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Abstract

This paper is concerned with the problem of finding an experimental
design for discrimination between two rival models and for model robust-
ness that minimizing the maximum bias simultaneously in binary response
experiments. The criterion for model discrimination is based on the T'-
optimality criterion proposed in Atkinson and Fedorov (1975), which max-
imizes the sum of squares of deviations between the two rival models while
the criterion for model robustness is based on minimizing the maximum
probability bias of the two rival models. In this paper we obtain the opti-
mum designs satisfy the above two criteria for some commonly used rival
models in binary response experiments such as the probit and logit models

etc.

Keywords : Least square estimate (LSFE), mean square error, model

discrimination, model robustness, symmetric location and scale family.
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1 Introduction

Optimum designs for precise estimation of model parameters have been discussed for
quite a long time. However, optimum designs for discrimination between models have
had less attention and have been developed only for some cases. There are some re-
searches discussing the design problem especially on how to discriminate between models.
See Chambers and Cox (1967), Atkinson and Fedorov (1975), Yanagisawa (1988, 1990)
and Miiller and Ponce de Leon (1996) etc. Atkinson and Fedorov (1975) proposed the
T-optimum design criterion for model discrimination between two rival models which max-
imizes the ordinary sum of squared deviations at support points for two rival response
models. Following their idea, we look for the T-optimum designs for discriminating two
binary response models.

First, our main goal is to find the T-optimum designs with binary response models.
On the other hand, we would also like to consider the optimum design for prediction
with for model robustness in mind for binary response models as introduced by Huang
and Hwang (2004). It would be interesting to see how the T-optimum design in binary
response models performs in the sense of model robustness in estimation that minimizes
the maximum deviation between the true and assumed models.

A binary response experiment is that the response variable y takes only one of two
possible values, say 1 or 0. The relation between the response variable y and the indepen-
dent variable x is controlled by another random variable Z in the relation that random
variable Z is less than the independent variable z if and only if the response variable y is

1. We can only observe the result that whether the event {Z < x} happens or not. The
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mathematical expression is that
Ply(z) =1} =P{Z <z} and P{y(z)=0}=P{Z > z}.

We do not know exactly what the distribution of Z is, but Z is conventionally assumed

to be from a symmetric location and scale family, that is,

T —p
—)

Fy(z;pu,0) = F( and  Fy(z;p,0) =1— Fz(—x;p,0)

for all x € R, where F' is called the standard distribution of this family.

There are several possible models discussed in many literatures, for examples, the
probit, logit, double exponential and the double reciprocal families. Moreover, the probit
and logit models are used most often. There are a lot of researches discussing the optimum
designs for binary response experiments with a given model under the assumption that Z
is from a symmetric location and scale family. The four families we have just mentioned
above are presented here,

@) ( ) 1 (@=p)/o
1. probit : Fy(x) = Fi(x;p,0) = — ez dt
V2m J-

2. logit : Fy(z) = Fy(aip.0) = ———
1+e=
(z=p)/o |
3. double exponential : Fy(x) = F3(x;pu,0) = / 56_‘t|dt
@/ 1
4. double reciprocal : Fy(z) = Fy(w; p, 0) = b
ouble reciproca 7 () (5, o) /_OO AT

where ;1 and o are unknown parameters.

1.1 Literatures Review

As mentioned before, there have been some researches discussing the design problem

about discrimination between binary response models. For different cases and purposes,
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the results are different. Results in Chambers and Cox (1967), Atkinson and Fedorov
(1975), Yanagisawa (1988) and Miiller and Ponce de Leon (1996) are briefly described
below.

First, about optimum designs for model discrimination in general models Atkinson
and Fedorov (1975) proposed the T-optimality criterion related to maximizing the non-
centrality parameter of the y? distribution of residual sum of squares, which is equivalent
to maximizing the power of the F' test for departures from the assumed model. They sum-
marized the properties of T-optimum designs in a theorem analogous to the celebrated
general equivalence theorem of Kiefer and Wolfowitz for D-optimum designs.

For logit and probit binary models, a first attempt to tackle the problem of model
discrimination was made by Chambers and Cox (1967). They considered the experiments
with only three dose levels and found the power of a significance test for the null hy-
pothesis that the response curve is logistic against the alternative that it is normal, and
vice versa. From this they gave a suitable spacing of dose levels for discrimination. They
stated that approximately 1000 observations are necessary for even modest sensitivity.

For binary data models, the Pearson chi-squared statistic and the log likelihood ratio
statistic are two measures which can be used for testing model adequacy. It is well known
(cf. Agresti(1990)) that both of them are asymptotically distributed as xj_,,, under the
null hypothesis Hy, and as Xﬁ_mw\ under the alternative hypothesis H, where k is the
number of observations and my is the number of parameters in the model under the null
hypothesis.

The noncentrality parameter A is given by, respectively

Y (Fa— Fy)?

' Fm(l — FOi)

i=1
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for Pearson chi-squared statistic and

A=2)" ni(FAilog(};Ai) + (1 — Fa3)log( 11 — Ff‘i)) (1.2)

i=1 07 — L0

for log likelihood ratio statistic. Here, subscript 0 refers to the true model and A to the
rival one, the hat terms denote the eatimates, k refers to the number of experimental
units at each of which n; observations are taken, and mg to the munber of parameters in
the Hy model.

Yanagisawa (1988) extended the work of Chambers and Cox (1967) and proposed a
test statistic, the weighted sum of squares, for discrimination between alternative binary
response models which is asymptotically equivalent to the log likelihood ratio statistic and
Pearson’s goodness of fit statistic. The result of Yanagisawa (1988), say Tps-optimum
design, is based on maximizing the noncentrality parameter of the Pearson’s chi-squared
statistic (1.1). They also presented procedure for finding the optimal designs. Under
certain conditions they proved that the maximum value of the power can be obtained
when the degrees of freedom of the test statistic is one ,i.e. the number of support points
is my + 1. Several mathematical properties of the incomplete gamma function ratio and
the non-central chi-squared distribution are required in the discussion and have been es-
tablished by them.

Based on maximizing the noncentrality parameter of the log likelihood ratio statistic
(1.2) Miiller and Ponce de Leon (1996) tried to find the corresponding optimum design,
say T r-optimum design. They proposed a sequential procedure to design optimum ex-
periments for discriminating between two binary data models. To be able to specify the
problem explicitly, not only the model link functions need to be provided but also their
associated linear predictor structures. Further more, they supposed that one of the models

is true although it is not known which of them. Under those assumptions, the procedure
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consists of making sequential choices of single experimental units to discriminate between
the rival models as efficiently as possible. A simulation study for the classical case of

probit versus logit model was presented.

1.2 Maxmin and minimax criteria

The purpose of this work is to design an experiment for discrimination between two rival
models and for estimation of the distribution function with model robustness property
at the same time. The maxmin criterion for model discrimination is based on the T-
optimality criterion proposed by Atkinson and Fedorov (1975). To distinguish from the
Tps- and T g-optimum design criteria, we call it a T g-optimum design criterion. To
be more explicitly, suppose the possible models of Z are from two symmetric location
and scale families with standard distributions F'(*;£2) and G(*;*) where pg, 09, 1 and
o are unknown parameters, and we do not know which one is the true model. In the
following,we firstly introduce the maxmin criterion.

