FBM processes with H = 0.8, N = 10000 and 1000 replications.

(E = EFBM)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 3.99189 80.40% 1.05178 3.79535 95.50%

0.00151 8 3 6.24993 73.00% 1.10624 5.64971 94.40%

( 2.5E ) 1∼ 3 6 2 4.61250 73.30% 1.24326 3.71000 95.70%

0.00126 8 3 6.91246 64.80% 1.20755 5.72438 95.90%

( 2E ) 1∼ 3 6 2 5.00371 68.40% 1.20403 4.15580 94.70%

0.00101 8 3 7.24305 63.20% 1.28010 5.65819 95.20%

( 1.5E ) 1∼ 3 6 2 6.27262 56.70% 1.52076 4.12466 94.70%

0.00075 8 3 8.68735 50.80% 1.55040 5.60329 95.80%

1∼ 4 6 4 9.30544 61.60% 1.84320 5.04853 94.60%

8 6 13.10811 54.70% 1.89650 6.91174 94.40%

2∼ 4 6 2 4.11568 78.30% 1.22034 3.37258 94.70%

8 3 6.35077 70.90% 1.15352 5.50557 95.60%

( E ) 1∼ 3 6 2 10.75517 24.50% 1.85112 5.81008 95.40%

0.00050 8 3 13.21664 21.40% 1.70521 7.75076 95.60%

1∼ 4 6 4 15.50002 26.70% 2.44288 6.34497 95.10%

8 6 19.52748 25.20% 2.32759 8.38957 94.20%

1∼ 5 6 6 19.36691 30.20% 2.80386 6.90723 95.80%

8 9 24.92560 28.40% 2.72467 9.14813 94.40%

2∼ 4 6 2 5.10101 68.60% 1.44201 3.53742 93.90%

8 3 7.30662 64.10% 1.37004 5.33316 94.00%

2∼ 5 6 4 7.75085 72.00% 1.59500 4.85948 94.50%

8 6 11.13397 68.60% 1.57489 7.06967 94.10%

3∼ 5 6 2 3.98554 80.30% 1.09499 3.63979 95.30%

8 3 6.09806 75.50% 1.13802 5.35848 93.80%

( 0.5E ) 1∼ 3 6 2 39.35629 0.20% 2.36639 16.63136 94.50%

0.00025 8 3 42.90730 0.10% 2.32076 18.48845 94.60%

1∼ 4 6 4 54.39615 0.10% 3.29947 16.48632 95.20%

8 6 60.05414 0.10% 3.22475 18.62287 95.00%

1∼ 5 6 6 64.47194 0.20% 4.16585 15.47629 95.50%

8 9 72.52717 0.30% 4.14421 17.50084 95.50%

2∼ 4 6 2 10.75517 24.50% 1.85112 5.81008 95.40%

8 3 13.21664 21.40% 1.70521 7.75076 95.60%

2∼ 5 6 4 15.50002 26.70% 2.44288 6.34497 95.10%

8 6 19.52748 25.20% 2.32759 8.38957 94.20%

3∼ 5 6 2 5.10101 68.60% 1.44201 3.53742 93.90%

8 3 7.30662 64.10% 1.37004 5.33316 94.00%
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A.1. (continued)

Table 15 : The simulated data for FBM processes with H = 0.9, N = 10000 and 1000 replications.

(E = EFBM)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 3.85514 82.90% 0.96228 4.00626 95.20%

