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Abstract

Surgeon operation time is a useful and important information for hospital man-
agement, which involves operation time estimation for patients under different di-
agnoses, operation room scheduling, operating room utilization improvements and
so on. In this work, we will focus on studying the operation time distributions of
thirteen operations performed in the gynecology (GYN) department of one major
teaching hospital in southern Taiwan. We firstly investigate what types of distribu-
tions are suitable in describing these operation times empirically, where log-normal
and mixture log-normal distribution are identified to be acceptable statistically in
describing these operation times. Then we compare and characterize the operations
into different categories based on the operation time distribution estimates. Later
we try to illustrate the possible reason why distributions for some operations with
large data set turn out to be mixture of certain log-normal distributions. Finally we

end with discussions on possible future work.

Keywords: classification, EM algorithm, gynecology, likelihood ratio test, MLE,

mixture of log-normal distributions.
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1. Introduction

In recent years, the managers of hospitals have been confronted with the severe
competition for operation; besides, the policies of our Health insurance program
also make them pay more attention to the cost control. Not only the high cost of
human resource but the capital-intensive attribute of surgeries compel the managers
to think more about appropriate administration and one of the efficient uses of all
resource. Therefore, the surgery management has became important issues to hos-
pital manager. Surgeon operation time is a useful and important information for
hospital management, which involves operation time estimation for patients under
different diagnoses, operation room scheduling, operating room utilization improve-

ments and so on.

In our study, the data of the operation time was collected from the gynecology
(GYN) department at one major teaching hospital in southern Taiwan from January
2000 to June 2003. There are nine doctors in the gynecology department. Because
there are many kinds of operations performed in the GYN department, we analyze
thirteen operations where the data counts exceed thirty. Corresponding variable
name for these operations are listed in Table 1. The descriptive statistics and box-
plots of the operation time for each of the operation (Vi), i=1,...,13, are presented
in Table 2 and Figure 1. After taking the logarithm of the original time data of each
operation, the descriptive statistics and boxplots (LVi), i= 1,...,13, are separately
listed in Table 3 and Figure 2. Later each operation time distribution has been
fitted by a log-normal distribution verified by Kolmogorov-Smirnov goodness of fit
test (K-S test) respectively. We investigate the characteristics of these distributions

of the logarithm of operation time by statistics.

For those data sets which can be fitted by log-normal distributions, we use stan-
dard one-way analysis of variance to compare the differences between means. If it
is considered to have significant differences between them, we then use Tamhane
T2 test to compare how they are differed in means and characterize the operations
into different categories with ”short”, "medium”, "long”, or "ultra long” operation
times. For those data sets which are rejected as fitted by the K-S test, they are

further fitted by a more general mixture log-normal distribution instead.

In this work, a two-factor factorial design with factor doctor and stage which
means the disease severity of the patients is considered although the response of
the time for each operation which are rejected by the K-S test is assumed to be a
random variable with mixture log-normal distribution, where the parameters of the

distribution such as the mixture proportions, parameters for each distribution in
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the mixtures, depend on the factor. In the following, we will consider the general
mixture model and describe the method we are going to use to do the estimation
and perform the appropriate tests. In the practical problem here it is of interest
to know whether the factor of doctor and stage have effect on the operation time
which be fitted by mixture log-normal distribution. In order to do that, likelihood

ratio tests are used here to accomplish our investigations.

In fact, we should take all the variables which affect operation time distributions
into account when we examine the factor effect on operation time and try to find
other factors which affect operation time distributions to explain why distribution
for some operations turn out to be mixture log-normal distributions. The other
variables which affect operation time distributions are like patient’s age, residents
practicing years, blood transfusion and blood loss et al. For operation time which
are fitted by log-normal distribution, we can use the method of multiple regression
to test the relationship between independent variables (doctor, stage, patient’s age,
residents practicing-years, blood transfusion and blood loss et al) and dependent
variable (operating time) and generalized linear regression to develop a operating
time forecasting model. In multiple regression, we maybe use different models to
find what kind of variables effect operating time most. Hence we not only provide
these relationship results to help the operation room scheduling more efficient, but
also build a surgeon-based model to forecast most operating time by different vari-

ables.