A design is a set of distinct support points at zq, ... , x, with corresponding weights

Wi, ooy Wy, w; >0, > w; =1, denoted by

. 1 ... Tp
&= { Wy ... Wy } ’
Without loss of generality, we assume F' is the true model. A least square minimizer (i, &),

called LSM of the parameters in the second model, G, is a solution of the equation

JIPEE) - 6 Pe(da) = min [ IFCEE) - () Pe(an)

(oy) 0o
where £ stands for the given design. A design is more favorable if it can yield as large

a value as possible of the sum of squares for lack of fit of the second model, which is
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equivalent to maximizing

TLS(g) =

= m1n/|

Thus, the design £* which satisfies

- G(%ﬂwadm

%) - G(—5)Pe(de).

X

Trs(€) maxmln/HF —Hoy ;“)H?g(dm)

is defined to be a Tjg-optimum design.

Note that the T g-criterion can be thought of as a maximin type of criterion. Huang
and Hwang (2004) considered the model robustness criterion to minimize the maximum
distance between the distribution functions under the true and assumed models which
can be thought of as a minimax type of criterion that is if £* is a minimax design then it

satisfies.

A

mB(£*) = min max | F'( —MO)_G($jM>|’
§ z€R 0o o

where (fi,5) are minimizers of (u, o) of the absolute deviation above.

Now we look for the Tpg-optimum design and then verify that it is also a minimax
bias design. In the process of finding the desired Tjg-optimum design, we need to use
the equivalence theorem of Atkinson and Fedorov (1975) to obtain our result. Now, we
introduce the equivalence theorem of Atkinson and Fedorov (1975) in Theorem 1.1 as
follows.

Theorem 1.1 Assume that
(a) the design region x is compact and F'(x;6) and G(x;6) are continuous for x€ Y.

(b) F(x;0) and G(x;0) are differentiable functions of 6.
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(c) the least square minimizers, (i, ), of (i, o) is unique.
Given the preceding assumptions:
(i) a necessary and sufficient condition for a design £* to be T g-optimum is fulfillment of

the inequality

ol €) <max [ PR - G Pelde) = Tis(€)

00
where Yol ) = {F(5) = G5

oz

(ii) at the support points of the optimum design ¥¢(z, £*) achieves its upper bound.

2 Desired T s-optimum design

In this section, we find the T g-optimum design in binary response models. In the
following, we would like to present some necessary properties of the Ty s-optimum design

and use these properties to find the desired T g-optimum design.

2.1 Properties of T g-optimum designs

First note that for symmetric binary response models there exists a T g-optimum de-
sign which is also symmetric. This property can be established by showing the concavity
and the symmetry properties of the mapping £ — Trs(§), when the true and assumed
models are from symmetric location and scale family. For all symmetric designs, the only
LSM of the mean parameter, i, in the assumed models is the mean parameter, pg, in
the true model. Any of the two- and three-point symmetric designs is not a Ty g-optimum
for binary response models. Last, for all symmetric designs with odd numbers, 2n + 1,

of support points are not T g-optimum designs. We summarize these properties of the
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mapping, £ — Trs(§), and the Ty g-optimum designs in two Lemmas below and the proofs

are delayed to appendix.

Lemma 2.1. For an arbitrary design &, if & is the reflected design of & with respect to

fo, let € = a&y + (1 — a)éy where 0 < a < 1, then

(1)TLs(§) = aTrs(61) + (1 — a)TrLs(&2),

() Trs(§1) = Trs(§2)-

Lemma 2.2. Three properties of Tps-optimum designs are as follows
(i) For all symmetric designs, the only LSM of w is po.
(i1) Any of two- and three-point symmetric designs is not a Tpg-optimum design.

(11i) Any symmetric design with odd numbers of support points is not Tps-optimum.

2.2 Tpg-optimum design for binary response models

In previous subsections, we have shown that two- and three-point symmetric designs
are not Trg-optimum designs. Before we discuss the symmetric four-point designs, we
have to define some notation first.

Let o* satisfy

max{F(—52) = G2} = —min{ F(—2) = G(— =)L (2)

a = argmin{F(*52) ~ G(~_F2)} ~ o, (2.2)
b=argmax{F(*_12) = G(~_F)} ~ o (23)

and w = b 9(5) where g(-) = G'(). (2.4)

2b-g(3) +a-g(%)]
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Now consider the symmetric four-point design £* with supports pg — b, po — a, po + a,
1o + b and corresponding weights % —w,w,w, % — w respectively, where ¢* a, b and w are

defined in (2.1) - (2.4), then the design £* is defined as

= 1
S—w o w w5 W

5*_{ 1o—b Ho—a o+ a ,uo—i-b}.

If the true model is with distribution F'(*;22) but the assumed model is with distri-
bution G(*>*) where p and o are unknown, then (fin, 6x), the estimated LSM of (u,0),

is proved to converge to (pg,0*) as the number of observations N — oo, that is,
lim fiy = lim 6y =0"
Nlillw UN = Mo, Nliilm ON =0,

the details of the proof is delayed to Appendix B.

Under the assumption that o* is the only LSM of o for £*, we can use the result of
Atkinson and Fedorov (1975) to claim that the design £* defined above is a Ty g-optimal
design. Since (pg,0*) is also the resulting minimizers of the minimum bias design that
minimizes the maximum distance between the two distributions, we can say that the
T s-optimum design £* is also a model robust design that minimizes the maximum bias.
In the following we present results for a special case when the assumed model is with
distribution of the probit family.

In the following, we prove that the design £* defined above is a T1g-optimal design for
the case when the assumed model is with distribution of probit family, by first proving
that o* is the only LSFE of ¢ for £ and then use the result of Atkinson and Fedorov

(1975) to verify it. In the following, we illustrate that o* is the only LSE of o for £*. Let
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us recall the representation of least square minimizers of the parameters in the second

model, GG, are the solutions of the equation

) = G ) Pe(dn)

00

JIPEZI) — G Pe(de) = min [ F(*

and define
M) = () - G oL - g = My
+5— {F() - o=y Ly - g = My,

Since we have shown that pg is the only LSM of u, replacing i with g, then

hlji:0.€") = 20lF(25) = GEDP +2(5 ~ w)[F(-) = G (25)
and
Soh(0,0,€) = WlF ()~ G5 + 4 —w)[F() - GClgl )

In order to determine the uniqueness of the LSFE of ¢ , a sufficient condition is to check
the sign of the partial derivative for o of the h function. Let D(0) = g(%)g(2)—g(2)g(L)
where ¢(-) is the probability density function of the assumed model. We verify that the

sign of = h(po, 0, ") is the same as D(o) in Lemma 2.3 below and the proof is delayed to

the appendix.

