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Abstract

This paper is concerned with the problem of finding an experimental

design for discrimination between two rival models and for model robust-

ness that minimizing the maximum bias simultaneously in binary response

experiments. The criterion for model discrimination is based on the T -

optimality criterion proposed in Atkinson and Fedorov (1975), which max-

imizes the sum of squares of deviations between the two rival models while

the criterion for model robustness is based on minimizing the maximum

probability bias of the two rival models. In this paper we obtain the opti-

mum designs satisfy the above two criteria for some commonly used rival

models in binary response experiments such as the probit and logit models

etc.

Keywords : Least square estimate (LSE), mean square error, model

discrimination, model robustness, symmetric location and scale family.
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1 Introduction

Optimum designs for precise estimation of model parameters have been discussed for

quite a long time. However, optimum designs for discrimination between models have

had less attention and have been developed only for some cases. There are some re-

searches discussing the design problem especially on how to discriminate between models.

See Chambers and Cox (1967), Atkinson and Fedorov (1975), Yanagisawa (1988, 1990)

and Müller and Ponce de Leon (1996) etc. Atkinson and Fedorov (1975) proposed the

T -optimum design criterion for model discrimination between two rival models which max-

imizes the ordinary sum of squared deviations at support points for two rival response

models. Following their idea, we look for the T -optimum designs for discriminating two

binary response models.

First, our main goal is to find the T -optimum designs with binary response models.

On the other hand, we would also like to consider the optimum design for prediction

with for model robustness in mind for binary response models as introduced by Huang

and Hwang (2004). It would be interesting to see how the T -optimum design in binary

response models performs in the sense of model robustness in estimation that minimizes

the maximum deviation between the true and assumed models.

A binary response experiment is that the response variable y takes only one of two

possible values, say 1 or 0. The relation between the response variable y and the indepen-

dent variable x is controlled by another random variable Z in the relation that random

variable Z is less than the independent variable x if and only if the response variable y is

1. We can only observe the result that whether the event {Z < x} happens or not. The
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mathematical expression is that

P{y(x) = 1} = P{Z < x} and P{y(x) = 0} = P{Z ≥ x}.

We do not know exactly what the distribution of Z is, but Z is conventionally assumed

to be from a symmetric location and scale family, that is,

FZ(x;µ, σ) = F (
x− µ

σ
) and FZ(x;µ, σ) = 1− FZ(−x;µ, σ)

for all x ∈ R, where F is called the standard distribution of this family.

There are several possible models discussed in many literatures, for examples, the

probit, logit, double exponential and the double reciprocal families. Moreover, the probit

and logit models are used most often. There are a lot of researches discussing the optimum

designs for binary response experiments with a given model under the assumption that Z

is from a symmetric location and scale family. The four families we have just mentioned

above are presented here,

1. probit : FZ(x) = F1(x;µ, σ) =
1√
2π

∫ (x−µ)/σ

−∞
e
−t2

2 dt

2. logit : FZ(x) = F2(x;µ, σ) =
e

x−µ
σ

1 + e
x−µ

σ

3. double exponential : FZ(x) = F3(x;µ, σ) =

∫ (x−µ)/σ

−∞

1

2
e−|t|dt

4. double reciprocal : FZ(x) = F4(x;µ, σ) =

∫ (x−µ)/σ

−∞

1

2(1 + |t|)2
dt

where µ and σ are unknown parameters.

1.1 Literatures Review

As mentioned before, there have been some researches discussing the design problem

about discrimination between binary response models. For different cases and purposes,
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the results are different. Results in Chambers and Cox (1967), Atkinson and Fedorov

(1975), Yanagisawa (1988) and Müller and Ponce de Leon (1996) are briefly described

below.

First, about optimum designs for model discrimination in general models Atkinson

and Fedorov (1975) proposed the T -optimality criterion related to maximizing the non-

centrality parameter of the χ2 distribution of residual sum of squares, which is equivalent

to maximizing the power of the F test for departures from the assumed model. They sum-

marized the properties of T -optimum designs in a theorem analogous to the celebrated

general equivalence theorem of Kiefer and Wolfowitz for D-optimum designs.

For logit and probit binary models, a first attempt to tackle the problem of model

discrimination was made by Chambers and Cox (1967). They considered the experiments

with only three dose levels and found the power of a significance test for the null hy-

pothesis that the response curve is logistic against the alternative that it is normal, and

vice versa. From this they gave a suitable spacing of dose levels for discrimination. They

stated that approximately 1000 observations are necessary for even modest sensitivity.

For binary data models, the Pearson chi-squared statistic and the log likelihood ratio

statistic are two measures which can be used for testing model adequacy. It is well known

(cf. Agresti(1990)) that both of them are asymptotically distributed as χ2
k−m0

under the

null hypothesis H0, and as χ2
k−m0,λ under the alternative hypothesis HA where k is the

number of observations and m0 is the number of parameters in the model under the null

hypothesis.

The noncentrality parameter λ is given by, respectively

λ =
k∑

i=1

ni
(FAi − F̂0i)

2

F̂0i(1− F̂0i)
(1.1)
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for Pearson chi-squared statistic and

λ = 2
k∑

i=1

ni(FAilog(
FAi

F̂0i

) + (1− FAi)log(
1− FAi

1− F̂0i

)) (1.2)

for log likelihood ratio statistic. Here, subscript 0 refers to the true model and A to the

rival one, the hat terms denote the eatimates, k refers to the number of experimental

units at each of which ni observations are taken, and m0 to the munber of parameters in

the H0 model.

Yanagisawa (1988) extended the work of Chambers and Cox (1967) and proposed a

test statistic, the weighted sum of squares, for discrimination between alternative binary

response models which is asymptotically equivalent to the log likelihood ratio statistic and

Pearson’s goodness of fit statistic. The result of Yanagisawa (1988), say TPS-optimum

design, is based on maximizing the noncentrality parameter of the Pearson’s chi-squared

statistic (1.1). They also presented procedure for finding the optimal designs. Under

certain conditions they proved that the maximum value of the power can be obtained

when the degrees of freedom of the test statistic is one ,i.e. the number of support points

is m0 + 1. Several mathematical properties of the incomplete gamma function ratio and

the non-central chi-squared distribution are required in the discussion and have been es-

tablished by them.

Based on maximizing the noncentrality parameter of the log likelihood ratio statistic

(1.2) Müller and Ponce de Leon (1996) tried to find the corresponding optimum design,

say TLR-optimum design. They proposed a sequential procedure to design optimum ex-

periments for discriminating between two binary data models. To be able to specify the

problem explicitly, not only the model link functions need to be provided but also their

associated linear predictor structures. Further more, they supposed that one of the models

is true although it is not known which of them. Under those assumptions, the procedure
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consists of making sequential choices of single experimental units to discriminate between

the rival models as efficiently as possible. A simulation study for the classical case of

probit versus logit model was presented.

1.2 Maxmin and minimax criteria

The purpose of this work is to design an experiment for discrimination between two rival

models and for estimation of the distribution function with model robustness property

at the same time. The maxmin criterion for model discrimination is based on the T -

optimality criterion proposed by Atkinson and Fedorov (1975). To distinguish from the

TPS- and TLR-optimum design criteria, we call it a TLS-optimum design criterion. To

be more explicitly, suppose the possible models of Z are from two symmetric location

and scale families with standard distributions F (x−µ0

σ0
) and G(x−µ

σ
) where µ0, σ0, µ and

σ are unknown parameters, and we do not know which one is the true model. In the

following,we firstly introduce the maxmin criterion.

A design is a set of distinct support points at x1, ... , xn with corresponding weights

w1, ... , wn, wi > 0,
∑
wi = 1, denoted by

ξ =

{
x1 ... xn

w1 ... wn

}
.

Without loss of generality, we assume F is the true model. A least square minimizer (µ̂, σ̂),

called LSM of the parameters in the second model, G, is a solution of the equation∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ̂

σ̂
)‖2ξ(dx) = min

µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx)

where ξ stands for the given design. A design is more favorable if it can yield as large

a value as possible of the sum of squares for lack of fit of the second model, which is
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equivalent to maximizing

TLS(ξ) =

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ̂

σ̂
)‖2ξ(dx)

= min
µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx).

Thus, the design ξ∗ which satisfies

TLS(ξ∗) = max
ξ

min
µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx)

is defined to be a TLS-optimum design.