0.00060 8 3 5.90565 76.30% 1.02682 5.75141 95.10%

( 2.5E ) 1∼ 3 6 2 3.86292 81.20% 0.94136 4.10356 95.70%

0.00050 8 3 5.98147 74.40% 0.93428 6.40227 95.40%

( 2E ) 1∼ 3 6 2 4.28507 76.30% 1.09466 3.91453 94.70%

0.00040 8 3 6.57474 70.10% 1.25425 5.24195 95.00%

( 1.5E ) 1∼ 3 6 2 4.59586 72.20% 1.09216 4.20805 95.30%

0.00030 8 3 6.72947 68.00% 1.17143 5.74468 95.60%

1∼ 4 6 4 7.26470 74.90% 1.48312 4.89826 95.40%

8 6 10.56919 70.80% 1.59307 6.63447 95.00%

2∼ 4 6 2 3.85514 82.90% 0.96228 4.00626 95.20%

8 3 5.90565 76.30% 1.02682 5.75141 95.10%

( E ) 1∼ 3 6 2 6.15659 56.60% 1.52943 4.02541 94.70%

0.00020 8 3 8.45277 52.90% 1.51878 5.56551 94.60%

1∼ 4 6 4 9.42001 59.80% 1.90750 4.93840 94.90%

8 6 13.06353 55.40% 1.93777 6.74151 94.80%

1∼ 5 6 6 12.47332 60.60% 2.28777 5.45219 94.80%

8 9 17.42220 56.80% 2.38674 7.29958 94.50%

2∼ 4 6 2 4.28507 76.30% 1.09466 3.91453 94.70%

8 3 6.57474 70.10% 1.25425 5.24195 95.00%

2∼ 5 6 4 6.63658 80.00% 1.38491 4.79205 95.00%

8 6 9.99664 74.10% 1.50568 6.63930 94.10%

3∼ 5 6 2 3.71570 83.50% 1.08586 3.42188 95.40%

8 3 5.80025 77.40% 1.10110 5.26766 95.70%∗

( 0.5E ) 1∼ 3 6 2 13.82863 19.00% 2.58687 5.34571 95.40%

0.00010 8 3 16.41252 16.90% 2.50088 6.56269 95.80%

1∼ 4 6 4 20.59780 19.90% 3.67980 5.59754 95.20%

8 6 24.73788 18.50% 3.50514 7.05760 95.10%

1∼ 5 6 6 25.95951 20.80% 4.47957 5.79510 95.60%

8 9 31.90258 20.00% 4.34381 7.34439 95.40%

2∼ 4 6 2 6.15659 56.60% 1.52943 4.02541 94.70%

8 3 8.45277 52.90% 1.51878 5.56551 94.60%

2∼ 5 6 4 9.42001 59.80% 1.90750 4.93840 94.90%

8 6 13.06353 55.40% 1.93777 6.74151 94.80%

3∼ 5 6 2 4.28507 76.30% 1.09466 3.91453 94.70%

8 3 6.57474 70.10% 1.25425 5.24195 95.00%

*: The number of T is equal to 999.

Remark: When the statistic T is calculated, it is possible that the denominator

of T may be equal to zero, i.e. the number of subcrossings equal to 8 may be zero.

Hence, in that case, the statistic T computed during that replication is deleted from

the analysis.
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A.2. The simulated data for FARIMA processes with H = 0.5, 0.6, . . . , 0.9,

N = 10000 and 1000 replications.

Table 16 : The simulated data for FARIMA processes with H = 0.5, N = 10000 and 1000 replications.

(E = EFARIMA)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 5.45923 65.20% 1.48005 3.68855 94.80%

2.39282 8 3 8.04830 57.90% 1.69822 4.73926 95.90%

( 2.5E ) 1∼ 3 6 2 6.53906 53.90% 1.56405 4.18086 94.20%

1.99402 8 3 9.37502 46.20% 1.71560 5.46456 94.70%

( 2E ) 1∼ 3 6 2 9.26109 33.00% 1.83721 5.04085 94.80%

1.59521 8 3 12.69380 26.30% 2.04923 6.19441 95.60%

Table 17 : The simulated data for FARIMA processes with H = 0.6, N = 10000 and 1000 replications.

(E = EFARIMA)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 4.67579 72.70% 1.24395 3.75882 94.90%

2.41752 8 3 7.07621 64.40% 1.30537 5.42084 94.50%

( 2.5E ) 1∼ 3 6 2 5.46942 64.60% 1.42752 3.83141 94.30%

2.01460 8 3 7.90563 58.20% 1.48871 5.31038 94.20%

( 2E ) 1∼ 3 6 2 6.72928 52.80% 1.52129 4.42341 95.10%

1.61168 8 3 9.26218 48.70% 1.58972 5.82630 94.70%

Table 18 : The simulated data for FARIMA processes with H = 0.7, N = 10000 and 1000 replications.