Lemma 2.3. Let the h function be defined as (2.5), then the sign of %h(uo, 0,£%) is the

same as D(0o).

In what follows, we consider a case that the assumed model is probit, that is, g(+)

in (2.5) is with the normal probability density function. We verify that ¢* is the only
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LSFE of 0 in Lemma 2.4 and find a candidate of the T g-optimum design then prove it in

Theorem 2.5 to be T g-optimal when the assumed model is probit.

Lemma 2.4. Let o* be defined as in (2.1)-(2.4) and the assumed model g(-) is with the

normal probability density function, then o* is the only LSM of o.

Proof. Consider
a b a b
D(o) = g(=)9(=) —9(=)9(=)

o o o’ o

S S S SO

a 27T6xp 20%2 202 27Te:1:p 202  20*2
1 a? a’ b? — a® b? — a?

= geapl—5 5 — g tleap{——5—} —exp{—— 5}

since the exponential function is positive for all real value and it is also a strictly increas-
ing function hence D(o) equals to zero only as ¢ = o*. That is to say, o* is the only LSE

of o. O

Since we have shown that (po,0*) is the only pair of the LSE of (u,0), we may
say that the design &* defined above is exactly a Ty g-optimum design by using the equiv-

alence theorem of Atkinson and Fedorov (1975) to verify it.

Theorem 2.5. Let a, b, 0* and w be defined as above, then when the assumed model is

probit £ 1s a desired Trg-optimum design, where

g*:{ﬂo—b o —a po+a Mo+b}_

l—w w w l—w

2 2

As the LSE of (u,0), (10, 0"), coincide with the result of Huang and Hwang (2004),

A

& = argminmaX|F($ — M) - G(x — H)|,
£  zeR g g
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is also minimax when the assumed model G is probit. It is interesting to find that &* is

not only a Ty g-optimum design but also minimax.

2.3 General cases

In the previous section, it is shown that ¢* is the LSE of o for the design £* defined
before. However, in order to use the main result of Atkinson and Fedorov (1975) to say
that the design £* defined above is the desired T g-optimum design, it needs to be showed
that o is the unique LSFE of ¢ for the design £*. Here we can not say that they possess
this property for all binary response models. However, we may discuss those models con-
sidered most often in many literatures.

The cases that the assumed models are with double-exponential or double-reciprocal
models can be proved that o* is the unique LSM of o for the design £* by using similar
argument as above (see Appendix C). However, when the assumed model is with distri-
butions of logit family, it is difficult to show that ¢* is the only LSM of . Although
we do not prove that the LSM of o is unique analytically, but we see from numerical
computation result that the LSM is unique numerically. For general cases, only when
the assumption that the LSM of ¢ is unique is satisfied, the same method can be used
to find the T g-optimum design.

Table 1 shows the numerical results of the T g-optimum designs for discrimination and
with minimum biases. Fi, Fy, F3 and Fj stands for the probit, logit, double-exponential

and double-reciprocal models, respectively and o, a, b and w are defined as before.
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Table 1: Results of the T s-optimum design with true parameters (0,1)

Models Supports Weights
True , Assumed o a,b w Maximum bias

FFy B876 5710 , 2.0430 1716 .00946
Fy, F 8744 3769 , 1.9104 2337 .02820
Fi, F} A770 0 3157, 2.2431 1882 07523
Fy, Fy 1.495  .3201, 1.7750 2571 .01978
Fy Fy 8194 2945 | 2.3520 1873 .06702
F3, F} bH317  .3270 , 3.3381 1673 .05095

3 Efficiency and bias comparisons

In this section, we are going to illustrate the relationship between T g-optimum design
for model discrimination and minimum bias design for model robustness. In the process
of searching for the desired Tpg-optimum design, results of Huang and Hwang (2004)
are adopted where the maximum bias is minimized. Hence, the design we propose now
not only can discriminate between models with reasonable power but also has the model
robustness property that minimizes the maximum bias of the assumed model.

For binary data models, there are two useful measures for testing model adequacies
are available, the Pearson’s chi-squared statistic and the log likelihood ratio statistic.
The result of Yanagisawa (1988), say Tpg-optimum design, is based on maximizing the
noncentrality parameter of the Pearson’s chi-squared statistic (1.1), while that of Miiller
and Ponce de Leon (1996) is based on maximizing the log likelihood ratio statistic (1.2)
to find the 77 g-optimum design. We compare performances of the Tpg-optimum design,
with theirs. Table 2 and Table 3 report N(.5), the minimum number of observations
necessary to achieve a power of 50% at a significance level 5%, and the corresponding
efficiency and maximum bias when the true model is probit(0,1) and the assumed model

is logitand vice versa.
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The design we propose may not be the most powerful with respect to the Pearson’s
goodness of fit test or the likelihood ratio teat, but it possesses the good property that
minimizes the maximum bias of the assumed model. In other words, if we make the
wrong choice of the true model, the estimated probability at any quantile would not
be far from the true one and the maximum bias would be bounded by a small value
anywhere. The efficiencies of Tpg-optimum design w.r.t. Tprgs- and T z-optimum design

1629

are 71.5%(= 5555) and 64.6%, respectively when the true model is from probit model and

are 52.4% and 71.5%, respectively when the true model is from logit model.

Table 2: Comparison of efficiencies for Hy:logit(u, o) v.s. H4:probit(0,1) case

criteria (u,0) N(.5) max|bias| efficiency
Trs- | (0,0.5876) 2280 2049 | 0.0095
Tps- | (0,0.5553) 1629  — | 0.0221  effps(Trg) = 71.5%
Trm- | (0,0.5528)  — 1323 | 0.0221  eff,p(Trg) = 64.6%

Table 3: Comparison of efficiencies for Hy:probit(u, o) v.s. H 4:logit(0,1) case

criteria (u,0) N(.5) max|bias| efficiency
Trs- | (0,1.7018) 1614 1827 | 0.0095
Tps- | (0,1.9311) 845  — 0.0364  effpg(TLs) = 52.4%
Trr- | (0,1.8332)  — 1036 | 0.0250  eff;p(Trg) = 71.5%

3.1 Numerical computation of the corresponding bias and MSE

Some numerical computation and simulations are presented here. First, we compute

the theoretical value of the probability bias of ¢'* quantile as the number of observations

N — o0, i.e.

biass(q) = ¢ — F(G(q; pro, 0); pro, 00),
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where F'(+; g, 0¢) is the true model, and G(-; 9, 0*) is the assumed model. We also point
out the maximum and minimum of bias(q) for all ¢ >0.5, say ¢ar and g,,, from each design
respectively to compare the maximum probability bias. Then, we use 2000 observations
per simulation run to compute the simulated probability biases and mean square errors
of some ¢ quantiles and the number of simulation runs is 1000. The reason we use 2000
observations per run is that about 2000 observations are needed for Ty g-optimum design
to attain power 50% at significance level 5%. For q € (%, 1), the simulated bias and MSE

are computed by

| Looo
biasioon(q) = ¢ — ——— F(Zgn),
1000 2=
1000
MSEi0(q) = — Y (q— F(ig,))%
1000 £~

where Z,, = G~'(q; 1,6), i and & are the LSFEs.