Note that the TLS-criterion can be thought of as a maximin type of criterion. Huang

and Hwang (2004) considered the model robustness criterion to minimize the maximum

distance between the distribution functions under the true and assumed models which

can be thought of as a minimax type of criterion that is if ξ∗ is a minimax design then it

satisfies.

mB(ξ∗) = min
ξ

max
x∈R

|F (
x− µ0

σ0

)−G(
x− µ̂

σ̂
)|,

where (µ̂, σ̂) are minimizers of (µ, σ) of the absolute deviation above.

Now we look for the TLS-optimum design and then verify that it is also a minimax

bias design. In the process of finding the desired TLS-optimum design, we need to use

the equivalence theorem of Atkinson and Fedorov (1975) to obtain our result. Now, we

introduce the equivalence theorem of Atkinson and Fedorov (1975) in Theorem 1.1 as

follows.

Theorem 1.1 Assume that

(a) the design region χ is compact and F (x; θ) and G(x; θ) are continuous for x∈ χ.

(b) F (x; θ) and G(x; θ) are differentiable functions of θ.
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(c) the least square minimizers, (µ̂, σ̂), of (µ, σ) is unique.

Given the preceding assumptions:

(i) a necessary and sufficient condition for a design ξ∗ to be TLS-optimum is fulfillment of

the inequality

ψG(x, ξ∗) ≤ max
ξ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ̂

σ̂
)‖2ξ(dx) = TLS(ξ∗),

where ψG(x, ξ∗) = {F (x−µ0

σ0
)−G(x−µ̂

σ̂
)}2;

(ii) at the support points of the optimum design ψG(x, ξ∗) achieves its upper bound.

2 Desired TLS-optimum design

In this section, we find the TLS-optimum design in binary response models. In the

following, we would like to present some necessary properties of the TLS-optimum design

and use these properties to find the desired TLS-optimum design.

2.1 Properties of TLS-optimum designs

First note that for symmetric binary response models there exists a TLS-optimum de-

sign which is also symmetric. This property can be established by showing the concavity

and the symmetry properties of the mapping ξ → TLS(ξ), when the true and assumed

models are from symmetric location and scale family. For all symmetric designs, the only

LSM of the mean parameter, µ, in the assumed models is the mean parameter, µ0, in

the true model. Any of the two- and three-point symmetric designs is not a TLS-optimum

for binary response models. Last, for all symmetric designs with odd numbers, 2n + 1,

of support points are not TLS-optimum designs. We summarize these properties of the
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mapping, ξ → TLS(ξ), and the TLS-optimum designs in two Lemmas below and the proofs

are delayed to appendix.

Lemma 2.1. For an arbitrary design ξ1, if ξ2 is the reflected design of ξ with respect to

µ0, let ξ̃ = αξ1 + (1− α)ξ2 where 0 < α < 1, then

(i)TLS(ξ̃) ≥ αTLS(ξ1) + (1− α)TLS(ξ2),

(ii)TLS(ξ1) = TLS(ξ2).

Lemma 2.2. Three properties of TLS-optimum designs are as follows

(i) For all symmetric designs, the only LSM of µ is µ0.

(ii) Any of two- and three-point symmetric designs is not a TLS-optimum design.

(iii) Any symmetric design with odd numbers of support points is not TLS-optimum.

2.2 TLS-optimum design for binary response models

In previous subsections, we have shown that two- and three-point symmetric designs

are not TLS-optimum designs. Before we discuss the symmetric four-point designs, we

have to define some notation first.

Let σ∗ satisfy

max
x>0

{F (
x− µ0

σ0

)−G(
x− µ0

σ∗
)} = −min

x>0
{F (

x− µ0

σ0

)−G(
x− µ0

σ∗
)}, (2.1)

a = argmin
x>0

{F (
x− µ0

σ0

)−G(
x− µ0

σ∗
)} − µ0, (2.2)

b = argmax
x>0

{F (
x− µ0

σ0

)−G(
x− µ0

σ∗
)} − µ0 (2.3)

and w =
b · g( b

σ∗
)

2[b · g( b
σ∗

) + a · g( a
σ∗

)]
where g(·) = G′(·). (2.4)
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Now consider the symmetric four-point design ξ∗ with supports µ0 − b, µ0 − a, µ0 + a,

µ0 + b and corresponding weights 1
2
−w,w,w, 1

2
−w respectively, where σ∗ a, b and w are

defined in (2.1) - (2.4), then the design ξ∗ is defined as

ξ∗ =

{
µ0 − b µ0 − a µ0 + a µ0 + b
1
2
− w w w 1

2
− w

}
.

If the true model is with distribution F (x−µ0

σ0
) but the assumed model is with distri-

bution G(x−µ
σ

) where µ and σ are unknown, then (µ̂N , σ̂N), the estimated LSM of (µ, σ),

is proved to converge to (µ0, σ
∗) as the number of observations N → ∞, that is,

lim
N→∞

µ̂N = µ0, lim
N→∞

σ̂N = σ∗,

the details of the proof is delayed to Appendix B.

Under the assumption that σ∗ is the only LSM of σ for ξ∗, we can use the result of

Atkinson and Fedorov (1975) to claim that the design ξ∗ defined above is a TLS-optimal

design. Since (µ0, σ
∗) is also the resulting minimizers of the minimum bias design that

minimizes the maximum distance between the two distributions, we can say that the

TLS-optimum design ξ∗ is also a model robust design that minimizes the maximum bias.

In the following we present results for a special case when the assumed model is with

distribution of the probit family.

In the following, we prove that the design ξ∗ defined above is a TLS-optimal design for

the case when the assumed model is with distribution of probit family, by first proving

that σ∗ is the only LSE of σ for ξ∗ and then use the result of Atkinson and Fedorov

(1975) to verify it. In the following, we illustrate that σ∗ is the only LSE of σ for ξ∗. Let
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us recall the representation of least square minimizers of the parameters in the second

model, G, are the solutions of the equation∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ̂

σ̂
)‖2ξ(dx) = min

µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx)

and define

h(µ, σ, ξ∗) = w{[F (
a

σ0

)−G(
a− (µ0 − µ)

σ
)]2 + [F (

a

σ0

)−G(
a+ (µ0 − µ)

σ
)]2}

+(
1

2
− w){[F (

b

σ0

)−G(
b− (µ0 − µ)

σ
)]2 + [F (

b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2}.

Since we have shown that µ0 is the only LSM of µ, replacing µ̂ with µ0, then

h(µ0, σ, ξ
∗) = 2w[F (

a

σ0

)−G(
a

σ
)]2 + 2(

1

2
− w)[F (

a

σ0

)−G(
a

σ
)]2 (2.5)

and

∂

∂σ
h(µ0, σ, ξ

∗) = 4w[F (
a

σ0

)−G(
a

σ
)]g(

a

σ
)
a

σ2
+ 4(

1

2
− w)[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
)
b

σ2
.

In order to determine the uniqueness of the LSE of σ , a sufficient condition is to check

the sign of the partial derivative for σ of the h function. Let D(σ) = g( a
σ∗

)g( b
σ
)−g( a

σ
)g( b

σ∗
)

where g(·) is the probability density function of the assumed model. We verify that the

sign of ∂
∂σ
h(µ0, σ, ξ

∗) is the same as D(σ) in Lemma 2.3 below and the proof is delayed to

the appendix.

Lemma 2.3. Let the h function be defined as (2.5), then the sign of ∂
∂σ
h(µ0, σ, ξ

∗) is the

same as D(σ).

In what follows, we consider a case that the assumed model is probit, that is, g(·)

in (2.5) is with the normal probability density function. We verify that σ∗ is the only
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LSE of σ in Lemma 2.4 and find a candidate of the TLS-optimum design then prove it in

Theorem 2.5 to be TLS-optimal when the assumed model is probit.

Lemma 2.4. Let σ∗ be defined as in (2.1)-(2.4) and the assumed model g(·) is with the

normal probability density function, then σ∗ is the only LSM of σ.