Operating room managers who seek to maximize utilization in their operating
room suite may attempt to build an efficient operating room scheduling. Accurate es-
timation of operating times is a prerequisite for the efficient scheduling of the operat-
ing suite. Operation time distributions of GYN department generally can be consider
two types; log-normal and mixture log-normal distributions. How to calculate the
operation time finishing probability and decide the order of operation be performed
for the operation room scheduling are primary problems. For example, if three
operations are performed today, the operation time of X; is fitted by log-normal
distribution, the operation time of X, and X3 are fitted by mixture log-normal dis-
tributions, the finishing probability of operation time, P(X; + X5+ X3 > T') where
T is critical value of operation time, is hard to calculate since it doesn’t have close
form. Therefore the method of estimating the finishing probability of operation time

for mixture log-normal distribution is worthy to discuss in the future.

In section 2 we introduce the definition of a finite mixture distribution and use

the method of the maximum likelihood to estimate the parameters. The computa-



tion algorithm for finding the MLE of parameter vectors of mixture distributions
under different considerations to accommodate the practical situation are also in-
troduced, namely, the EM algorithm proposed first by Dempster. at al(1977), the
EM algorithm for grouped and truncated data proposed by McLachlan and Jones
(1988). Later the mixture of log-normal distribution will be used to fit our data.
The standard errors estimates for MLE (#) can be computed by taking the square
root of the corresponding diagonal element of I71(6), where I(f) is corresponding
Fisher information matrix. The Kolmogorov-Smirnov goodness of fit test for ascer-
taining whether an assumed probability distribution is consistent with a given set
of data is also stated. In Section 3 likelihood ratio tests for testing the effects of
main factors are formulated. In Section 4 we applied all these methods to the time

data of the operation, and in Section 5 we conclude with a conclusion and discussion.

Table 1 : Thirteen operations in the GYN department.
Code Operation

V1  Anterior-posterior colporrhaphy
V2  BSO + omentec. + ATH + retrope.Lm.R.D
V3  Enucleation of ovarian cyst

V4  Hysterectomy rad. cervical cance
V5  Hysterectomy, total extended

V6  Lapa.oophorectomy, partial/total
V7  Laparoscopy operative

V8  Laparotomy abdomen for 2nd look
V9  Myomectomy

V10 Salpingo-oophorectomy

V11 Total Hysterectomy (ATH/VTH)
V12  Total hysterectomy (LAVTH)

V13 Total vaginectomy resection




Table 2 : Descriptive statistics of operation times.

Operation Total Min Max Mean Std.Dev.
V1 49 15 204 89.04 31.93
V2 131 80 959 247.15 109.56
V3 243 60 330 126.13 44.22
V4 403 84 540 256.89 59.34
V5 50 154 360 219.62 47.09
V6 96 60 520 137.96 68.94
V7 135 60 475 156.33 79.89
V8 60 90 435 185.07 65.34
V9 260 60 370 131.26 46.37

V10 113 65 520 138.68 64.07
V11 785 60 580 139.66 51.89
V12 947 65 575 149.41 54.19
V13 40 34 129 75.30 24.33

Table 3 : Descriptive statistics of the

logarithm of the operation times.

Operation Total Min Max Mean Std.Dev.
LV1 49 2.71 532 442 .40
LV2 131 4.28 6.87 5.43 .40
LV3 243 4.09 5.80 4.78 .32
LV4 403 4.43 6.29 5.52 .22
LV5 50 5.04 589  5.37 .20
LV6 96 4.09 6.25 4.84 .40
LV7 135 4.09 6.16 4.95 43
LVS8 60 4.50 6.05 5.17 .33
LV9 260 4.09 591 4.82 .32

LV10 113 4.17 6.25 4.85 .39
LV11 785 4.09 6.36  4.89 .30
LV12 947 4.17 6.35 4.95 .32
LV13 40 3.53 4.86 4.27 .34
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2. Mixture distributions and method of estimation of param-
eters

Let the random variable X have probability density function(p.d.f) f(z) of a
mixture distribution with finite components, the mixture distributions can be rep-

resented in this form

f(z; ®) :Zpifi($;9)7 (1)

where f;(z;60) is the p.d.f corresponding to the ith component of the mixture and
0 denotes the vector of all unknown parameters in the parametric forms adopted
for these g component densities. ® = (p,0')’ be the vector of all unknown parame-

ters, where p = (p1, ..., py)’ is the vector of mixing proportions satisfying > 7, p; = 1.