3.2 The probit and logit case

When the true model is probit with mean 0 and variance 1 but the assumed model is
logit, the T s-, Tps- and T g-optimum design are compared and the results are presented
in Table 4 - Table 6, respectively. We can see that the maximum bias from the T} g-
optimum design is smaller than that of the others but the mean square errors are not
outstanding over all design region, but for region with quantiles near the one with the
maximum bias are smaller than those of other designs. This is not surprising as each
design should perform quite well near the quantiles where the design supports are.

The case when the true model is logit with mean 0 and variance 1 but the assumed

model is probit, the T1s-, Tps- and T g-optimum design are also compared and the results
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are presented in Table 7 - Table 9, respectively. The results are similar to those of the
previous cases that the maximum bias of Ty g-optimum design is the smallest in the three
designs and the mean square errors of the T g-optimum design are smaller than those of

the other designs near the quantile with minimum bias.

3.3 Simulation of small sample size in the probit and logit case

In Table 2, we can see that N(.5), the minimum number of observations necessary to
achieve a power of 50% at a significance level 5% of the three optimum designs respec-
tively, is greater than a thousand when the true model is with probit model. When the
true model is with logit model, N(.5) is greater than 800 which is also a large number of
observations. Since in realistic situation, it is usually difficult to carry out a experiment
with more than a thousand observations, we do some small sample size simulations to
compare the performance of the Trg- and the Ty s-optimum designs. The number of sim-
ulation sample size is set to be 30, 50 and 80 respectively. The simulation procedure is the
same as the previous simulation which is with large sample size but the simulation run is
10,000 for each case. Besides the mean squared errors and the biases of the probability, we
also present the mean squared errors and the biases of quantile. The results are presented
in Table 10 -15.

The estimated value of parameters are also recorded and presnted in Table 16. We
can see that for location parameter u, the estimation of the Ty g-optimum design is better
than that of the Tpg-optimum design, which means the estimator of p in T g-optimum

design is closer to the true parameter than the estimator of u in Tpg-optimum design.
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Table 4: Bias and MSE on Tpg-optimum design under probit model with misspecified
logit link function (var x 107°)

q Tq T4 F(z,) biass 7, F(z,)  bias  wvar MSE
0.51 0.0251 | 0.0235 0.5094 0.0006 | 0.0257 0.5102 -0.0002 31.3 0.0177
0.55 0.1257 | 0.1179 0.5469 0.0031 | 0.1197 0.5476 0.0024 31.4 0.0179
0.6 0.2533 | 0.2383 0.5942 0.0058 | 0.2397 0.5946 0.0054 31.5 0.0185
0.7 0.5244 | 0.4979 0.6907  0.0093 | 0.4984 0.6907 0.0093 31.4 0.0200

0.7255,,, 0.5993 | 0.5711 0.7160  0.0095 | 0.5714 0.7159 0.0096 31.1  0.0200
0.8 0.8416 | 0.8146 0.7924 0.0076 | 0.8140 0.7918 0.0082 28.7 0.0188
0.9 1.2816 | 1.2912 0.9017 -0.0017 | 1.2889 0.9006 -0.0006 17.9 0.0134

0.9700,,, 1.8808 | 2.0427 0.9795 -0.0095 | 2.0378 0.9786 -0.0086 3.2  0.0103
0.99 2.3264 | 2.7002 0.9965 -0.0065 | 2.6931 0.9962 -0.0062 0.2 0.0064

Table 5: Bias and MSE on Tpg-optimum design under probit model with misspecified
logit link function

q Tq T, F(z,) biass(q) | var®v MSE
0.51 0.0251 | 0.0222 0.5089  0.0012 | 0.000224  0.0150
0.55 0.1257 | 0.1114 0.5444  0.0057 | 0.000224  0.0160
0.6 0.2533 | 0.2252 0.5891  0.0109 | 0.000225 0.0186
0.7 0.5244 | 0.4705 0.6810  0.0190 | 0.000225 0.0242
0.7713,,, 0.7431 | 0.6751 0.7502  0.0221 | 0.000222  0.0258
0.8 0.8416 | 0.7698 0.7793  0.0207 | 0.000205 0.0252
0.9 1.2816 | 1.2202 0.8888  0.0112 | 0.000128  0.0159
0.9853,,, 2.1793 | 2.3369 0.9903 -0.0049 | 0.000023  0.0069
0.99 2.3264 | 2.5518 0.9946 -0.0046 | 0.000002  0.0048

Table 6: Bias and MSE on T g-optimum design under probit model with misspecified
logit link function

q T4 T, F(z,) biasx(q) | var®v MSFE
0.51 0.0251 | 0.0221 0.5088  0.0012 | 0.000203 0.0143
0.55 0.1257 | 0.1109 0.5442  0.0058 | 0.000203 0.0154
0.6 0.2533 | 0.2241 0.5887  0.0113 | 0.000203  0.0182
0.7 0.5244 | 0.4684 0.6802  0.0198 | 0.000203  0.0244

0.7739,,, 0.7518 | 0.6802 0.7518  0.0221 | 0.000201  0.0263
0.8 0.8416 | 0.7663 0.7783  0.0217 | 0.000185 0.0256
0.9 1.2816 | 1.2146 0.8877  0.0123 | 0.000116 0.0163

0.9862,,, 2.2029 | 2.3600 0.9909 -0.0047 | 0.000021  0.0065
0.99 2.3264 | 2.5401 0.9965 -0.0045 | 0.000002  0.0047
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Table 7: Bias and MSE on T} g-optimum design (var x 107°)

q Tq T4 F(z,) biass(q) | 7, F(z,)  bias wvar MSE
0.51 0.0221 | 0.0235 0.5107 -0.0007 | 0.0238 0.5108 -0.0008 32.5 0.0180
0.55 0.1106 | 0.1179 0.5533 -0.0033 | 0.1177 0.5531 -0.0031 32.4 0.0183
0.7 0.4671 | 0.4920 0.7094 -0.0094 | 0.4896 0.7082 -0.0081 33.0 0.0199

0.71604, 0.5098 | 0.5357 0.7255 -0.0095 | 0.5311 0.7241 -0.0081 32.9 0.0198
0.8 0.7643 | 0.7897 0.8073 -0.0073 | 0.7855 0.8055 -0.0055 29.6 0.0181
0.9 1.2114 | 1.2024 0.8985  0.0015 | 1.1959 0.8967 0.0034 18.7 0.0141

0.9795,,, 2.1318 | 1.9174 0.9700  0.0095 | 1.9066 0.9688 0.0107 4.5 0.0126
0.99 25334 | 21827 0.9813  0.0087 | 2.1704 0.9803 0.0097 2.4  0.0108