Proof. Consider

D(σ) = g(
a

σ∗
)g(

b

σ
)− g(

a

σ
)g(

b

σ∗
)

=
1

2π
exp{− a2

2σ∗2
− b2

2σ2
} − 1

2π
exp{− a2

2σ2
− b2

2σ∗2
}

=
1

2π
exp{− a2

2σ∗2
− a2

2σ2
}[exp{−b

2 − a2

2σ2
} − exp{−b

2 − a2

2σ∗2
}]

since the exponential function is positive for all real value and it is also a strictly increas-

ing function hence D(σ) equals to zero only as σ = σ∗. That is to say, σ∗ is the only LSE

of σ. �

Since we have shown that (µ0, σ
∗) is the only pair of the LSE of (µ, σ), we may

say that the design ξ∗ defined above is exactly a TLS-optimum design by using the equiv-

alence theorem of Atkinson and Fedorov (1975) to verify it.

Theorem 2.5. Let a, b, σ∗ and w be defined as above, then when the assumed model is

probit ξ∗ is a desired TLS-optimum design, where

ξ∗ =

{
µ0 − b µ0 − a µ0 + a µ0 + b
1
2
− w w w 1

2
− w

}
.

As the LSE of (µ, σ), (µ0, σ
∗), coincide with the result of Huang and Hwang (2004),

ξ∗ = argmin
ξ

max
x∈R

|F (
x− µ

σ
)−G(

x− µ̂

σ̂
)|,
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is also minimax when the assumed model G is probit. It is interesting to find that ξ∗ is

not only a TLS-optimum design but also minimax.

2.3 General cases

In the previous section, it is shown that σ∗ is the LSE of σ for the design ξ∗ defined

before. However, in order to use the main result of Atkinson and Fedorov (1975) to say

that the design ξ∗ defined above is the desired TLS-optimum design, it needs to be showed

that σ∗ is the unique LSE of σ for the design ξ∗. Here we can not say that they possess

this property for all binary response models. However, we may discuss those models con-

sidered most often in many literatures.

The cases that the assumed models are with double-exponential or double-reciprocal

models can be proved that σ∗ is the unique LSM of σ for the design ξ∗ by using similar

argument as above (see Appendix C). However, when the assumed model is with distri-

butions of logit family, it is difficult to show that σ∗ is the only LSM of σ. Although

we do not prove that the LSM of σ is unique analytically, but we see from numerical

computation result that the LSM is unique numerically. For general cases, only when

the assumption that the LSM of σ is unique is satisfied, the same method can be used

to find the TLS-optimum design.

Table 1 shows the numerical results of the TLS-optimum designs for discrimination and

with minimum biases. F1, F2, F3 and F4 stands for the probit, logit, double-exponential

and double-reciprocal models, respectively and σ, a, b and w are defined as before.
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Table 1: Results of the TLS-optimum design with true parameters (0,1)
Models Supports Weights

True , Assumed σ∗ a, b w Maximum bias
F1, F2 .5876 .5710 , 2.0430 .1716 .00946
F1, F3 .8744 .3769 , 1.9104 .2337 .02820
F1, F4 .4770 .3157 , 2.2431 .1882 .07523
F2, F3 1.495 .3201 , 1.7750 .2571 .01978
F2, F4 .8194 .2945 , 2.3520 .1873 .06702
F3, F4 .5317 .3270 , 3.3381 .1673 .05095

3 Efficiency and bias comparisons

In this section, we are going to illustrate the relationship between TLS-optimum design

for model discrimination and minimum bias design for model robustness. In the process

of searching for the desired TLS-optimum design, results of Huang and Hwang (2004)

are adopted where the maximum bias is minimized. Hence, the design we propose now

not only can discriminate between models with reasonable power but also has the model

robustness property that minimizes the maximum bias of the assumed model.

For binary data models, there are two useful measures for testing model adequacies

are available, the Pearson’s chi-squared statistic and the log likelihood ratio statistic.

The result of Yanagisawa (1988), say TPS-optimum design, is based on maximizing the

noncentrality parameter of the Pearson’s chi-squared statistic (1.1), while that of Müller

and Ponce de Leon (1996) is based on maximizing the log likelihood ratio statistic (1.2)

to find the TLR-optimum design. We compare performances of the TLS-optimum design,

with theirs. Table 2 and Table 3 report N(.5), the minimum number of observations

necessary to achieve a power of 50% at a significance level 5%, and the corresponding

efficiency and maximum bias when the true model is probit(0,1) and the assumed model

is logitand vice versa.
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The design we propose may not be the most powerful with respect to the Pearson’s

goodness of fit test or the likelihood ratio teat, but it possesses the good property that

minimizes the maximum bias of the assumed model. In other words, if we make the

wrong choice of the true model, the estimated probability at any quantile would not

be far from the true one and the maximum bias would be bounded by a small value

anywhere. The efficiencies of TLS-optimum design w.r.t. TPS- and TLR-optimum design

are 71.5%(= 1629
2280

) and 64.6%, respectively when the true model is from probit model and

are 52.4% and 71.5%, respectively when the true model is from logit model.

Table 2: Comparison of efficiencies for H0:logit(µ, σ) v.s. HA:probit(0,1) case
criteria (µ, σ) N(.5) max|bias| efficiency
TLS- (0, 0.5876) 2280 2049 0.0095
TPS- (0, 0.5553) 1629 – 0.0221 effPS(TLS) = 71.5%
TLR- (0, 0.5528) – 1323 0.0221 effLR(TLS) = 64.6%

Table 3: Comparison of efficiencies for H0:probit(µ, σ) v.s. HA:logit(0,1) case
criteria (µ, σ) N(.5) max|bias| efficiency
TLS- (0, 1.7018) 1614 1827 0.0095
TPS- (0, 1.9311) 845 – 0.0364 effPS(TLS) = 52.4%
TLR- (0, 1.8332) – 1036 0.0250 effLR(TLS) = 71.5%

3.1 Numerical computation of the corresponding bias and MSE

Some numerical computation and simulations are presented here. First, we compute

the theoretical value of the probability bias of qth quantile as the number of observations

N → ∞, i.e.

bias∞(q) = q − F (G−1(q;µ0, σ
∗);µ0, σ0),
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where F (·;µ0, σ0) is the true model, and G(·;µ0, σ
∗) is the assumed model. We also point

out the maximum and minimum of bias∞(q) for all q >0.5, say qM and qm from each design

respectively to compare the maximum probability bias. Then, we use 2000 observations

per simulation run to compute the simulated probability biases and mean square errors

of some qth quantiles and the number of simulation runs is 1000. The reason we use 2000

observations per run is that about 2000 observations are needed for TLS-optimum design

to attain power 50% at significance level 5%. For q ∈ (1
2
, 1), the simulated bias and MSE

are computed by

bias1000(q) = q − 1

1000

1000∑
n=1

F (x̃q,n),

MSE1000(q) =
1

1000

1000∑
n=1

(q − F (x̃q,n))2,

where x̃q,n = G−1(q; µ̂, σ̂), µ̂ and σ̂ are the LSEs.

3.2 The probit and logit case

When the true model is probit with mean 0 and variance 1 but the assumed model is

logit, the TLS-, TPS- and TLR-optimum design are compared and the results are presented

in Table 4 - Table 6, respectively. We can see that the maximum bias from the TLS-

optimum design is smaller than that of the others but the mean square errors are not

outstanding over all design region, but for region with quantiles near the one with the

maximum bias are smaller than those of other designs. This is not surprising as each

design should perform quite well near the quantiles where the design supports are.

The case when the true model is logit with mean 0 and variance 1 but the assumed

model is probit, the TLS-, TPS- and TLR-optimum design are also compared and the results
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are presented in Table 7 - Table 9, respectively. The results are similar to those of the

previous cases that the maximum bias of TLS-optimum design is the smallest in the three

designs and the mean square errors of the TLS-optimum design are smaller than those of

the other designs near the quantile with minimum bias.

3.3 Simulation of small sample size in the probit and logit case

In Table 2, we can see that N(.5), the minimum number of observations necessary to

achieve a power of 50% at a significance level 5% of the three optimum designs respec-

tively, is greater than a thousand when the true model is with probit model. When the

true model is with logit model, N(.5) is greater than 800 which is also a large number of

observations. Since in realistic situation, it is usually difficult to carry out a experiment

with more than a thousand observations, we do some small sample size simulations to

compare the performance of the TPS- and the TLS-optimum designs. The number of sim-

ulation sample size is set to be 30, 50 and 80 respectively. The simulation procedure is the

same as the previous simulation which is with large sample size but the simulation run is

10,000 for each case. Besides the mean squared errors and the biases of the probability, we

also present the mean squared errors and the biases of quantile. The results are presented

in Table 10 -15.