Assume n independent observations, x1,...,z,, were obtained from a mixture dis-
tributions, then the vector of all unknown parameters of (1), ® = (p/, '), will be
estimated. For estimating the unknown parameters, we apply the standard max-
imum likelihood estimation (MLE) method. Not only is it appealing on intuitive
grounds, but it also possesses desirable statistical properties such as, under very

general conditions, the estimates obtained by the method are consistent.

In the case of mixture distributions, one of the well-know numerical method for
finding the MLE is described in the following subsection.

2.1 Expectation-maximization (EM) algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an
iterative procedure of maximum likelihood estimation for data containing missing
values. Such a missing value problem includes as a particular case the estimation
of the parameters of a mixture distributions from an observed sample. In order
to train the mixture distributions, the EM algorithm is often applied to optimize
model parameters because of it is easily programmable and satisfies a monotonic

convergence property.

EM algorithm for computing the maximum likelihood estimation (MLE)

The EM algorithm is a standard technique and useful tool for obtaining max-
imum likelihood estimates for finite mixture models. Maximum likelihood estima-
tion (MLE) can be undertaken via the EM algorithm of Dempster, Laird, and Ru-

bin(1977); see also the monographs on mixture distributions by Everitt and Hand



(1981), Titterington, Smith, and Makov (1985), and more recently, McLachlan and
Basford (1988). The M-steps and E-steps are repeated iteratively until some con-

vergence criterion is satisfied.

EM algorithm for grouped and truncated data

Frequently in practice, data collected on the phenomenon of interest are available
only in grouped form and may also be truncated. We consider here the fitting of
finite mixture distributions to such data. Dempster et al. (1977) showed how EM
algorithm can be used to carry out MLE for grouped and truncated data, although
they did not consider specifically mixture distributions in this context. More re-
cently, McLaren, Brittenham, and Hasselblad (1986) used the EM algorithm to fit a
doubly truncated log-normal distribution in the modeling of the distribution of red

blood cell volumes in healthy individuals and patients with anemia.

In our study, the operation time of the GYN department was recorded a unit
of one minute. Hence the data sets we obtained can be regarded as in grouped
form, and we selected the data sets which the operation time exceed sixty minutes
since operation time is usually at least one hour. That is to say we truncated our
observations before sixty minutes. Our observations are considered to be in grouped

and truncated form.

Mclachlan and Jones (1988) considered the fitting of finite normal mixture mod-
els via the EM algorithm for data which are available only in grouped form and
which may also be truncated. The detail of EM algorithm is given in Appendix (A).
In our study here, we adopt the method of EM algorithm which be proposed by

Mclachlan and Jones (1988) to estimate parameters.

2.2 The standard errors of MLE

Suppose that random variable X has a density function f(x|f), where 6 denotes

unknown parameters, we define the Fisher information matrix 7(6) by

10) = B log f(X[0)]"

Under appropriate smoothness conditions on f(z]0), I(f) may also be expressed as
2

16) = B[ 1og f(X]6)] )

The large sample distribution of a maximum likelihood estimate (é) is approximately
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normal distribution with mean 6y and variance 1/nl(6y) where 6, is the true value
of 6.

A corresponding result can be proved from the multidimensional case. The vector
of maximum likelihood estimates is asymptotically normally distributed. The mean
of the asymptotic distribution is the vector of true parameters, 6. The covariance
of the estimates 6; and éj is given by the ij entry of the matrix n=1771(6,), where

1(0) is the matrix with ij component

Bl o8 £(X19) - log /(X19)] = ~El

log f(X]0)]. (3)

The standard errors estimates for  can be computed by taking the square root

of the corresponding diagonal elements of n=21 _1(é).

2.3 Kolmogorov-Smirnov test

As soon as we have obtained the estimation of parameters, we need to test
whether the particular estimated p.d.f. is consistent with those observed data. The

Kolmogorov-Smirnov goodness of fit test will be used.