(E = EFARIMA)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 4.28453 76.30% 1.15525 3.70875 95.60%

2.50850 8 3 6.61417 68.00% 1.24320 5.32029 95.30%

( 2.5E ) 1∼ 3 6 2 4.46514 75.20% 1.22465 3.64606 94.70%

2.09041 8 3 6.73874 66.70% 1.26097 5.34410 96.00%

( 2E ) 1∼ 3 6 2 5.26264 67.40% 1.46524 3.59166 95.20%

1.67233 8 3 7.53580 61.20% 1.39705 5.39409 95.10%

Table 19 : The simulated data for FARIMA processes with H = 0.8, N = 10000 and 1000 replications.

(E = EFARIMA)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 3.99750 81.20% 1.00471 3.97878 95.20%

2.74580 8 3 6.14255 74.20% 1.13846 5.39547 95.30%

( 2.5E ) 1∼ 3 6 2 3.85176 80.90% 1.02708 3.75019 96.30%

2.28817 8 3 6.02159 76.40% 1.14192 5.27323 95.40%

( 2E ) 1∼ 3 6 2 4.34523 74.90% 1.17471 3.69898 94.60%

1.83054 8 3 6.51744 68.90% 1.22103 5.33765 94.80%

Table 20 : The simulated data for FARIMA processes with H = 0.9, N = 10000 and 1000 replications.

(E = EFARIMA)

δ level mh d.f. T percentage bc bν new percentage

( 3E ) 1∼ 3 6 2 3.87077 81.60% 1.24899 3.09913 95.30%

3.43626 8 3 5.92926 75.60% 1.17384 5.05117 95.20%

( 2.5E ) 1∼ 3 6 2 4.03521 80.90% 1.10244 3.66024 95.00%

2.86355 8 3 6.03239 76.00% 1.09951 5.48643 94.80%

( 2E ) 1∼ 3 6 2 4.08460 79.20% 1.14305 3.57343 94.90%

2.29084 8 3 6.12230 74.30% 1.08895 5.62222 94.50%
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Appendix B.

B.1. For H > 1, ρ(k) diverges to infinity. This contradicts that ρ(k) must

be between −1 and 1. (see Section 2.1.)

Proof of the ρ(k) diverges to infinity for H > 1. (Beran (1994))

ρ(k) =
1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]

=
1

2
k2H

[
(1 +

1

k
)2H − 2 + (1− 1

k
)2H

]
.

The asymptotic behavior of ρ(k) follows by Taylor expansion:

ρ(k) =
1

2
k2Hf(

1

k
)

where f(x) = (1 + x)2H − 2 + (1− x)2H .

If 0 < H < 1 and H 6= 1/2, then we expand f(x) at the origin.

f ′(x) = 2H(1 + x)2H−1 − 2H(1− x)2H−1,

f ′′(x) = 2H(2H − 1)(1 + x)2H−2 + 2H(2H − 1)(1− x)2H−2,

f(0) = 0, f ′(0) = 0, and f ′′(0) = 4H(2H − 1).

Hence, the first non-zero term in the Taylor expansion of f(x) is equal to

2H(2H − 1)x2, i.e.

f(x) ≈ f(0) + f ′(0)x +
f ′′(0)x2

2
= 2H(2H − 1)x2.

As k tends to infinity, ρ(k) is equivalent to H(2H − 1)k2H−2, i.e.

ρ(k)

H(2H − 1)k2H−2
→ 1 k →∞.

B.2. Aggregated series

Because of the aggregated series are used in the moment method in Appendix

B.3.3., some properties taken are summarized in this part from Leland et al. (1994).
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Let {Xt, t > 0} be a stationary stochastic process with mean µ, variance σ2, and

autocorrelation function ρ(k). Now, we define the new covariance stationary time

series or the corresponding aggregated series,

X(m)(k) :=
1

m

km∑

t=(k−1)m+1

Xt, k = 1, 2, . . . ,

where m is the length of each block.