The estimated value of parameters are also recorded and presnted in Table 16. We

can see that for location parameter µ, the estimation of the TLS-optimum design is better

than that of the TPS-optimum design, which means the estimator of µ in TLS-optimum

design is closer to the true parameter than the estimator of µ in TPS-optimum design.
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Table 4: Bias and MSE on TLS-optimum design under probit model with misspecified
logit link function (var × 10−5)

q xq x̃q F (x̃q) bias∞ x̃q F (x̃q) bias var
√
MSE

0.51 0.0251 0.0235 0.5094 0.0006 0.0257 0.5102 -0.0002 31.3 0.0177
0.55 0.1257 0.1179 0.5469 0.0031 0.1197 0.5476 0.0024 31.4 0.0179
0.6 0.2533 0.2383 0.5942 0.0058 0.2397 0.5946 0.0054 31.5 0.0185
0.7 0.5244 0.4979 0.6907 0.0093 0.4984 0.6907 0.0093 31.4 0.0200

0.7255qM
0.5993 0.5711 0.7160 0.0095 0.5714 0.7159 0.0096 31.1 0.0200

0.8 0.8416 0.8146 0.7924 0.0076 0.8140 0.7918 0.0082 28.7 0.0188
0.9 1.2816 1.2912 0.9017 -0.0017 1.2889 0.9006 -0.0006 17.9 0.0134

0.9700qm 1.8808 2.0427 0.9795 -0.0095 2.0378 0.9786 -0.0086 3.2 0.0103
0.99 2.3264 2.7002 0.9965 -0.0065 2.6931 0.9962 -0.0062 0.2 0.0064

Table 5: Bias and MSE on TPS-optimum design under probit model with misspecified
logit link function

q xq x̃q F (x̃q) bias∞(q) varasy.
√
MSE

0.51 0.0251 0.0222 0.5089 0.0012 0.000224 0.0150
0.55 0.1257 0.1114 0.5444 0.0057 0.000224 0.0160
0.6 0.2533 0.2252 0.5891 0.0109 0.000225 0.0186
0.7 0.5244 0.4705 0.6810 0.0190 0.000225 0.0242

0.7713qM
0.7431 0.6751 0.7502 0.0221 0.000222 0.0258

0.8 0.8416 0.7698 0.7793 0.0207 0.000205 0.0252
0.9 1.2816 1.2202 0.8888 0.0112 0.000128 0.0159

0.9853qm 2.1793 2.3369 0.9903 -0.0049 0.000023 0.0069
0.99 2.3264 2.5518 0.9946 -0.0046 0.000002 0.0048

Table 6: Bias and MSE on TLR-optimum design under probit model with misspecified
logit link function

q xq x̃q F (x̃q) bias∞(q) varasy.
√
MSE

0.51 0.0251 0.0221 0.5088 0.0012 0.000203 0.0143
0.55 0.1257 0.1109 0.5442 0.0058 0.000203 0.0154
0.6 0.2533 0.2241 0.5887 0.0113 0.000203 0.0182
0.7 0.5244 0.4684 0.6802 0.0198 0.000203 0.0244

0.7739qM
0.7518 0.6802 0.7518 0.0221 0.000201 0.0263

0.8 0.8416 0.7663 0.7783 0.0217 0.000185 0.0256
0.9 1.2816 1.2146 0.8877 0.0123 0.000116 0.0163

0.9862qm 2.2029 2.3600 0.9909 -0.0047 0.000021 0.0065
0.99 2.3264 2.5401 0.9965 -0.0045 0.000002 0.0047
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Table 7: Bias and MSE on TLS-optimum design (var × 10−5)

q xq x̃q F (x̃q) bias∞(q) x̃q F (x̃q) bias var
√
MSE

0.51 0.0221 0.0235 0.5107 -0.0007 0.0238 0.5108 -0.0008 32.5 0.0180
0.55 0.1106 0.1179 0.5533 -0.0033 0.1177 0.5531 -0.0031 32.4 0.0183
0.7 0.4671 0.4920 0.7094 -0.0094 0.4896 0.7082 -0.0081 33.0 0.0199

0.7160qm 0.5098 0.5357 0.7255 -0.0095 0.5311 0.7241 -0.0081 32.9 0.0198
0.8 0.7643 0.7897 0.8073 -0.0073 0.7855 0.8055 -0.0055 29.6 0.0181
0.9 1.2114 1.2024 0.8985 0.0015 1.1959 0.8967 0.0034 18.7 0.0141

0.9795qM
2.1318 1.9174 0.9700 0.0095 1.9066 0.9688 0.0107 4.5 0.0126

0.99 2.5334 2.1827 0.9813 0.0087 2.1704 0.9803 0.0097 2.4 0.0108

Table 8: Bias and MSE on TPS-optimum design for logit(0,
√

3
π

) and probit model

q xq x̃q F (x̃q) bias∞(q) varasy.
√
MSE

. 0.51 0.0221 0.0267 0.5121 -0.0012 0.000170 0.0131
0.55 0.1106 0.1338 0.5604 -0.0104 0.000170 0.0142
0.7 0.4671 0.5583 0.7335 -0.0335 0.000173 0.0231

0.7651qm 0.6510 0.7696 0.8015 -0.0364 0.000172 0.0249
0.8 0.7643 0.8961 0.8355 -0.0355 0.000155 0.0242
0.9 1.2114 1.3644 0.9224 -0.0224 0.000098 0.0150
0.99 2.5334 2.4768 0.9889 0.0011 0.000024 0.0069

0.9965qM
3.1158 2.8713 0.9946 0.0019 0.000013 0.0058

Table 9: Bias and MSE on TLR-optimum design for logit(0,
√

3
π

) and probit model

q xq x̃q F (x̃q) bias∞(q) varasy.
√
MSE

0.51 0.0221 0.0253 0.5115 -0.0015 0.000232 0.0153
0.55 0.1106 0.1270 0.5573 -0.0073 0.000232 0.0163
0.7 0.4671 0.5300 0.7234 -0.0234 0.000236 0.0251

0.7557qm 0.6226 0.6999 0.7807 -0.0250 0.000235 0.0269
0.8 0.7643 0.8506 0.8239 -0.0239 0.000212 0.0261
0.9 1.2114 1.2952 0.9129 -0.0129 0.000134 0.0169
0.99 2.5334 2.3512 0.9861 0.0039 0.000032 0.0074

0.9862qM
2.6934 2.4584 0.9886 0.0040 0.000017 0.0061

In the case of sample size 80 and in the sense of mean squared error, the perfor-

mance of the TLS-optimum design is better than the TPS-optimum design over where the



Section 3 19

Table 10: Bias and MSE on TLS-optimum design under probit model with misspecified
logit link function with sample size 30 (var × 10−5)

q
√
MSE(q) bias30(q) var30(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .25658 -.13456 .04773 1.45951 -.38179 1.9844

.03 .26042 -.13964 .04832 1.17724 -.41005 1.2178
.1 .24835 -.13192 .04428 .85196 -.35231 .6017
.2 .22008 -.10541 .03732 .64824 -.25574 .3548

.2745 .19860 -.08138 .03282 .55441 -.18884 .2717
.3 .19179 -.07267 .03150 .52936 -.16674 .2524
.4 .17056 -.03710 .02771 .46053 -.08277 .2052
.45 .16456 -.01879 .02673 .44312 -.04179 .1946
.5 .16243 -.00034 .02638 .43713 -.00110 .1911
.55 .16438 .01810 .02669 .44267 .03959 .1944
.6 .17021 .03642 .02765 .45968 .08057 .2048
.7 .19123 .07199 .03139 .52783 .16454 .2515

0.7255 .19801 .08069 .03269 .55274 .18663 .2707
.8 .21944 .10475 .03718 .64625 .25354 .3534
.9 .24769 .13135 .04409 .84969 .35011 .5994

0.97 .25967 .13926 .04803 1.17492 .40785 1.2141
.99 .25567 .13428 .04734 1.45727 .37959 1.9796

Table 11: Bias and MSE on TPS-optimum design under probit model with misspecified
logit link function with sample size 30
q

√
MSE(q) bias30(q) var30(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .253841 -.108778 .052603 1.7895 -.03032 3.20138

.03 .260781 -.111648 .055541 1.4799 -.12239 2.17509
.1 .252199 -.103259 .052942 1.1371 -.13758 1.27409
.2 .230926 -.077098 .047383 .9277 -.08725 .85301