The data consist of a random sample X, X, ..., X, of size n associated with
some unknown distribution function by F(x). Let S(z) be the empirical distribution
function based on the random sample X, Xs,..., X, and F*(x) be a completely
specified hypothesized distribution function. If we had wished to test the null hy-
pothesis

Hy: F(x) = F*(x) for all x,
Hy: F(z) # F*(x) for at least one value of z.

Test statistic T is defined
T = sup |F*(z) — S(x)].

Reject Hy at the level of significance « if T' exceeds the 1 — a quantile, or by

using p-value given by
[n(1-1)]

pt ()H Ly 4 -1 @)

n
j=0
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where t is the observed value of the test statistic.

The Kolmogorov-Smirnov test may be preferred over the Chi-squared test for
goodness of fit if the sample size is small; the Kolmogorov-Smirnov test is exact even
for small samples, while the Chi-squared test assumes that number of observations
is large enough so that the Chi-squared distribution provides a good approximation
as the distribution of the test statistic. There is controversy over which test is the
more powerful, but the general feeling seems to be that the Kolmogorov-Smirnov
test is probably more powerful than the Chi-squared test in most situations involv-

ing ordinal data. For further comparisons please see Slakter(1965).

2.4 Tamhane T2 test

We hope to classify operation times base on log-normal distributions. To inves-
tigate pairs of significantly different operation time means, we need to use multiple
comparison. Tamhane T2 procedure based on Student’s t distribution was proposed
by Tamhane (1977, 1979). Tamhane T2 test is based on assumptions that variances
are unequal and sample sizes are unequal. SPSS software provides Tamhane T2 test

for pairwise comparisons.

Consider an experiment with data y;; satisfying the one-way, fixed-effects analysis
of variance model
Yij = Wi + €ij
where the e;; are independent with e;; ~ N (0, 0?) and the p; and o? are unknown,
for i=1,2,..., k and j= 1, 2,..., n;. Denote by ¥y, the ith sample mean and by s?

an unbiased estimate of o2 based on v; degrees of freedom for level 7, n; — 1.

Two means are significantly different if

82

2
_ 5i 3 \1/2
7 — U;1 > t, f/z-j(n—zi + n_J) ;

where t, ;, is the two-sided v point of Student’s t distribution with 2;; df, where

v =1—(1—a)"*" ais experimentwise error rate under the complete null hypothesis,
k* = k(k —1)/2, and 7;; denotes as

(s7/ni+ s3/n;)?

st/nv; + s?/n?yj'

~

V’ij =

12



3. Effect testing

We now discuss that testing of factor effects to from finite mixture log-normal
distributions. Yong. et al (2004) investigated the asymptotic properties of the
likelihood ratio statistic for testing homogeneity in normal mixture models in the
presence of a structural parameter. They showed that the ordinary likelihood ra-
tio test has the simple x?-type null limiting distribution under some assumptions.
More recently, Zhang. et al (2004) used the likelihood ratio test to test the existence
of any QTL affecting the expression of an embryo or endosperm trait for mapping
QTL is based on a mixture model. He thought the log-likelihood ratio test statistics
is asymptotically y? distributed. Hence we also use likelihood ratio tests to test
whether factors of interest have significant effect to the mixture log-normal distri-

bution model.

3.1 Likelihood ratio test

If Xi,...,X, is a random sample from a population with p.d.f f(z|0) where 0
denotes the parameter vector of distribution. The likelihood function is defined to
be

n

L) = [ [ f(xl0).

i=1
To test 6 € )y versus 6 € 2, the well known likelihood ratio test statistic is defined
through
\— SUPgeq, L(0)

SUPgeq L(6)
where 2 = y U ;. Under some additional regularity conditions, the asymptotic
distribution of the statistic —2log X is x%, where £ = dim Q — dim Q. One rejects
0 € Qg whenever —2log A > (', where C'is determined by the desired level of the test.