Table 8: Bias and MSE on Tpg-optimum design for logit(0, \/7§) and probit model

q T, T, F(z,) biass(q) | var®™v MSFE

. 0.51  0.0221 | 0.0267 0.5121 -0.0012 | 0.000170  0.0131
0.55 0.1106 | 0.1338 0.5604 -0.0104 | 0.000170 0.0142
0.7 0.4671 | 0.5583 0.7335 -0.0335 | 0.000173  0.0231
0.7651,,, 0.6510 | 0.7696 0.8015 -0.0364 | 0.000172  0.0249
0.8 0.7643 | 0.8961 0.8355 -0.0355 | 0.000155 0.0242
0.9 1.2114 | 1.3644 0.9224 -0.0224 | 0.000098  0.0150
0.99 2.5334 | 2.4768 0.9889  0.0011 | 0.000024  0.0069
0.9965,,, 3.1158 | 2.8713 0.9946  0.0019 | 0.000013  0.0058

Table 9: Bias and MSE on T} z-optimum design for logit(0, ‘/7?;) and probit model

q T4 T4 F(z,) biass(q) | var®v MSFE
0.51 0.0221 | 0.0253 0.5115 -0.0015 | 0.000232  0.0153
0.55 0.1106 | 0.1270 0.5573  -0.0073 | 0.000232 0.0163
0.7 0.4671 | 0.5300 0.7234 -0.0234 | 0.000236  0.0251
0.7557,,, 0.6226 | 0.6999 0.7807 -0.0250 | 0.000235 0.0269
0.8 0.7643 | 0.8506 0.8239 -0.0239 | 0.000212 0.0261
0.9 1.2114 | 1.2952 0.9129 -0.0129 | 0.000134 0.0169
0.99 2.5334 | 2.3512 0.9861  0.0039 | 0.000032 0.0074
0.9862 2.6934 | 2.4584 0.9886  0.0040 | 0.000017  0.0061

qMm

In the case of sample size 80 and in the sense of mean squared error, the perfor-

mance of the Ty g-optimum design is better than the Tpg-optimum design over where the
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Table 10: Bias and MSE on Tjg-optimum design under probit model with misspecified
logit link function with sample size 30 (var x 107°)

q VMSE(q) biasso(q) wvarse(q) | MSE(z,) bias(z,) wvar(z,)
.01 25658 - 13456 04773 1.45951  -.38179  1.9844
.03 26042 -.13964 04832 1.17724  -.41005  1.2178
1 24835 -.13192 04428 .85196 -.35231 .6017

. 22008 -.10541 03732 .64824 -.25574 3048
2745 .19860 -.08138 03282 .H5441 -.18884 2717
3 19179 -.07267  .03150 52936  -.16674 2524
4 17056 -.03710 02771 46053 -.08277 2052
45 16456 -.01879 02673 44312 -.04179 .1946
5 16243 -.00034 02638 43713 -.00110 1911
.Hd 16438 .01810 .02669 44267 .03959 1944
.6 17021 03642  .02765 45968 08057 2048
7 19123 07199 .03139 52783 16454 2515
0.7255 19801 .08069 .03269 .Hd274 18663 2707
.8 21944 10475 03718 64625 .25354 3534
9 24769 13135 .04409 .84969 35011 .5994
0.97 25967 13926 .04803 1.17492 40785 1.2141
99 25567 13428 04734 1.45727 37959 1.9796

Table 11: Bias and MSE on Tpg-optimum design under probit model with misspecified

logit link function with sample size 30

q VMSE(q) biasso(q) wvarse(q) | MSE(%,) bias(z,) wvar(Z,)
.01 253841 -.108778  .052603 1.7895 -.03032  3.20138
.03 260781 -. 111648  .055541 1.4799 -.12239  2.17509
1 252199 -.103259  .052942 1.1371 -.13758  1.27409

. .230926 -.077098  .047383 9277 -.08725  .85301
2745 216298 -.053116  .043964 8275 -.04398  .68286
3 211889 -.044480 .042919 7991 -.02899  .63765
4 198464 -.009882  .039290 7074 02979 49953
45 194333 007280 .037712 6714 05908  .44725
) 191979 023960  .036282 6411 08833  .40323
.55 191318 039873 .035013 .6166 11758 36636
.6 192171 054720 .033936 .H981 14688  .33609
7 197392 079850  .032588 5817 20565 29612
0.7255 199251 084984  .032479 .5829 22064 29110
8 205253 095997 .032913 .6032 26392 29422
9 213461 098250  .035913 .6980 31424 38844
0.97 217659 089125 .039432 9292 29905 77396
99 211433 084390  .037582 1.1799 20698 1.34920
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Table 12: Bias and MSE on Tjg-optimum design under probit model with misspecified
logit link function with sample size 50 (var x 107°)

q | VMSE(q) biasso(q) wvarse(q) | MSE(Z,) bias(z,) wvar(z,)
01 150881 -.054650 .0197783 | 1.049610 -.044518 1.09969
.03 159039 -.063857 .0212158 | .835982 -.153991  .67515
1 164593 -.071215 .0220191 609238  -.189062  .33542

. 155993 -.062719 .0204003 | .472543 -.151348  .20039
2745 .146007 -.050166 .0188012 410594 -.114518 155647
3 142596 -.045131 .0182968 | .394267 -.101466  .14515
4 131764 -.023078 .0168290 | .350544 -.049558  .12042
45 128898 -.011191 .0164894 340287 -.023449 11524
) 128255 000936 .0164484 | .337693  .002680  .11403
.Hd 129934 013075 .0167118 | .342730  .028810  .11663
.6 133771 024998 .0172696 | .355312  .054919  .12323
7 146187 047192 .0191436 403021 106826 .15101
7255 149915 052278 .0197415 420202 119878 116219
8 .160639 065006 .0215791 484295 156708 20998
9 169808 073771 .0233926 | .623242 194423  .35063
97 163948 066446 .0224639 | .851235  .159351  .69920
99 155013 056990 .0207811 | 1.064880  .049878 1.13149

Table 13: Bias and MSE on Tpg-optimum design under probit model with misspecified

logit link function with sample size 50

q VMSE(q) biasso(q) wvarse(q) | MSE(Z,) bias(z,) wvar(Z,)
.01 262793 -.105654 .0578972 | 1.509840 -.095504 2.270490
.03 265775 -. 110033  .0585292 | 1.261560 -.199595 1.551690
1 255472 -.110112  .0531412 | 980360  -.228516  .908886
. 232912 -.093568 .0454931 796843 -.186901  .600026
2745 214648 -.075497 .0403740 | .702645 -.148078 471783
3 208372 -.068706 .0386984 | .674687 -.134427 437132
4 184520 -.040629 .0323968 | .579064 -.080394  .328852
45 173416 -.026355 .0293785 | .537791 -.053300  .286379
) 163080 -.012341 .0264429 | .500188 -.026205  .249502
.55 153623 001117 .0235986 | .466174  .000889  .217317
.6 145104 013719 .0208669 | .435996  .027983  .189309
7 130895 035009 .0159080 | .390201 082015 145530
7255 127854 039314 .0148012 | .382685  .095667  .137296
8 120324 048330 .0121420 | .375519  .134490  .122927
9 114014 049138 .0105846 428619 176105 152702
97 112601 039370 .0111290 | .614037  .147184  .355378
99 109452 035372 .0107286 | .831216  .043093  .689063
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Table 14: Bias and MSE on Ty g-optimum design under probit model with misspecified
logit link function with sample size 80 (var x 107°)

q VMSE(q) biasso(q) wvarse(q) | MSE(z,) bias(z,) wvar(z,)
.01 069131 -.0169319 .0044924 | .782416 1483130  .590178
.03 083326 -.0257290 .0062813 | .605440  -.0095499 .366466
1 105157 -.0388276 .0095503 | .443330  -.0999234 .186557