If the process {Xt, t > 0} is self-similar and a property of stationary increments

of self-similar processes of Section 2 can be used, then the sample mean can be

written as

X(m)(k) =
1

m

km∑

t=(k−1)m+1

Xt =
1

m
(Ykm − Y(k−1)m) =

1

m
(Ym − Y0)

d
=

1

m
·mH(Y1 − Y0) = mH−1(Y1 − Y0).

Therefore,

Var(X(m)(k)) = m2(H−1)Var(Y1 − Y0) = m2(H−1)σ2.

For N/m and m large enough ,

X(m) d∼ mH−1S,

where X(m) = {X(m)(k), k = 1, 2, . . .} and S is a process which depends on the

distribution of X but does not depend on m. Hence, for each m, the process X(m)

is self-similar with self-similarity parameter H.

The process {Xt, t > 0} is called exactly self-similar if for all m, Var(X(m)) =

m2(H−1)σ2 and

ρ(m)(k) = ρ(k), k ≥ 0.

On the other hand, the process {Xt, t > 0} is called asymptotically self-similar if for

all k large enough,

ρ(m)(k) → ρ(k) as m →∞,

where ρ(k) is given by (4).

For finite variance processes,

H = d + 1/2,
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and for infinite variance processes,

H = d + 1/α.

B.3. Some methods for estimation of the Hurst parameter

B.3.1. R/S method

The methods of time series analysis have been recognized as important tools for

assisting in solving problems related to the management of water resources. R/S

method is one of them and proposed in early periods. For the purpose of illustration,

we summarize the method of R/S from Beran (1994).

The Nile River has been known for its long-term behavior. The famous hydrol-

ogist Hurst noticed these characteristics when he was investigating the question of

how to regularize the flow of the Nile River. His discovery can be described as fol-

lows: Suppose we want to calculate the capacity of a reservoir such that it is ideal for

the time span between t and t+k. To simplify matters, assume that time is discrete

and that there are no storage losses (caused by evaporation, leakage, etc.). By ideal

capacity we mean that we want to achieve the following: that the outflow is uniform,

that at time t+k the reservoir is as full as at time t, and the reservoir never overflows.

Let Xi denote the inflow at time i and Yj =
∑j

i=1 Xi the cumulative inflow up

to the time j. Then the ideal capacity can be shown to be equal to

R(t, k) = max
0≤i≤k

[
Yt+i − Yt − i

k
(Yt+k − Yt)

]
− min

0≤i≤k

[
Yt+i − Yt − i

k
(Yt+k − Yt)

]
.

R(t, k) is called the adjusted range where (Yt+i − Yt) − i
k
(Yt+k − Yt) is equal to∑t+i

j=t+1 Xj − i
k

∑t+k
j=t+1 Xj. It can be regarded as the difference of the real total

inflow and estimative total inflow for i units.

In order to study the properties that are independent of the scale, R(t, k) is

standardized by

S(t, k) =

√√√√1

k

t+k∑
i=t+1

(Xi −X t,k)2,

where X t,k = k−1
∑t+k

i=t+1 Xi. Note that S2(t, k) is equal to (k−1)/k times the usual

sample variance of Xt+1, . . . , Xt+k. The ratio

R/S(t, k) =
R(t, k)

S(t, k)

32



is called the rescaled adjusted range or R/S-statistic.

Calculate the ratio R/S(t, k) for all possible values of t and k, i.e. for each k,

there are n− k + 1 replicates R/S(k) = {R/S(0, k), . . . , R/S(n− k, k)}.

Hurst plotted the logarithm of R/S against several value of k. He observed that

log[R/S] was scatter around a straight line with a slope that exceed 1/2 for large k.

If Xi is long-range dependent, then

log E[R/S] ≈ a + H log k, with H > 1
2

as k →∞,

where H is the Hurst parameter.

From a statistical point of view it, the following difficulties aries (Embrechts and

Maejima (2002)):

(1) It is difficult to decide from which k the asymptotic behavior starts, and so how

many points are to be included in the least squares regression.

(2) For finite samples, the distribution of R/S is neither normal nor symmetric, and

the values of R/S for different time points and lags are not independent from

each other. This raises the equation of whether least squares regression is ap-

propriate.