In our study here, we are interested in knowing whether the factor of doctor has
effect on the operation time. Let ‘i)w, 1=4, 11, and 12, denote the parameter vectors
of the distribution of V4, V11, and V12 operation time, respectively. If we want to
test the effect of doctor at V4 operation, the test statistic used here is through

L(Dvyy)
L((I)V4Doc4) L((I)V4Doc7) L((I)V4D0c9>

, ()

)\V4D0c =

where L(®vy) = [} f(2:|Pva) is the maximized likelihood for V4 operation time.
(i)V4Doci is the estimation of the parameter vector of the time distribution of the ith

doctor at V4 operation, i= 4, 7, and 9. L((i)V4Doci) is the maximized likelihood of

13



the ¢th time data set of doctor at V4 operation, i= 4, 7, and 9. Log-likelihood ratio
(—21og Avapoc) is asymptotically x? distributed with the degrees of freedom equals
to the difference between the sum of the number of parameters of CiDV4D0C4, (i)V4Doc77

and Ci)V4Doc9 and the number of parameters of <1>V4.

To test the effect of doctor at V11 operation, the test statistic Aviipoc is
L(by11)

L(&)VllDole ) L((i)\/l 1D0C267)L(®V11D003458) 7

where L((i)Vn) is the maximized likelihood for V11 operation. (i)VllDoclg denote the

(6)

>\V11Doc -

parameter vector of the combined time data sets of the 1st and 9th doctor at V11
operation. (i)VllDoc267 is the parameter vector of the combined time data sets of the
2nd, 6th, and 7th doctor at V11 operation. Similarly, <i>v11DOC3458 is the parameter
vectors of the combined time data sets of the 3rd, 4th, 5th and 8th doctor at V11 op-
eration. Log-likelihood ratio (—2log Aviipec) is asymptotically x? distributed with
the degrees of freedom equal to the difference in dimension between the sum of the
number of parameters of @VHDoclg, QA)VHDOCQW, and ci)VllDoc3458 and the sum of the

number of parameters of ®vqq.

To test the effect of doctor at V12 operation, the test statistic is adopted in the

same manner, where

L(Py12)
L(ci)V12Docl379)L(ci)V12Doc2)L(ci)VIQDoc4568) 7
where L((i)vw) is the maximized likelihood for V12 operation. Pyiapecizre denote
the parameter vector of the combined time data sets of the 1st, 3rd, 7th, and 9th

doctor at V12 operation. (i)V12D0(32 is the parameter vector of the time data set of

(7)

>\V12Doc -

the 2nddoctor at V12 operation. Similarly, <f>v11D064568 is the parameter vectors of
the combined time data sets of the 4th, 5th, 6th and 8th doctor at V12 operation.
Log-likelihood ratio (—2log Ayiapec) is asymptotically x? distributed with the de-
grees of freedom equal to the difference in dimension between the sum of the number
of parameters of @VlgDoclgyg, Ci)VlQDoc% and @V12D0C4568 and the sum of the number

of parameters of (i)vm.

Regardless of doctors, the effect of stage of the patients’ disease at V4 operation
can be tested by

L(Dyy)
L ((I)V4Stage1 ) L ( (I)V4Stage2 ) L (CI)V4Stage3>

<f>v45tagei is the estimation of the parameter vector of the time distribution of the

(8)

>\V4Stage =

1th stage at V4 operation, i= 1, 2, and 3. L(ci)VZLStagei) is the maximized likelihood

14



of the ith time data set of stage at V4 operation, 1= 1, 2, and 3. Log-likelihood
ratio (—2log A\vapec) is asymptotically x? distributed with the degrees of freedom
equals to the difference between the sum of the number of parameters of ‘iwswgel,

Dvsgtage2, and Pyagiages and the number of parameters of ®vy.

4. Statistical analysis results

In our work, we focus on studying the operation time distributions of thirteen
operations of the gynecology (GYN) department. The sets of observed frequency
counts in histogram form are given in Appendix (C). We fit log-normal distribu-
tions for those data and test results are given in Table 4. For those data sets which
can be fitted by log-normal distributions, we use standard one way analysis of vari-
ance to compare the differences between means and characterize the operations into
different categories with ”short”, "medium”, or "long” operation times. For those
data sets which are rejected as fitted by the K-S test, they are further fitted by a
three-component mixture of log-normal distribution instead, and later we examine
the effect of doctor and stage of the patients’ disease on the operation time which

those fitting are rejected.