. 111039 -.0399478 .0107338 | .351861 -.0972761 .114344
2745 108557 -.0340691 .0106239 | .310045  -.0783654 .089987
3 107205 -.0312209 .0105183 | .298866  -.0707019 .084322
4 101888 -.0173906 .0100787 | .268057  -.0379008 .070418
45 100122 -.0094748 .0099346 | .260137  -.0206477 .067245
) .099393 -.0012785 .0098775 | .257209  -.0031952 .066146
.55 .099806 0069323 .0099133 | .259307 0142572 .067037
.6 101266 0148924 .0100329 | .266440 0315103 .069997
7 .106014 0289041 .0104035 | .295936 0643114 .083442
7255 107229 0318197 .0104856 | .306853 0719749  .088978
8 109328 0379501 .0105123 | .348088 0908856  .112905
9 102951 0373201 .0092060 | .439345 0935329 184276
97 080881 0247384 .0059298 | .602385 0031594  .362858
99 066750 0162072 .0041929 | .780603  -.1547030 .585408

Table 15: Bias and MSE on Tpg-optimum design under probit model with misspecified

logit link function with sample size 80

q VMSE(q) biasso(q) warse(q) | MSE(Z,) bias(Z,) wvar(Z,)
.01 146622 -.0339929 .0203425 | .920978 102371 837721
.03 150370 -.0408726 .0209405 | .756414  -.040194 .570546
1 154778 -.0516065 .0212931 | .590264  -.113086 .335623
. 151835 -.0478080 .0207683 | .485226  -.099353 .225573
2745 145711 -.0378339 .0198003 | .431960  -.074778 .180997
3 143215 -.0336105 .0193810 | .416430 -.065411 .169135
4 132787 -.0148207 .0174128 | .365415  -.026570 .132822
45 127706 -.0047980 .0162857 | .345071  -.006517 .119032
) 122986 0051818 .0150988 | .327985 013678 .107387
.55 118727 0147975 .0138771 | .314228 033873 .097591
.6 114926 0237219 .0126452 | .303991 053926 .089502
7 108162 0380422 .0102517 | .295322 092767 .078609
7255 106423 0406214  .0096757 | .295956 102134 .077158
8 .100536 0445719 .0081208 | .305805 126710 .077461
9 .088093 0376753 .0063410 | .347267 140442 100871
97 073216 0199454 .0049628 | .451355 067550 .199159
99 066708 0130310 .0042801 | .593637  -.075014 .346777




Section 4 29

Table 16: Estimated value of parameters

Trs Tps
Sample size il o il o
30 00109999 .423418 | -.0883313 .480444
50 -.00268018 .495994 | .0262055 .491184
80 00319525 .539236 | -.0136781 .525566

probability is smaller than 0.7. Although the performance of the Tpg-optimum design is
better than that of the Tjs-optimum design, they are not different very much and the
explanation of this phenomenon is one of the support points of the Trg-optimum design is
allocated at extreme quantile which makes the performance better over there. In the case
of sample size 30 and 50, the performances of the two kinds optimum designs are not far
away form each other in the sense of mean squared error. However, in the sense of mean
squared error of quantile, the Ty s-optimum design performs better than the Tpg-optimum
design whatever the sample size is.

In Table 16, the simulated estimation parameters are presented. We can see that in
small sample size case, the estimator of location parameter of the Tpg-optimum design
is closer to the true location parameter than the estimator of location parameter of the
Tps-optimum design. We guess that this phenomenon may be the reason which cause
the smaller mean squared error of the Trg-optimum design than that of the 77 s-optimum
design. There are more simulation cases could be carry out to compare the performances

of the two different kinds of optimum designs in the future.

4 Discussions and conclusions

In Table 2 and Table 3, the efficiencies of the T g-optimum design with respect to the

Tps-optimum design and T g-optimum design are presented. Both Yanagisawa (1988)
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and Ponce de Leon (1996) stated that it is easier to discriminate between models when
the true model is logit and the result of 77 g-optimum design is in accordance with their
findings.

The T s-optimum designs not only can discriminate between models but also possess
the model robust property that minimizes the maximum bias. In fact, the A- and D-
optimum designs do not possess the ability of discrimination between models. Table 2
and Table 3 also show the maximum bias under each design, respectively. In Table 3 we
can see that although the efficiency of the Tpg-optimum design with respect to Yanagi-
sawa’s optimum design under Pearson’s goodness of fit test is about 52.4%, but it would
be with higher risk if one uses the Yanagisawa’s design and chooses the wrong model.

The maximum bias is about 3.64% in the above situation which is relatively large to
that of ours which is less than 1%. We can also see from the two tables that when the rival
models are probit and logit models the maximum bias of each case is larger than 2.2%
which might be somewhat risky if a slight difference of the probability may cause serious
consequences, for example, the pressure applied to the explosive or poisonous substances.
In this situation, one might rather to bound the probability bias but not to care what
exactly the true model is.

Optimum designs for discrimination have been discussed in several articles under dif-
ferent criteria. Although Ty s-optimum designs are not most powerful for model discrimi-
nation with respect to the Pearson’s chi-squared goodness of fit test or the log likelihood
ratio test, the T g-optimum designs still possess some advantages. We suggest to use Tg-
optimum designs when one is in the situation that it is difficult to discriminate between
the two rival models and a slight bias would cause serious consequence that one may want

to control the maximum probability bias.
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Since the Tpg-criterion here is based on minimizing the ordinary sum of squared de-
viations, another statistic can be considered to test the null hypothesis, that is, use the

difference between the sum of squares of the two fitted models,

dSSE = SSEy — SSE4

and one would reject the null hypothesis if the value of dSSFE is large. At present, we
do not know the exact or asymptotic distribution of the statistic, dSSE. About SSFEy
and SSE,, we speculate that both of them might be distributed as linear combinations
of chi-squared distributions. We will investigate the theoretical properties more in the
future.