(3) Only very few values of R/S can be calculated for large values k, thus making

the inference less reliable even at large lags.

Because of these problems, Beran (1994) concludes that it seems difficult to

derive the results of statistical inference based on the R/S method. In Appendix

B.4.1., we use the Nile River data to explain the difficulty of choosing the cut-off

point by the estimate of H obtained by fitting a least squares line. In addition, we

also point out the distribution of R/S is neither normal nor symmetric.

In the case of the Nile River data, Hurst observed that the parameter H is equal

to 0.91 (Gaudenta Sakalauskien (2003)). Today the R/S analysis is mostly used for

the hydrological studies such as river flow, precipitation, temperature, etc. Based

on the above illustration, the R/S method can be summarized as follows:

Step 1. Formulate the partial sum of the series Wik, where

Wik = (Xt+1 + Xt+2 + . . . + Xt+i)− i

k
(Xt+1 + Xt+2 + . . . + Xt+k)
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for i = 1, 2, . . . , k. For i = 0, W0k = 0.

Step 2. Find R(t, k) = max(0,W1k,W2k, . . . ,Wkk)−min(0,W1k, W2k, . . . , Wkk).

Step 3. Calculate S(t, k), which is equal to the square root of (k − 1)/k times the

usual sample variance of Xt+1, . . . , Xt+k, ie.

S(t, k) =

√√√√1

k

t+k∑
i=t+1

(Xi −X t,k)2,

where X t,k = k−1
∑t+k

i=t+1 Xi.

Step 4. Calculate the ratio R/S = R(t, k)/S(t, k).

Step 5. Step 1 to 4 are repeated for several k.

Step 6. Plot log(R/S) against log k and use least square fit to evaluate the slope of

the straight line which is equal to the parameter Ĥ.

Next, in order to understand the procedures for the R/S method, an example is

given:

Example 3 : Estimation of parameter H for R/S method

Assume that the process X(t) is

1157, 1088, 1169, 1169, 984, 1322, 1178, 1103, 1211, 1292, 1124, 1171, 1133, 1227,

1142, 1216, 1259, 1299, 1232, 1117.

In this case, the length of time series, n, is equal to 20.

For k = 3:

W13 = Xt+1 − 1

3
(Xt+1 + Xt+2 + Xt+3),

W23 = (Xt+1 + Xt+2)− 2

3
(Xt+1 + Xt+2 + Xt+3),

W33 = (Xt+1 + Xt+2 + Xt+3)− 3

3
(Xt+1 + Xt+2 + Xt+3) = 0,

R(t, 3) = max(0,W13,W23,W33)−min(0,W13,W23,W33),

S(t, 3) =

√√√√1

3

t+3∑
i=t+1

(
Xi −X t,3

)2
, where X t,3 =

Xt+1 + Xt+2 + Xt+3

3
, and

R/S(t, 3) = R(t, 3)/S(t, 3).
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The methods are the same for other k, k = 4, . . . , 15.

Therefore,

R/S(3) = {R/S(0, 3), R/S(1, 3), . . . , R/S(17, 3)}
= {1.40083, 1.41421, 1.41421, 1.26151, 1.28048, 1.33152, 1.3499, 1.27872,

1.23906, 1.36124, 1.39101, 1.29503, 1.40888, 1.40417, 1.31759, 1.23923,

1.29585, 1.31723},
...

R/S(15) = {R/S(0, 15), R/S(1, 15), . . . , R/S(5, 15)}
= {3.59363, 3.31974, 2.74109, 2.64638, 2.7511, 3.435}.

Now, we plot log(R/S) against log k and find the slope using least square fit. By

the result of calculation in this case, the regression line is log[R/S] = −0.146643 +

0.593122 log[k] and the slope is Ĥ = 0.593122.
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Figure 10 : The result of the example for R/S method.

B.3.2. Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) proposed by Peng et al. (1994)

has been established as an important tool for the detection of long-range (auto-

)correlations in time series with non-stationarities. It has been applied to diverse

fields of DNA, heart rate dynamics, human gait, long-time weather records, cloud

structure, economical time series, etc..