4.1 Classification of operations based on operation time

Each operation time distribution is fitted by log-normal distribution and verified
by Kolmogorov-Smirov gooodness of fit test respectively. From Table 4, we know

the results of fitting log-normal distribution.

Table 4 : Results of K-S test.

Operation LV1 LV2 LV3 1Lv4 LV5 [LV6 LV7
K-S Test .354 .180 .349 .004 804 .249 465

Operation LV8 LV9 LV10 LV11 LV12 LV13
K-S Test .768 .244 .216 .000 .017  .158

For those data sets of operation time (V1, V2, V3, V5, V6, V7, V8, V9, V10,
and V13) which can be fitted by log-normal distributions, we use standard one way
analysis of variance to compare the differences between means. From Table 5, be-
cause Sig. = .000, we conclude that the means of those data sets of the operation

time have significant differences.
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Because it is significant differences between them, we then use Tamhane T2 test
to compare how they are differed in means. Tamhane T2 test is used to compare
all pair of means with unequal group variances. A graph underlying those means
of the operation time that are not significantly different is shown in Figure 3. We
can characterize the operations into different categories with ”short”, "medium”,
"long”, or "ultra-long” operation times from results of Tamhane T2 test. From the
analysis we see that there are significant differences between all pairs of means ex-
cept V1 and V13, V3, V6, V7, V9, and V10, V2 and V5. Therefore we categorize
V1 and V13 with short operation times; V3, V6, V7, V9, and V10 with medium
operation times; V8 with long operation times; and V2 and V5 with ultra-long op-

eration times, respectively.

Table 5 : One way ANOVA.

Source Sum of squares df  Mean square Ey Sig.
Operations 82.806 9 9.201 72.353 .000
Error 146.748 1154 127

Total 229.555 1163

V1 Vi3 V3 V9 V6 V10 V7 V8 V2 V5
4.254.42 4.78 482 4.83 4.854.95 5.16 5.37 5.43

Figure 3 : Results of Tamhane T2 test

4.2 Mixture log-normal distribution

From Table 4, we know that the time data sets of V4, V11, and V12 operation
are rejected as fitted by the K-S test. The sets of observed frequency counts in
histogram form presented in Appendix (D) suggests that the operation time distri-
butions are mixture models, which also seem to be able to explain the real situation
reasonably. Hence we will fit a more general mixture log-normal distribution for
those data sets of V4, V11, and V12 operation time.

A random variable Y is said to be log-normally distributed if X=logY is nor-
mally distributed. Only positive values are possible for the variable Y, and the
distribution is skewed to the left. The p.d.f. of log-normal distribution is

1 e (logy—p)?/20°

\2mo Y

,0<y <o00,—00 < p < o0. (9)

fylp, o?) =
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For those operation (V4, V11, and V12) times which are rejected as fitted by the
K-S test, they are fitted by a more general mixture log-normal distribution instead.
Since the operation time was recorded a unit of one minute, the time data sets we
obtained can be regarded as in grouped form, and because the operation time is
usually at least one hour, we selected the data with operation time exceeding sixty
minutes. Hence our observations are considered to be in grouped and truncated
form. We can think of the data which operation time is less than sixty minutes as
special case and discuss them further. In order to obtain the MLE of mixture of
log-normal distributions for our data, the formulas for performing EM algorithm and
EM algorithm for grouped and truncated data are used in our estimates. We first
fit three-component mixture of log-normal distributions to these data set of opera-
tion time (V4, V11, and V12) via formulas deduced by McLachlan and Jones (1988).

To estimate the MLE of parameter vector ® = (py, pa, 1, ft2, i3, 01, 09, 03) of a
mixture of three log-normal distributions, we only take the logarithm of the origi-
nal data and estimate the MLE of parameter vector of a mixture of three normal
distributions. Because the minute is a unit of operation time, we try to group the
operation time into five types, that is, each one of the interval of operation time is
one, two, three, four and five minutes respectively. For example, if we consider six
observations of operation time are 60, 61, 62, 63, 64, 65 minutes, then the grouping
is over six intervals of equal width of one minute, that is, one frequency for each
interval. For the interval of equal width of two minutes, we have [60,62), [62,64),
and [64,66) three intervals, and each interval has two frequencies. According to the
EM algorithm for mixture of log-normal distributions, we obtain the estimates of

A

parameter vectors ®;, i= 4, 11, and 12, listed at Table 6, 7, and 8 respectively.