.2745 .216298 -.053116 .043964 .8275 -.04398 .68286
.3 .211889 -.044480 .042919 .7991 -.02899 .63765
.4 .198464 -.009882 .039290 .7074 .02979 .49953
.45 .194333 .007280 .037712 .6714 .05908 .44725
.5 .191979 .023960 .036282 .6411 .08833 .40323
.55 .191318 .039873 .035013 .6166 .11758 .36636
.6 .192171 .054720 .033936 .5981 .14688 .33609
.7 .197392 .079850 .032588 .5817 .20565 .29612

0.7255 .199251 .084984 .032479 .5829 .22064 .29110
.8 .205253 .095997 .032913 .6032 .26392 .29422
.9 .213461 .098250 .035913 .6980 .31424 .38844

0.97 .217659 .089125 .039432 .9292 .29905 .77396
.99 .211433 .084390 .037582 1.1799 .20698 1.34920
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Table 12: Bias and MSE on TLS-optimum design under probit model with misspecified
logit link function with sample size 50 (var × 10−5)

q
√
MSE(q) bias50(q) var50(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .150881 -.054650 .0197783 1.049610 -.044518 1.09969

.03 .159039 -.063857 .0212158 .835982 -.153991 .67515
.1 .164593 -.071215 .0220191 .609238 -.189062 .33542
.2 .155993 -.062719 .0204003 .472543 -.151348 .20039

.2745 .146007 -.050166 .0188012 .410594 -.114518 .15547
.3 .142596 -.045131 .0182968 .394267 -.101466 .14515
.4 .131764 -.023078 .0168290 .350544 -.049558 .12042
.45 .128898 -.011191 .0164894 .340287 -.023449 .11524
.5 .128255 .000936 .0164484 .337693 .002680 .11403
.55 .129934 .013075 .0167118 .342730 .028810 .11663
.6 .133771 .024998 .0172696 .355312 .054919 .12323
.7 .146187 .047192 .0191436 .403021 .106826 .15101

.7255 .149915 .052278 .0197415 .420202 .119878 .16219
.8 .160639 .065006 .0215791 .484295 .156708 .20998
.9 .169808 .073771 .0233926 .623242 .194423 .35063
.97 .163948 .066446 .0224639 .851235 .159351 .69920
.99 .155013 .056990 .0207811 1.064880 .049878 1.13149

Table 13: Bias and MSE on TPS-optimum design under probit model with misspecified
logit link function with sample size 50
q

√
MSE(q) bias50(q) var50(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .262793 -.105654 .0578972 1.509840 -.095504 2.270490

.03 .265775 -.110033 .0585292 1.261560 -.199595 1.551690
.1 .255472 -.110112 .0531412 .980360 -.228516 .908886
.2 .232912 -.093568 .0454931 .796843 -.186901 .600026

.2745 .214648 -.075497 .0403740 .702645 -.148078 .471783
.3 .208372 -.068706 .0386984 .674687 -.134427 .437132
.4 .184520 -.040629 .0323968 .579064 -.080394 .328852
.45 .173416 -.026355 .0293785 .537791 -.053300 .286379
.5 .163080 -.012341 .0264429 .500188 -.026205 .249502
.55 .153623 .001117 .0235986 .466174 .000889 .217317
.6 .145104 .013719 .0208669 .435996 .027983 .189309
.7 .130895 .035009 .0159080 .390201 .082015 .145530

.7255 .127854 .039314 .0148012 .382685 .095667 .137296
.8 .120324 .048330 .0121420 .375519 .134490 .122927
.9 .114014 .049138 .0105846 .428619 .176105 .152702
.97 .112601 .039370 .0111290 .614037 .147184 .355378
.99 .109452 .035372 .0107286 .831216 .043093 .689063
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Table 14: Bias and MSE on TLS-optimum design under probit model with misspecified
logit link function with sample size 80 (var × 10−5)

q
√
MSE(q) bias80(q) var80(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .069131 -.0169319 .0044924 .782416 .1483130 .590178

.03 .083326 -.0257290 .0062813 .605440 -.0095499 .366466
.1 .105157 -.0388276 .0095503 .443330 -.0999234 .186557
.2 .111039 -.0399478 .0107338 .351861 -.0972761 .114344

.2745 .108557 -.0340691 .0106239 .310045 -.0783654 .089987
.3 .107205 -.0312209 .0105183 .298866 -.0707019 .084322
.4 .101888 -.0173906 .0100787 .268057 -.0379008 .070418
.45 .100122 -.0094748 .0099346 .260137 -.0206477 .067245
.5 .099393 -.0012785 .0098775 .257209 -.0031952 .066146
.55 .099806 .0069323 .0099133 .259307 .0142572 .067037
.6 .101266 .0148924 .0100329 .266440 .0315103 .069997
.7 .106014 .0289041 .0104035 .295936 .0643114 .083442

.7255 .107229 .0318197 .0104856 .306853 .0719749 .088978
.8 .109328 .0379501 .0105123 .348088 .0908856 .112905
.9 .102951 .0373201 .0092060 .439345 .0935329 .184276
.97 .080881 .0247384 .0059298 .602385 .0031594 .362858
.99 .066750 .0162072 .0041929 .780603 -.1547030 .585408

Table 15: Bias and MSE on TPS-optimum design under probit model with misspecified
logit link function with sample size 80
q

√
MSE(q) bias80(q) var80(q) MSE(x̃q) bias(x̃q) var(x̃q)

.01 .146622 -.0339929 .0203425 .920978 .102371 .837721

.03 .150370 -.0408726 .0209405 .756414 -.040194 .570546
.1 .154778 -.0516065 .0212931 .590264 -.113086 .335623
.2 .151835 -.0478080 .0207683 .485226 -.099353 .225573

.2745 .145711 -.0378339 .0198003 .431960 -.074778 .180997
.3 .143215 -.0336105 .0193810 .416430 -.065411 .169135
.4 .132787 -.0148207 .0174128 .365415 -.026570 .132822
.45 .127706 -.0047980 .0162857 .345071 -.006517 .119032
.5 .122986 .0051818 .0150988 .327985 .013678 .107387
.55 .118727 .0147975 .0138771 .314228 .033873 .097591
.6 .114926 .0237219 .0126452 .303991 .053926 .089502
.7 .108162 .0380422 .0102517 .295322 .092767 .078609

.7255 .106423 .0406214 .0096757 .295956 .102134 .077158
.8 .100536 .0445719 .0081208 .305805 .126710 .077461
.9 .088093 .0376753 .0063410 .347267 .140442 .100871
.97 .073216 .0199454 .0049628 .451355 .067550 .199159
.99 .066708 .0130310 .0042801 .593637 -.075014 .346777
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Table 16: Estimated value of parameters
TLS TPS

Sample size µ̂ σ̂ µ̂ σ̂
30 .00109999 .423418 -.0883313 .480444
50 -.00268018 .495994 .0262055 .491184
80 .00319525 .539236 -.0136781 .525566

probability is smaller than 0.7. Although the performance of the TPS-optimum design is

better than that of the TLS-optimum design, they are not different very much and the

explanation of this phenomenon is one of the support points of the TPS-optimum design is

allocated at extreme quantile which makes the performance better over there. In the case

of sample size 30 and 50, the performances of the two kinds optimum designs are not far

away form each other in the sense of mean squared error. However, in the sense of mean

squared error of quantile, the TLS-optimum design performs better than the TPS-optimum

design whatever the sample size is.

In Table 16, the simulated estimation parameters are presented. We can see that in

small sample size case, the estimator of location parameter of the TLS-optimum design

is closer to the true location parameter than the estimator of location parameter of the

TPS-optimum design. We guess that this phenomenon may be the reason which cause

the smaller mean squared error of the TPS-optimum design than that of the TLS-optimum

design. There are more simulation cases could be carry out to compare the performances

of the two different kinds of optimum designs in the future.

4 Discussions and conclusions

In Table 2 and Table 3, the efficiencies of the TLS-optimum design with respect to the

TPS-optimum design and TLR-optimum design are presented. Both Yanagisawa (1988)
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and Ponce de Leon (1996) stated that it is easier to discriminate between models when

the true model is logit and the result of TLS-optimum design is in accordance with their

findings.