To understand the distribution of dSSFE, a simulation study has been done to examine
the results for the case when the true model is with probit(0,1) and the assumed model
is logit. The observations per simulation run is 2,000 and the total simulation runs
is 10,000. We suggest to reject the null hypothesis at the significance level 5% when
dSSE > 0.181. The power of the test statistic, dSSFE, at the significance level 5% is
about 62.1%. However, the critical value of the statistic, dSSE, is related to the scale
parameter of the true model, it would be of interest to find the null distribution of statistic

proposed with respect to the scale parameter of the null distribution.
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A Appendix

Proof of Lemma 2.1. We would first prove that for each asymmetric design &;, we can
find a symmetric design &, which is a linear combination of designs & and & with equal

weight, 1, where & is the reflected design of ¢; with respect to the true mean parameter

’ 2

to. The performance of §~ would be better than &; in a sense of Tjg-optimality. The

mathematical expression is

Trs(€) = TLs(fl J2r 52) > TrLs(61) ‘;‘TLS(£2> =Tps(&), where €= 3 42r§2’
o :{ MO’L:;:UI Mognxn } and & :{ Moz;lxl uot;nxn }7

0<w; <1 and Zwizl.

The last equality holds if Trs(&1) = Trs(&2) and the inequality holds if the mapping
¢ — Trs(€) is concave. In the following we will prove the following two properties,
concavity and symmetry, of the mapping, £ — Trs(§).

We show that the mapping £ — Tps(§) is concave first. Let £ = a&; + (1 — a)&s, by

the definition of the mapping £ — Trs(), it can be seen that

Tus(§) = 20) = GER)|PE(d),
= [ IF(5E) = GEER) P (ag + (1 = a)&) (da)
= a [ IIF(522) = GESH)Pe(d) + (1 = o) [ IF(522) = G(55) €2 (dx)
> a [ IF(5E) = GO IPa(de) + (1 - ) [ [F(7522) = G2, P& (dx)

= aminy, ; [ [|F(*55) — G(%)H%(dw)

+(1 = a)miny,, [ [|F(558) = G(EFH)[6(dx)

= aTLs(§1) + (1 - a>TLS(§2)'
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Thus, it is proved immediately that the mapping & — T1s(§) is concave and then the

special case holds for

- §1+ &

Trs(§) = Trs( 5 G té

where € = 5

) > Trs(&1) + Trs(&e)
> 5 )

We now prove that Tpg(&1) = Trs(§2). Once the statement is verified, then we have
the result that TLS(E) > Trs(&1) where é and &; are as defined in Lemma 2.1.

Recall the definition of

Tus(©) = min [ |F() - GO Pe(a)

0o
then
Tus(&) = ming g, [, IF(52) = GEF)I6 (da)
= ming, ., Z?:l wz[F((f_é) _ G(wi+(;;?—u1))]2

e Tos(€) = ming [ | F(ES) = GE22) Pe(da)
=min,, 5, Yo Wi[F (=) — G(*$¢+(N0*M2))]2’

o0 02

where 0 < w; < 1 and Z?’:l w; = 1 and &, is the reflected design of & with respect to py.

More explicitly, it can be expressed as

&:{Mo-irxl M0+13n} and 52:{/%—561 ,U’O_xn}.

w1 W, w1 Wy,

Let the LSE of p; be denoted by fi1, i.e.

00 01

jii = argumin /5 A1) - (2 ()

— argmin Y wiF(2) - ¢(B (1o = 412) 1o

p 4 0o 01

Define fi; = po + p*, that is to say puo — fiy = —p*. Then another expression of fi; is that

fi = argminZwi[F(ﬂ) — G(xi — K
M1 i1

0o 01

I
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We show that the relationship between ji; and jis is fio = o — p*. Since

min > wi () — (=t (o = pra) )

p2 4 o) 02

= minzwi[l —F(&) _ 1+G($i — (ko —Mz))}g

w2 i—1 (o) ()]
R L x; — (po — p2) 2
= I (—) — G ,
n}énzw[ () =Gl . )]

then (o — fiz) = p*, ie. fis = po — p*. Let the LSE of oy is &1 which can be expressed as

n

R . T; T + (o — fi1) 7o R N
= | F(—) — G , h =
o1 = argmin 3 wlF() G, whore = ot
. - X Ty — p* 2
o I3 F — - G
argmin ‘E_ wil F() = G(— )]

Now we show that 6o = ;. If this statement is proved, then it would be easy to see that

Trs(&) =Trs(&) and Trs(§) > Trs(&1). We know that from the definition

by = argmingd wF(—) - (I T ey = g -
=1

0o 09
— argmin f:wz[F(“”") _ (T
T2 i—1 (o)) 09
. & T Ly — K \qy2
_ IFEY — @
argmin Y wlF(2) - G L)

Then, by previous result, we can say that

Trs(&) =Trs(&) and  Trs(§) > Trs(&),

where £, & and & are as defined in Lemma 2.1. Then by previous statement, we can say
that there must exist a symmetric T g-optimum design. Thus, we may concentrate our

attentions on those designs which are symmetric in finding a 77 g-optimum design.
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Proof of Lemma 2.2. Below we prove that the unique minimizer of u is pg for
symmetric design with respect to po with four support points. For all symmetric designs
with more than five support points, the proof of the uniqueness of minimizer of y is similar

and omitted. Now we consider the design

l—U) w w l—w

g*:{uo—b o —a fo+a M0+b}
2

2

where a,b > 0, then the least square estimates of y is pp. Let

M) = [IFCE) - 6P ype(an

— G-wlFC) - G ufp( ) - gty
+ulP(5) - GETEZIR 4 (0 —w)[P( ) - G

= (G- wNFCD) - G e T - g e =y
wlF(2) - G = 4 (4 - o= M

= (G- wlP() - 6T (L) - =y
rulF(2) - = Vi) - o=y

= wflF(E) - Gy e L - g =y
5 —ulIF() - Gy Ly - g = My,

First we want to show that pg is a minimizer of the A function with respect to u, more

explicitly, to show that h(u, o) > h(pe, o), Yo > 0, i.e. we want to prove that

e ST e R D E YL e Tl e 5 WA

[oy) o (o) o (o) o
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Vb>0,ueR, o >0, which is equivalent to proving that

[F(y) = Gz — )] + [F(y) — Gz + )] = 2[F(y) — G(x)]*

b
Vy >0,z >0,c>0, where y=— o=
00

Ho — |
P

and c¢=

SEESY

[F(y) = Gz — o))" + [F(y) — Gz + o))
= [F(y) - G(z) + G(z) = Gz — o) + [F(y) — G(z) + G(z) — Gz + o)
= {[Fy) - G@)’ +[G(x) = Gz — o) + 2[F(y) - G()][G(z) — G(z — )]}
= HIF) - G@)’ +[G(z) = Gz + o))" + 2[F(y) — G(2)][G(z) — Gz + o)]}
= [F(y) — G@)]* + 2[F(y) — G(@)][2G(2) — G(z — ¢) = G(z +0)]
= +[G(2) = Gz — o) +[G(2) — Gz + )" + [F(y) — G(x))*
= {[Fy) - G@)]” +2[F(y) - G(@)][2G(z) - G(z = ¢) = G(z + )]
= +[2G(2) = Gz — ¢) = Gz + )"} = 2[G(2) — G(z = 0)][G(z) — G(z + )] + [F(y) — G(x))*
= {[F(y) - G(@)] + [2G(z) = G(z — ¢) = G(z + )]}
= +2[G(2) — G(z = J)][G(z + ) = G(x)] + [F(y) - G(x)]*

= 2 [F(y) - G@)]’ +[F(y) - G@)] =2[F(y) - G(x)]*,¥y > 0,2 > 0,¢ > 0.

if 2G(z) — G(x —¢) — G(z + ¢)] > 0,Vx > 0,c > 0, which will be established in the
following. First, for z > ¢ > 0,[2G(z) — G(z — ¢) — G(x + ¢)] > 0,
since G(z) is concave function as x > 0 and the inequality holds only when c¢=0.