To test whether the three-component mixture of log-normal distributions is con-
sistent with the observed data, the Kolmogorov-Smirnov goodness-of-fit statistic is
considered. The test results are also given in Table 6, 7, and 8 for each time data
of V4, V11, and V12 operation along with the associated p-value. According to the
results of Table 6, 7, and 8 we find that the interval of different width influence the
results of fitting mixture distributions to operation time. It seems interested in the
results. Here we adopt the results which each one of the interval of operation time is
one minute. Hence in the following the discussion will be restricted to the estimates
obtained by each one of the interval of operation time is one minute. The plots of
the estimated density function for the time data sets of V4, V11, and V12 opera-
tions are presented in Figure 4 and it can be seen that three-component log-normal
distribution fits the data sets of V4, V11, and V12 operation time.
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Table 6 : Results of fitting a three-component mixture of log-normal dis-

tributions to V4 operation time. (Standard errors are in parentheses)

Minute(s)/Group

V4

o, 1 2 3 4 5

P 010(.005)  .010(.005)  .010(.005)  .009(.005)  .009(.005)

P 745(.047)  .729(.047)  .720(.047)  .727(.047)  .728(.047)

i 4.613(.062) 4.619(.063) 4.633(.066) 4.634(.067) 4.634(.059)

s 5.494(.010) 5.496(.010) 5.497(.010) 5.504(.010) 5.502(.010)

i3 5.718(.034) 5.668(.035) 5.666(.033) 5.667(.033) 5.660(.034)

&1 110(.047)  .113(.047)  .119(.050) .118(.051)  .105(.045)

& 144(.008)  .144(.008)  .144(.008)  .142(.008)  .140(.008)

& 285(.024)  .288(.024)  .273(.023)  .277(.023)  .284(.024)
K-S p-value .630 395 247 087 132

Table 7 : Results of fitting a three-component mixture of log-normal dis-

tributions to V11 operation time. (Standard errors are in parentheses)

Minute(s)/Group

Vi1

o, 1 2 3 4 5

i 269(.031)  .219(.031)  .202(.031) .198(.031)  .193(.030)

P 374(.032)  .343(.031)  .340(.031) .337(.031) .331(.031)

i 4.720(.024) 4.734(.030) 4.737(.032) 4.747(.034) 4.721(.033)

iz 4.824(.017) 4.824(.016) 4.826(.018) 4.830(.019) 4.822(.019)

i3 5.100(.027) 5.037(.024) 5.307(.023) 5.042(.025) 5.039(.023)

&1 214(.018)  .205(.025)  .199(.026) .202(.028)  .195(.026)

& 166(.014)  .149(.014)  .162(.015)  .167(.015)  .165(.015)

& 358(.018)  .391(.016)  .388(.016) .422(.017)  .378(.015)
K-S p-value 263 205 056 023 050
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Table 8 : Results of fitting a three-component mixture of log-normal dis-

tributions to V12 operation time. (Standard errors are in parentheses)

Minute(s)/Group
V12
‘i)u 1 2 3 4 5
D1 .188(.023 141(.022) 121(.021 .126(.020) 121(.019)
Do .306(.028 278(.027) .243(.026 .255(.026) .250(.026)
il 4.643(.037) 4.648(.044) 4.645(.050) 4.622(.048) 4.568(.052)
flo 4.854(.022) 4.803(.021) 4.807(.024) 4.817(.022) 4.620(.023)
il3 5.100(.019) 5.095(.017) 5.079(.016) 5.094(.016) 5.077(.016)
01 .344(.027 .205(.031) .199(.035 .202(.034) .195(.037)
09 197(.01 .149(.018) .162(.020 167(.018) .165(.019)
03 .324(.014 .391(.012) .388(.011 422(.011) 378(.012)
K-S p-value .303 .159 .023 .009 .059
{V4 Operation Tine} {V4 Operation Tinme}
1
0. 008 0.8
0. 006 0.6
0. 004 0.4
0. 002 0.2
100 200 300 400 500 100 200 300 400 500 600 700
(V11 Qperation Tinme} {V11 Qperation Time}
0.014 1
0.012 o8
0.01
0. 008 0.6
0. 006 0.4
0.004
0. 002 0.2
100 200 300 400 B00 100 200 300 400 500
(V12 Cperation Tinme} {V12 Qperation Tine}
0.012 1
0.01 0.8
0. 008 06
0. 006
0.4
0. 004
0. 002 0.2
100 200 300 400 500 160 200 300 400 500