The TLS-optimum designs not only can discriminate between models but also possess

the model robust property that minimizes the maximum bias. In fact, the A- and D-

optimum designs do not possess the ability of discrimination between models. Table 2

and Table 3 also show the maximum bias under each design, respectively. In Table 3 we

can see that although the efficiency of the TLS-optimum design with respect to Yanagi-

sawa’s optimum design under Pearson’s goodness of fit test is about 52.4%, but it would

be with higher risk if one uses the Yanagisawa’s design and chooses the wrong model.

The maximum bias is about 3.64% in the above situation which is relatively large to

that of ours which is less than 1%. We can also see from the two tables that when the rival

models are probit and logit models the maximum bias of each case is larger than 2.2%

which might be somewhat risky if a slight difference of the probability may cause serious

consequences, for example, the pressure applied to the explosive or poisonous substances.

In this situation, one might rather to bound the probability bias but not to care what

exactly the true model is.

Optimum designs for discrimination have been discussed in several articles under dif-

ferent criteria. Although TLS-optimum designs are not most powerful for model discrimi-

nation with respect to the Pearson’s chi-squared goodness of fit test or the log likelihood

ratio test, the TLS-optimum designs still possess some advantages. We suggest to use TLS-

optimum designs when one is in the situation that it is difficult to discriminate between

the two rival models and a slight bias would cause serious consequence that one may want

to control the maximum probability bias.
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Since the TLS-criterion here is based on minimizing the ordinary sum of squared de-

viations, another statistic can be considered to test the null hypothesis, that is, use the

difference between the sum of squares of the two fitted models,

dSSE = SSE0 − SSEA

and one would reject the null hypothesis if the value of dSSE is large. At present, we

do not know the exact or asymptotic distribution of the statistic, dSSE. About SSE0

and SSEA, we speculate that both of them might be distributed as linear combinations

of chi-squared distributions. We will investigate the theoretical properties more in the

future.

To understand the distribution of dSSE, a simulation study has been done to examine

the results for the case when the true model is with probit(0,1) and the assumed model

is logit. The observations per simulation run is 2,000 and the total simulation runs

is 10,000. We suggest to reject the null hypothesis at the significance level 5% when

dSSE > 0.181. The power of the test statistic, dSSE, at the significance level 5% is

about 62.1%. However, the critical value of the statistic, dSSE, is related to the scale

parameter of the true model, it would be of interest to find the null distribution of statistic

proposed with respect to the scale parameter of the null distribution.
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A Appendix

Proof of Lemma 2.1. We would first prove that for each asymmetric design ξ1, we can

find a symmetric design ξ̃, which is a linear combination of designs ξ1 and ξ2 with equal

weight, 1
2
, where ξ2 is the reflected design of ξ1 with respect to the true mean parameter

µ0. The performance of ξ̃ would be better than ξ1 in a sense of TLS-optimality. The

mathematical expression is

TLS(ξ̃) = TLS(
ξ1 + ξ2

2
) ≥ TLS(ξ1) + TLS(ξ2)

2
= TLS(ξ1), where ξ̃ =

ξ1 + ξ2
2

,

ξ1 =

{
µ0 + x1 ... µ0 + xn

w1 ... wn

}
and ξ2 =

{
µ0 − x1 ... µ0 − xn

w1 ... wn

}
,

0 < wi < 1 and
n∑

i=1

wi = 1.

The last equality holds if TLS(ξ1) = TLS(ξ2) and the inequality holds if the mapping

ξ → TLS(ξ) is concave. In the following we will prove the following two properties,

concavity and symmetry, of the mapping, ξ → TLS(ξ).

We show that the mapping ξ → TLS(ξ) is concave first. Let ξ = αξ1 + (1 − α)ξ2, by

the definition of the mapping ξ → TLS(ξ), it can be seen that

TLS(ξ) = minµ,σ

∫
χ
‖F (x−µ0

σ0
)−G(x−µ

σ
)‖2ξ(dx),

=
∫

χ
‖F (x−µ0

σ0
)−G(x−µ̂

σ̂
)‖2(αξ1 + (1− α)ξ2)(dx)

= α
∫

χ
‖F (x−µ0

σ0
)−G(x−µ̂

σ̂
)‖2ξ1(dx) + (1− α)

∫
χ
‖F (x−µ0

σ0
)−G(x−µ̂

σ̂
)‖2ξ2(dx)

≥ α
∫

χ
‖F (x−µ0

σ0
)−G(x−µ̂1

σ̂1
)‖2ξ1(dx) + (1−α)

∫
χ
‖F (x−µ0

σ0
)−G(x−µ̂2

σ̂ 2
)‖2ξ2(dx)

= αminµ,σ

∫
χ
‖F (x−µ0

σ0
)−G(x−µ

σ
)‖2ξ1(dx)

+(1− α) minµ,σ

∫
χ
‖F (x−µ0

σ0
)−G(x−µ

σ
)‖2ξ2(dx)

= αTLS(ξ1) + (1− α)TLS(ξ2).



Appendix 28

Thus, it is proved immediately that the mapping ξ → TLS(ξ) is concave and then the

special case holds for

TLS(ξ̃) = TLS(
ξ1 + ξ2

2
) ≥ TLS(ξ1) + TLS(ξ2)

2
, where ξ̃ =

ξ1 + ξ2
2

.

We now prove that TLS(ξ1) = TLS(ξ2). Once the statement is verified, then we have

the result that TLS(ξ̃) ≥ TLS(ξ1) where ξ̃ and ξ1 are as defined in Lemma 2.1.

Recall the definition of

TLS(ξ) = min
µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx),

then

TLS(ξ1) = minµ1,σ1

∫
χ
‖F (x−µ0

σ0
)−G(x−µ1

σ1
)‖2ξ1(dx)

= minµ1,σ1

∑n
i=1wi[F ( xi

σ0
)−G(xi+(µ0−µ1)

σ1
)]2

and TLS(ξ2) = minµ2,σ2

∫
χ
‖F (x−µ0

σ0
)−G(x−µ2

σ2
)‖2ξ2(dx)

= minµ2,σ2

∑n
i=1wi[F (−xi

σ0
)−G(−xi+(µ0−µ2)

σ2
)]2,

where 0 < wi < 1 and
∑n

i=1wi = 1 and ξ2 is the reflected design of ξ1 with respect to µ0.

More explicitly, it can be expressed as

ξ1 =

{
µ0 + x1 ... µ0 + xn

w1 ... wn

}
and ξ2 =

{
µ0 − x1 ... µ0 − xn

w1 ... wn

}
.

Let the LSE of µ1 be denoted by µ̂1, i.e.

µ̂1 = argmin
µ1

∫
ξ

[F (
x− µ0

σ0

)−G(
x− µ1

σ1

)]2ξ1(dx)

= argmin
µ1

n∑
i=1

wi[F (
xi

σ0

)−G(
xi + (µ0 − µ1)

σ1

)]2.

Define µ̂1 = µ0 + µ∗, that is to say µ0 − µ̂1 = −µ∗. Then another expression of µ̂1 is that

µ̂1 = argmin
µ1

n∑
i=1

wi[F (
xi

σ0

)−G(
xi − µ∗

σ1

)]2.
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We show that the relationship between µ̂1 and µ̂2 is µ̂2 = µ0 − µ∗. Since

min
µ2

n∑
i=1

wi[F (
−xi

σ0

)−G(
−xi + (µ0 − µ2)

σ2

)]2

= min
µ2

n∑
i=1

wi[1− F (
xi

σ0

)− 1 +G(
xi − (µ0 − µ2)

σ2

)]2

= min
µ2

n∑
i=1

wi[F (
xi

σ0

)−G(
xi − (µ0 − µ2)

σ2

)]2,

then (µ0− µ̂2) = µ∗, i.e. µ̂2 = µ0−µ∗. Let the LSE of σ1 is σ̂1 which can be expressed as

σ̂1 = argmin
σ1

n∑
i=1

wi[F (
xi

σ0

)−G(
xi + (µ0 − µ̂1)

σ1

)]2, where µ̂1 = µ0 + µ∗

= argmin
σ1

n∑
i=1

wi[F (
xi

σ0

)−G(
xi − µ∗

σ1

)]2.