Forc¢>x >0,

2G(z) = G(x —c) — G(x +¢)

= [G(z) = G(r = )] =[Gz + ¢) = G(2)]
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g(t t)dt,Ye >z >0

[ o= [
= / g(t dt+/0g dt—/ Cg(t)dt
_ /0 dt—l—/og dt—/ gt
> [Caties oo [ gtoar
:/0 ()dt—/x it > 0.

The inequalities hold because g(x) is symmetric with respect to =0 and strictly decreas-

ing as x >0, i.e.

a+x b+x
/ g(t)dt > / g(B)dt, b > a > 0,2 > 0.
a b

Now, we can say that

min h(p, o) = h(pg,0),Yo >0, ie.  pg=argminh(u,o).
0 1

That is to say, po is the unique solution that h(p, o) = min, h(p, o).

Second, we show that symmetric two-point design is not Tpg-optimum design. It can

be proved by the definition of T g-optimality criterion directly.

Trs(§) = Iﬁgl

- G(—L)|Pé(da)

= minfu « [F(* ) = GEEP 4+ (0 —w) = [P - (B

=0.

If y and o are such that FI(*2¢) — G(*;#) and F(=F¢) — G(=5*) where

52{ ¢ Z]},Va>0and1>w>0.

1—w
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Similarly, symmetric three-point design, £* = { :Ua 1 —02w Z },V a>0 and 1 >

w > 0, is not a T g-optimum design either.

Proof of Lemma 2.3 For convenience, we define the function of o, D(0)=g(%)g(2)—

9(%)g(-) and we now prove that the sign of Zh(po, 0, £*) is the same as D(o).

%hWoﬂT, 5*)
— dulF Jﬁo ~ G5 4(% _ w)[F(U%) _ G(g)]g(g)%
— %{aw[F(g) - G(%)]g(%) - b(% — w)[F(U%) _ G(g)]g(g 1.
9(%)

Replacing w by

2 a-g(&) b [F()—G(Dlg(z) b g(zx) a [F(E)—G(2)lg(2)

AT e rag®)] T b tag®)]

2 ab a b b b b a a a
= 2 g a9 @) @(;)[F(U—O) -G )g(0) + g(;)[F(U—O) — G0}

2 ab a b b b b a a a

__ab : 9 o
(L) s (S > 0, the sign of $=h(uo,0,£*) is the same as

9()9(BIF () = G +9(H)9(RF () — GGl
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Consider the function

s = G+ g DIF() = G
= o DCIFCE) — G5 + G~ ()
a b b b b
(P = G2) + G — G
— 1P - Glo()9(2) ~ o(2g(-)
a b a a a b b b
+9(;)9(;)[G(;) - G(;)] + 9(;)9 —)[G(;) - G(;)]

Since [F(O_—bo) —G(£)]>0,9()>0and [G(£) —G(£)] > 0for z > 0 and 0 > o*, then

0 a, b a, b

- ) > >o* i Zha(2) = g(2)g(—) > > g*

5y H0,0,87) 20 for o >0" if  g(—2)g(~) —g(=)g() 20 for o =07,
i.e. The sign of a%h(uo, 0,&") is the same as g(£)g(2) — g(2)g(L).

Lemma A.1.  Let{jin,0n} be the least squared estimator of {i, 0} and N is the number
of total observations, then

im &N:O'*.

lim jy = d 1
Nl—I};o N Ho, an N—oo

We have shown that limy_ . iy = po in the proof of Lemma 2.2, and we will show

that limy_.. 65y = ¢* now. Recall the h function,

h(p, o) = JH{IF(2) — G2 4 [F(2) — G(ete=id))2y
+02{[F(L) — G2 4 [F(L) — G(PHem )2y

Since we have shown that ji = g, then

hpo,0,€") = 2 [F(%) — G(2))P + 22 [F () — G(2)P,

o0
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and the LSFE of o, 6, must satisfy the equation

0

%h(,uo,cr, E)|o=s =0

Ny a a a. a Ny b b b.b

4W[F(0—0) - G(;)]g(;); 4W[F(a_0) - G(;)}g(;)gbza =0

4 N a a a Ny b b b

] GW[F(J_O) - G(; ]9(;) + bW[F(o_O) — G(;)]Q(;)HU—U =0

N B b-g(%) Ny 1 N
Roplacivg 37 W v = ) Yagiay M N T2 TN

asg(2) b [F(2) = Gg(t) | bog() a-[F(2) - GE)lg(2)

@) a2 boa@)ra 2]

(WP = GON) + g L)F(E) = G ama =0

WEDIDIFC) — G + 9 — G5} =0 ®
Since [F(£) —G(%)] = —[F(L£)—G(L)], and by equation (x) we know that o* is a LSE

of o.

Lemma A.2. o¢* is the only LSE of o when the assumed model is with the double-
exponential or double-reciprocal distributions, and the true model is from one of the other

three models we introduced in the beginning.

By Lemma 2.3, to prove that ¢* is the only LSFE of o, we have only to check that
o* is the only solution of the function D(c)=0, that is, g(-2)g(2) — g(2)g(Z) = 0. We
first prove that D(0*)=0 when the probability function ¢(-) of the assumed model is with

r—

double-exponential distribution, that is, g(x;u, o) = %e"TH‘, and ¢ > 0, b > 0 and
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o* > 0 are defined as in (2.1)-(2.4), then

Do) = (D)D)~ o(Dg( )
= eapl-| 1 = 121} - gear{-151 - | 1)
= %e:cp{—% — g}[eiﬂp{—b — a} - exp{_bg_*a}]’

since exp{-} > 0 and exp{Z} — exp{ 5} = 0 only as 0 = 0¥, then it implies 0* is the only
LSE of 0.

We now prove that D(c*)=0 when the probability function g(-) of the assumed model
is with double-reciprocal distribution, that is, g(x; pu, o) = m, and a > 0, b >0

and ¢* > 0 are defined as before, then

Do) = a( a2y~ gD L)
B 1 11 1
CO20 4D 20 B2 202D 20+ R

since

[ ot 2— o ta 2]—0 only as o=o0"
o+ b o +b) Y — 7

o* is the only LSFE of o.