In Kantelhardt et al. (2002), the method of the multifractal characterization of

nonstationary time series is proposed, namely multifractal DFA (MF-DFA), which is

based on a generalization of the detrended fluctuation analysis (DFA). The different

orders of the DFA technique are studied, that allow to eliminate different orders of
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trends. For stationary time series, h(2) is identical to the Hurst parameter H (see

Feder (1988)). Here, in order to get the parameter H of self-similarity and simplify

the question, we consider the q = 2 and disregard a short part at the end of the

profile may remain. Hence, the MF-DFA method with q = 2 consists of five steps

which is illustrated as follows:

Consider a stochastic process {Xt, t > 0} with equidistant measurements. In

most application, the index t will correspond to the time of the measurements.

Step 1: Determine the profile

Y (i) =
i∑

t=1

[
Xt −X

]
, i = 1, . . . , N,

where X is the mean of the series X1, . . . , XN .

Step 2: Divide the profile Y (i) into Ns ≡ int(N/s) nonoverlapping segments of

equal length s. Since the length N of the series is often not a multiple

of the considered time scale s, a short part at the end of the profile may

remain. For the purpose of simplifying the question, this part of the series

is disregard.

Step 3. For each segment ν, ν = 1, . . . , Ns,

F 2(s, ν) ≡ 1

s

s∑
i=1

{Y [(ν − 1)s + i]− yν(i)}2 ,

where yν(i) is the fitting polynomial in segment ν. Linear, quadratic, cubic,

or higher order polynomials can be used in the fitting procedure (conven-

tionally called DFA1, DFA2, DFA3, . . . ). By construction, F2(s) is only

defined for s ≥ m + 2, where m is the order of fitting polynomial.

Step 4. Calculate the fluctuation function

F2(s) =

√√√√ 1

Ns

Ns∑
ν=1

F 2(s, ν).

Step 5. We are interested in how F2(s) depends on the time scale s. Hence, Steps

2 to 4 must be repeated for several time scales s.

36



Step 6. Plot log(F2(s)) against log(s) and use least square fit to evaluate the slope

of the straight line which is equal the parameter H.

In fact, Steps 3 and 4 can be merged into

F2(s) =

√√√√ 1

Nt

Nt∑
i=1

[Y (i)− yν(i)]2,

where Nt = s×Ns and F2(s) is the square root of MSE.

Next, in order to understand the procedures to estimate the parameter H for

the DFA method, an example is given:

Example 4 : Estimation of the parameter H for the DFA method

Assume that the process X(t) is

1157, 1088, 1169, 1169, 984, 1322, 1178, 1103, 1211, 1292, 1124, 1171, 1133, 1227,

1142, 1216, 1259, 1299, 1232, 1117. 1157, 1155, 1232, 1083, 1020, 1394, 1196, 1148,

1083, 1189, 1133.

In this case, the length N of the series is 30 and mean X is 1174.2.

For s = [100.7] = 5, then we divide the time series into blocks of length 5 and the

number of blocks is Ns = 6.

The cut-off points we chose are s = [100.7], [100.8], . . . , [101.1] and the fitting polyno-

mial in segment is linear, i.e. DFA1. Then, the F2(s) are

(F2(5), F2(6), F2(7), F2(10), F2(12))

= (48.4352, 45.2424, 62.6238, 67.227, 83.1478).
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Figure 11 : The figure for the example of DFA method.
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Hence, we can plot log(F2(s)) against log(s) and use least square fit to evaluate the

slope of the straight line which is equal the parameter Ĥ = 0.54568.

B.3.3. Moment method

Given a time series {Xt, t > 0}, of length N , and consider the aggregated series,

i.e.

X(m)(k) :=
1

m

km∑

i=(k−1)m+1

Xi, k = 1, 2, . . . , [N/m],

where m is the length of each block.

We take the nth absolute moment of this series,

AM (m)
n =

1

N/m

N/m∑

k=1

|X(m)(k)−X|n,

where X is the overall series mean. The aggregated series X(m) asymptotically be-

haves like Cmn(H−1) for large m, and thus AM
(m)
n is proportional to mn(H−1).