Now we show that σ̂2 = σ̂1. If this statement is proved, then it would be easy to see that

TLS(ξ1) = TLS(ξ2) and TLS(ξ̃) ≥ TLS(ξ1). We know that from the definition

σ̂2 = argmin
σ

2

n∑
i=1

wi[F (
−xi

σ0

)−G(
−xi + (µ0 − µ̂2)

σ2

)]2, where µ̂2 = µ0 − µ∗

= argmin
σ2

n∑
i=1

wi[F (
−xi

σ0

)−G(
−xi + µ∗

σ2

)]2

= argmin
σ1

n∑
i=1

wi[F (
xi

σ0

)−G(
xi − µ∗

σ1

)]2

= σ̂1.

Then, by previous result, we can say that

TLS(ξ2) = TLS(ξ1) and TLS(ξ̃) ≥ TLS(ξ1),

where ξ̃, ξ1 and ξ2 are as defined in Lemma 2.1. Then by previous statement, we can say

that there must exist a symmetric TLS-optimum design. Thus, we may concentrate our

attentions on those designs which are symmetric in finding a TLS-optimum design.
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Proof of Lemma 2.2. Below we prove that the unique minimizer of µ is µ0 for

symmetric design with respect to µ0 with four support points. For all symmetric designs

with more than five support points, the proof of the uniqueness of minimizer of µ is similar

and omitted. Now we consider the design

ξ∗ =

{
µ0 − b µ0 − a µ0 + a µ0 + b
1
2
− w w w 1

2
− w

}
,

where a, b > 0, then the least square estimates of µ is µ0. Let

h(µ, σ) =

∫
χ

[F (
x− µ0

σ0

)−G(
x− µ

σ
)]2ξ(dx)

= (
1

2
− w)[F (

−b
σ0

)−G(
µ0 − b− µ

σ
)]2 + w[F (

−a
σ0

)−G(
µ0 − a− µ

σ
)]2

+w[F (
a

σ0

)−G(
µ0 + a− µ

σ
)]2 + (

1

2
− w)[F (

b

σ0

)−G(
µ0 + b− µ

σ
)]2

= (
1

2
− w)N [F (

−b
σ0

)−G(
−b+ (µ0 − µ)

σ
)]2 + w[F (

−a
σ0

)−G(
−a+ (µ0 − µ)

σ
)]2

w[F (
a

σ0

)−G(
a+ (µ0 − µ)

σ
)]2 + (

1

2
− w)[F (

b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2

= (
1

2
− w)[F (

b

σ0

)−G(
b− (µ0 − µ)

σ
)]2 + w[F (

a

σ0

)−G(
a− (µ0 − µ)

σ
)]2

+w[F (
a

σ0

)−G(
a+ (µ0 − µ)

σ
)]2 + (

1

2
− w)N [F (

b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2

= w{[F (
a

σ0

)−G(
a+ (µ0 − µ)

σ
)]2 + [F (

a

σ0

)−G(
a− (µ0 − µ)

σ
)]2}

+(
1

2
− w){[F (

b

σ0

)−G(
b− (µ0 − µ)

σ
)]2 + [F (

b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2}.

First we want to show that µ0 is a minimizer of the h function with respect to µ, more

explicitly, to show that h(µ, σ) ≥ h(µ0, σ), ∀σ > 0, i.e. we want to prove that

[F (
b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2 + [F (

b

σ0

)−G(
b+ (µ0 − µ)

σ
)]2 ≥ 2[F (

b

σ0

)−G(
b

σ
)]2,
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∀ b > 0, µ ∈ R, σ > 0, which is equivalent to proving that

[F (y)−G(x− c)]2 + [F (y)−G(x+ c)]2 ≥ 2[F (y)−G(x)]2

∀y > 0, x > 0, c > 0, where y =
b

σ0

, x =
b

σ
and c =

µ0 − µ

σ
.

[F (y)−G(x− c)]2 + [F (y)−G(x+ c)]2

= [F (y)−G(x) +G(x)−G(x− c)]2 + [F (y)−G(x) +G(x)−G(x+ c)]2

= {[F (y)−G(x)]2 + [G(x)−G(x− c)]2 + 2[F (y)−G(x)][G(x)−G(x− c)]}

= +{[F (y)−G(x)]2 + [G(x)−G(x+ c)]2 + 2[F (y)−G(x)][G(x)−G(x+ c)]}

= [F (y)−G(x)]2 + 2[F (y)−G(x)][2G(x)−G(x− c)−G(x+ c)]

= +[G(x)−G(x− c)]2 + [G(x)−G(x+ c)]2 + [F (y)−G(x)]2

= {[F (y)−G(x)]2 + 2[F (y)−G(x)][2G(x)−G(x− c)−G(x+ c)]

= +[2G(x)−G(x− c)−G(x+ c)]2} − 2[G(x)−G(x− c)][G(x)−G(x+ c)] + [F (y)−G(x)]2

= {[F (y)−G(x)] + [2G(x)−G(x− c)−G(x+ c)]}2

= +2[G(x)−G(x− c)][G(x+ c)−G(x)] + [F (y)−G(x)]2

= ≥ [F (y)−G(x)]2 + [F (y)−G(x)]2 = 2[F (y)−G(x)]2,∀y ≥ 0, x ≥ 0, c ≥ 0.

if [2G(x) − G(x − c) − G(x + c)] ≥ 0,∀x ≥ 0, c ≥ 0, which will be established in the

following. First, for x > c ≥ 0, [2G(x)−G(x− c)−G(x+ c)] ≥ 0,

since G(x) is concave function as x ≥ 0 and the inequality holds only when c=0.

For c ≥ x > 0,

2G(x)−G(x− c)−G(x+ c)

= [G(x)−G(x− c)]− [G(x+ c)−G(x)]
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=

∫ x

x−c

g(t)dt−
∫ x+c

x

g(t)dt, ∀c > x ≥ 0

=

∫ 0

x−c

g(t)dt+

∫ x

0

g(t)dt−
∫ x+c

x

g(t)dt

=

∫ c−x

0

g(t)dt+

∫ x

0

g(t)dt−
∫ x+c

x

g(t)dt

>

∫ c

x

g(t)dt+

∫ x

0

g(t)dt−
∫ x+c

x

g(t)dt

=

∫ c

0

g(t)dt−
∫ x+c

x

g(t)dt > 0.

The inequalities hold because g(x) is symmetric with respect to x=0 and strictly decreas-

ing as x >0, i.e. ∫ a+x

a

g(t)dt >

∫ b+x

b

g(t)dt, ∀b > a ≥ 0, x > 0.

Now, we can say that

min
µ
h(µ, σ) = h(µ0, σ),∀σ > 0, i.e. µ0 = argmin

µ
h(µ, σ).

That is to say, µ0 is the unique solution that h(µ, σ) = minµ h(µ, σ).

Second, we show that symmetric two-point design is not TLS-optimum design. It can

be proved by the definition of TLS-optimality criterion directly.

TLS(ξ) = min
µ,σ

∫
χ

‖F (
x− µ0

σ0

)−G(
x− µ

σ
)‖2ξ(dx)

= min
µ,σ

{w ∗ [F (
a− µ0

σ0

)−G(
a− µ

σ
)]2 + (1− w) ∗ [F (

a− µ0

σ0

)−G(
a− µ

σ
)]2}

= 0.

If µ and σ are such that F (a−µ0

σ0
)−G(a−µ

σ
) and F (−a−µ0

σ0
)−G(−a−µ

σ
) where

ξ =

{
−a a

1− w w

}
,∀ a>0 and 1 > w > 0.
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Similarly, symmetric three-point design, ξ∗ =

{
−a 0 a
w 1− 2w w

}
,∀ a>0 and 1 >

w > 0, is not a TLS-optimum design either.

Proof of Lemma 2.3 For convenience, we define the function of σ, D(σ)=g( a
σ∗

)g( b
σ
)−

g( a
σ
)g( b

σ∗
) and we now prove that the sign of ∂

∂σ
h(µ0, σ, ξ

∗) is the same as D(σ).

∂

∂σ
h(µ0, σ, ξ

∗)

= 4w[F (
a

σ0

)−G(
a

σ
)]g(

a

σ
)
a

σ2
+ 4(

1

2
− w)[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
)
b

σ2

=
4

σ2
{aw[F (

a

σ0

)−G(
a

σ
)]g(

a

σ
) + b(

1

2
− w)[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
)}.