For successive values of m, the sample absolute moment of the aggregated series

is plotted versus m on a log-log plot. The result should be a straight line with a

slope of n(H−1). Hence, the estimation of H is equal to (slope/n)+1. This method

is used for n = 1, and it reduces to Absolute Value method (in short Absolute). For

n = 2, it reduces to the Variance method (in short Variance).

We assume that both N and N/m are large to ensures that both the length of

each block and the number of blocks is large. In practice, the points at the very low

and high ends of the plots are not used to fit the least-squares line. If the low end of

the plot is used, the short-range effects can distort the estimates of H and there are

too few blocks to get reliable estimates of AM
(m)
n at the very high end of the plot.

The choices of the cut-offs are 100.7 and 102.5 (see Taqqu (1998)). In Section 5, we

use m = [100.7], . . . , [102.5] to estimate the parameter H for the FBM and FARIMA

processes, where [ ] denotes the greatest integer function.

Based on the above illustration, the Moment method can be summarized as

follows:

Step 1. Calculate the overall series mean X and divide the time series of length N

into blocks of length m, i.e.

(X1, X2, . . . , Xm), (Xm+1, . . . , X2m), . . . , (X([N/m]−1)m+1, . . . , X[N/m]m).
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Step 2. Average the series over each block, then we obtain the aggregated series, i.e.

X(m)(1), X(m)(2), . . . , X(m)([N/m]),

where X(m)(k) = 1
m

(X(k−1)m+1 + . . . + Xkm).

Step 3. Subtract X from the series of the Step 2 and then take absolute value and

power n. Then we obtain the new series

|X(m)(1)−X|n, |X(m)(2)−X|n, . . . , |X(m)([N/m])−X|n.

Step 4. Calculate the mean of the series of Step 3, then we can get the value of

AM
(m)
n .

Step 5. Steps 1 to 4 are repeated for several length m.

Step 6. Plot log(AM
(m)
n ) against log(m) and use least square fit to evaluate the

slope of the straight line.

Step 7. Calculate Ĥ =
slope

n
+ 1.

Next, in order to understand the procedures to estimate the parameter H for

the moment method, an example is given:

Example 5 : Estimation of the parameter H by momoent method

Assume that the process X(t) is

1157, 1088, 1169, 1169, 984, 1322, 1178, 1103, 1211, 1292, 1124, 1171, 1133, 1227,

1142, 1216, 1259, 1299, 1232, 1117. 1157, 1155, 1232, 1083, 1020, 1394, 1196, 1148,

1083, 1189, 1133.

In this case, we use the absolute value method (n = 1). The length N of the series

is 30 and mean X is 1174.2.

For m = [100.7] = 5, then we divide the time series into blocks of length 5, i.e.

(X1, X2, . . . , X5), (X6, . . . , X10), . . . , (X25, . . . , X30).

Then, the aggregated series is

(X(5)(1), X(5)(2), . . . , X(5)(6))

= (1113.4, 1221.2, 1159.4, 1224.6, 1176.8, 1149.8),
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and we can obtain

AM
(5)
1 =

1

6

6∑

k=1

|X(5)(k)−X| = 33.3333.

Repeat the same ways for other m, m = [100.8], . . . , [101.1].

Therefore, we can get

(AM
(5)
1 , AM

(6)
1 , AM

(7)
1 , AM

(10)
1 , AM

(12)
1 )

= (33.3333, 24.16, 16.3571, 11.8667, 6.125).

Finally, we plot log(AMm
1 ) against log m and find the slope using least square fit.
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Figure 12 : The result of the example for moment method with n = 1.

B.4. Nile River data

The Nile River is one of the world’s great assets. Since ancient time, the Nile

River has been known for its long-term behavior. The long periods of dryness are

followed by the long periods of floods. As far as floods are concerned, it has positive

and negative significant impacts on the Nilotic countries. On the positive side, it

can provide water for drinking, industrial activities, agricultural activities and etc..

On the negative side, floods have great destructive forces on the people and environ-

ment. In addition to knowing flood impacts and mitigating the negative impacts,

people should properly utilize the floodwater (see Shawki et al. (2005)).

According to data of yearly minimal water levels of the Nile River for the years

622-1284, the time series, sample autocorrelations, and sample partial autocorre-

lations are sketched for illustrations. From Figure 13, the sample autocorrelations
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indeed exhibit strong long-range dependence. Following are estimations of the pa-

rameter H of the Nile River data by using some methods.
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Figure 13 : Yearly minimum water levels of the Nile River.

B.4.1. R/S method for the Nile River data

In this part, the R/S method with k = 10, 20, ..., 300, t = 0, 50, ..., 50[N−k
50

] is used

to estimate the parameter H for the Nile River data. The R/S plot is presented

in Figure 14 and the estimation of H is equal to 0.905822. Figure 15 shows that

the distribution of R/S is neither normal nor symmetric as mentioned in Appendix

B.3.1., for Nile River data with k = 10, 20, ..., 300, and t = 0, 50, ..., 50[N−k
50

].

41



1.2 1.4 1.6 1.8 2 2.2 2.4
Log@kD

0.5

0.75

1.25

1.5

1.75

Log@R�SD R�S plot for Nile River data

Figure 14 : R/S plot for Nile River data with k = 10, 20, ..., 300,

t = 0, 50, ..., 50[N−k
50

] and Ĥ = 0.905822.
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Figure 15 : Histogram for R/S values of the Nile River data with

k = 10, 20, ..., 300, and t = 0, 50, ..., 50[N−k
50

].
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In the following, the different cut-off points of k and t are utilized to evaluate the

values of H for the Nile River data and the results are listed in Table 21. It seems

difficult to derive the results of statistical inference based on the R/S method indeed.

Table 21 : The estimate of H of different cut-off

point of k and t for the Nile River data.

k t H

10, 20,. . . , 60 0, 10, 20,. . . , A 0.803083

10, 20,. . . , 60 0, 50, 100,. . . , B 0.833445

10, 20,. . . , 60 0, 100, 200,. . . , C 0.754114

10, 20,. . . , 100 0, 10, 20,. . . , A 0.821269

10, 20,. . . , 100 0, 50, 100,. . . , B 0.829434

10, 20,. . . , 100 0, 100, 200,. . . , C 0.715886

10, 20,. . . , 150 0, 10, 20,. . . , A 0.863121

10, 20,. . . , 150 0, 50, 100,. . . , B 0.869631

10, 20,. . . , 150 0, 100, 200,. . . , C 0.802018

10, 20,. . . , 200 0, 10, 20,. . . , A 0.893457

10, 20,. . . , 200 0, 50, 100,. . . , B 0.900732

10, 20,. . . , 200 0, 100, 200,. . . , C 0.856659

10, 20,. . . , 250 0, 10, 20,. . . , A 0.903146

10, 20,. . . , 250 0, 50, 100,. . . , B 0.909349

10, 20,. . . , 250 0, 100, 200,. . . , C 0.884909

10, 20,. . . , 300 0, 10, 20,. . . , A 0.901177

10, 20,. . . , 300 0, 50, 100,. . . , B 0.905822

10, 20,. . . , 300 0, 100, 200,. . . , C 0.884932

10, 20,. . . , 350 0, 10, 20,. . . , A 0.89726

10, 20,. . . , 350 0, 50, 100,. . . , B 0.901345

10, 20,. . . , 350 0, 100, 200,. . . , C 0.89191

10, 20,. . . , 400 0, 10, 20,. . . , A 0.893802

10, 20,. . . , 400 0, 50, 100,. . . , B 0.898102

10, 20,. . . , 400 0, 100, 200,. . . , C 0.889256

[ ] denotes the greatest integer function.

A = 10[N−k
10

], B = 50[N−k
50

], and C = 100[N−k
100

].
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B.4.2. DFA method for the Nile River data

In this part, we use DFA method to estimate the parameter H for the Nile River

data with n = [100.7], [100.8],...,[102.5] where [ ] denotes the greatest integer function.

The result is showed in Figure 16 and Ĥ is equal to 0.89714.
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Figure 16 : DFA plot for Nile River data with n = [100.7], [100.8],...,[102.5].
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