Replacing w by
b · g( b

σ∗
)

2[b · g( b
σ∗

) + a · g( a
σ∗

)]
yields

2

σ2
{
a · g( a

σ∗
) · b · [F ( b

σ0
)−G( b

σ
)]g( b

σ
)

[b · g( b
σ∗

) + a · g( a
σ∗

)]
+
b · g( b

σ∗
) · a · [F ( a

σ0
)−G( a

σ
)]g( a

σ
)

[b · g( b
σ∗

) + a · g( a
σ∗

)]
}

=
2

σ2
· ab

[b · g( b
σ∗

) + a · g( a
σ∗

)]
{g( a

σ∗
)[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
) + g(

b

σ∗
)[F (

a

σ0

)−G(
a

σ
)]g(

a

σ
)}

=
2

σ2
· ab

[b · g( b
σ∗

) + a · g( a
σ∗

)]
{g( a

σ∗
)g(

b

σ
)[F (

b

σ0

)−G(
b

σ
)] + g(

b

σ∗
)g(

a

σ
)[F (

a

σ0

)−G(
a

σ
)]}.

Since 2
σ2 · ab

[b·g( b
σ∗ )+a·g( a

σ∗ )]
> 0, the sign of ∂

∂σ
h(µ0, σ, ξ

∗) is the same as

g( b
σ∗

)g( a
σ
)[F ( a

σ0
)−G( a

σ
)] + g( a

σ∗
)g( b

σ
)[F ( b

σ0
)−G( b

σ
)].
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Consider the function

g(
a

σ
)g(

b

σ∗
)[F (

a

σ0

)−G(
a

σ
)] + g(

a

σ∗
)g(

b

σ
)[F (

b

σ0

)−G(
b

σ
)]

= g(
a

σ
)g(

b

σ∗
)[F (

a

σ0

)−G(
a

σ∗
) +G(

a

σ∗
)−G(

a

σ
)]

+g(
a

σ∗
)g(

b

σ
)[F (

b

σ0

)−G(
b

σ∗
) +G(

b

σ∗
)−G(

b

σ
)]

= [F (
b

σ0

)−G(
b

σ∗
)][g(

a

σ∗
)g(

b

σ
)− g(

a

σ
)g(

b

σ∗
)]

+g(
a

σ
)g(

b

σ∗
)[G(

a

σ∗
)−G(

a

σ
)] + g(

a

σ∗
)g(

b

σ
)[G(

b

σ∗
)−G(

b

σ
)].

Since [F ( b
σ0

)−G( b
σ∗

)] > 0, g(·) > 0 and [G( x
σ∗

)−G(x
σ
)] ≥ 0 for x ≥ 0 and σ ≥ σ∗, then

∂

∂σ
h(µ0, σ, ξ

∗) ≥ 0 for σ ≥ σ∗ if g(
a

σ∗
)g(

b

σ
)− g(

a

σ
)g(

b

σ∗
) ≥ 0 for σ ≥ σ∗,

i.e. The sign of ∂
∂σ
h(µ0, σ, ξ

∗) is the same as g( a
σ∗

)g( b
σ
)− g( a

σ
)g( b

σ∗
).

Lemma A.1. Let {µ̂N ,σ̂N} be the least squared estimator of {µ, σ} and N is the number

of total observations, then

lim
N→∞

µ̂N = µ0, and lim
N→∞

σ̂N = σ∗.

We have shown that limN→∞ µ̂N = µ0 in the proof of Lemma 2.2, and we will show

that limN→∞ σ̂N = σ∗ now. Recall the h function,

h(µ, σ) = N1

N
{[F ( a

σ0
)−G(a+(µ0−µ)

σ
)]2 + [F ( a

σ0
)−G(a−(µ0−µ)

σ
)]2}

+N2

N
{[F ( b

σ0
)−G( b−(µ0−µ)

σ
)]2 + [F ( b

σ0
)−G( b+(µ0−µ)

σ
)]2}.

Since we have shown that µ̂ = µ0, then

h(µ0, σ, ξ
∗) = 2N1

N
[F ( a

σ0
)−G( a

σ
)]2 + 2N2

N
[F ( a

σ0
)−G( a

σ
)]2,
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and the LSE of σ, σ̂, must satisfy the equation

∂

∂σ
h(µ0, σ, ξ

∗)|σ=σ̂ = 0

4
N1

N
[F (

a

σ0

)−G(
a

σ
)]g(

a

σ
)
a

σ2
+ 4

N2

N
[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
)
b

σ2
|σ=σ̂ = 0

4

σ2
{aN1

N
[F (

a

σ0

)−G(
a

σ
)]g(

a

σ
) + b

N2

N
[F (

b

σ0

)−G(
b

σ
)]g(

b

σ
)}|σ=σ̂ = 0.

Replacing
N1

N
by w =

b · g( b
σ∗

)

2[b · g( b
σ∗

) + a · g( a
σ∗

)]
and

N2

N
=

1

2
− N1

N
,

then the final equality becomes

{
a · g( a

σ∗
) · b · [F ( b

σ0
)−G( b

σ
)]g( b

σ
)

[b · g( b
σ∗

) + a · g( a
σ∗

)]
+
b · g( b

σ∗
) · a · [F ( a

σ0
)−G( a

σ
)]g( a

σ
)

[b · g( b
σ∗

) + a · g( a
σ∗

)]
}|σ=σ̂ = 0

{g( a
σ∗

)[F (
b

σ0

)−G(
b

σ
)]g(

b

σ
) + g(

b

σ∗
)[F (

a

σ0

)−G(
a

σ
)]g(

a

σ
)}|σ=σ̂ = 0

{g( a
σ∗

)g(
b

σ̂
)[F (

b

σ0

)−G(
b

σ̂
)] + g(

b

σ∗
)g(

a

σ̂
)[F (

a

σ0

)−G(
a

σ̂
)]} = 0 (?)

Since [F ( a
σ0

)−G( a
σ∗

)] = −[F ( b
σ0

)−G( b
σ∗

)], and by equation (?) we know that σ∗ is a LSE

of σ.

Lemma A.2. σ∗ is the only LSE of σ when the assumed model is with the double-

exponential or double-reciprocal distributions, and the true model is from one of the other

three models we introduced in the beginning.

By Lemma 2.3, to prove that σ∗ is the only LSE of σ, we have only to check that

σ∗ is the only solution of the function D(σ)=0, that is, g( a
σ∗

)g( b
σ
) − g( a

σ
)g( b

σ∗
) = 0. We

first prove that D(σ∗)=0 when the probability function g(·) of the assumed model is with

double-exponential distribution, that is, g(x;µ, σ) = 1
2
e−|

x−µ
σ

|, and a > 0, b > 0 and
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σ∗ > 0 are defined as in (2.1)-(2.4), then

D(σ1) = g(
a

σ∗
)g(

b

σ
)− g(

a

σ
)g(

b

σ∗
)

=
1

2
exp{−| a

σ∗
| − | b

σ
|} − 1

2
exp{−|a

σ
| − | b

σ∗
|}

=
1

2π
exp{− a

σ∗
− a

σ
}[exp{−b− a

σ
} − exp{−b− a

σ∗
}],

since exp{·} > 0 and exp{x
σ
}− exp{ x

σ∗
} = 0 only as σ = σ∗, then it implies σ∗ is the only

LSE of σ.

We now prove that D(σ∗)=0 when the probability function g(·) of the assumed model

is with double-reciprocal distribution, that is, g(x;µ, σ) = 1
2(1+|x−µ

σ
|)2 , and a > 0, b > 0

and σ∗ > 0 are defined as before, then

D(σ) = g(
a

σ∗
)g(

b

σ
)− g(

a

σ
)g(

b

σ∗
)

=
1

2(1 + | a
σ∗
|)2

· 1

2(1 + | b
σ
|)2

− 1

2(1 + | a
σ
|)2

· 1

2(1 + | b
σ∗
|)2

=
1

4(1 + a
σ∗

)2(1 + a
σ
)2

[

(
1 + a

σ

1 + b
σ

)2

−

(
1 + a

σ∗

1 + b
σ∗

)2

]

=
1

4(1 + a
σ∗

)2(1 + a
σ
)2

[

(
σ + a

σ + b

)2

−
(
σ∗ + a

σ∗ + b

)2

],

since

[

(
σ + a

σ + b

)2

−
(
σ∗ + a

σ∗ + b

)2

] = 0 only as σ = σ∗,

σ∗ is the only LSE of σ.