Figure 4 : Plots of mixture of log-normal distributions for V4, V11, and V12

operation times.
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4.3 Effect of doctor for three operations

We now examine the effect of doctor on the data sets of operation time which are
accepted as fitted three-component mixture of log-normal distributions by the K-S
test. Regarding the data sets of V4, V11 and V12 operation time, we may proceed
to consider the likelihood ratio test to test the effect of doctor.

In order to test the effect of doctor, we combine the data sets for different doctors
combinations and fit mixture of log-normal distributions to each combined data set.
The descriptive statistics of the time data sets of doctors at V4 operation are given
in Table 9. Because Doctor 4 , Doctor 7, and Doctor 9 performed the V4 operation,
we draw out the time data sets of Doctor 4, Doctor 7, and Doctor 9 at V4 operation,
and fit mixture of log-normal distributions, respectively. The MLE for the time data
sets of ith doctor, 1= 4, 7, and 9, at V4 operation are denoted by (i)V4Doc7L; which are

displayed in Table 10. The maximized likelihood L(®) of each data sets of doctors

at V4 operation time are also listed in Table 10.

The descriptive statistics of the time data sets of doctors at V11 operation are
given in Table 11. We combine the time data sets of 1st and 9th; 2nd, 6th, and
7th; 3rd, 4th, 5th, and 8th, doctor at V11 operation and fit mixture of log-normal
distributions, respectively. The analysis of the MLE for combined time data sets
and the maximized likelihood of each data sets of doctors at V11 operation time are

are shown in Table 12.

Similarly, for V12 operation the descriptive statistics of the time data sets of
doctors are given in Table 13. We also combine the time data sets of 2nd; 1st, 3rd,
7th, and 9th; 4th, 5th, 6th, and 8th, doctor at V12 operation and fit mixture of
log-normal distributions, respectively. The results of the MLE for combined data
sets and the maximized likelihood of each data sets of doctors at V12 operation time
are listed in Table 14.

In the practical problem here it is of interest to know whether the factor of doc-
tor has effect on the operation time. Hence we test the effect of doctor, i.e., the null
hypothesis is Hy: the effect of doctor is not significant. We consider the likelihood
ratio test statistics A in and (5), (6), and (7). The results listed in Table 15 show
that at level a=.05 the effect of doctor at V4, V11, and V12 operation time which
are indicated by Avipoc, AviiDoc, and Ayvispec Separately is significant, since p-value
are almost zero. Therefore we conclude that there is obviously indication that there

is significant effect of doctor at V4, V11, and V12 operation time.
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Table 9 : Descriptive statistic of
doctors at V4 operation time.
Doctor N % Mean Std. Dev.

4 23 .057 5.805 297
7 24 .060 5.467 162
9 355 .883 5.510 208

Table 10: Results of fitting mixture of log-normal distributions to
data sets of doctors at V4 operation time. (Standard errors are

in parentheses.)

V4 Total Doctor 4 Doctor 7 Doctor 9

(i)\/4 (i)V4Doc4 ci)V4Doc7 (i)V4D009

P 010(.005) - - .027(.010)

P 745(.047) - - .832(.052)

fin 4.613(.062) 5.805(.062) 5.467(.033) 4.644(.238)

iz 5.494(.010) - - 5.513(.057)

i3 5.718(.034) - - 5.559(.010)

&1 110(.047)  297(.044)  .162(.023)  .533(.162)

& .144(.008) - - 153(.040)

&3 285(.024) - - .289(.008)
K-S p-value 630 942 786 556
log L(®)  -2155.189  -137.749 -121.68  -1874.383

Table 11 : Descriptive statistic of
doctors at V11 operation time.
Doctor N % Mean Std. Dev.

1 37 047 4.867 202
2 29 037 4.607 267
3 33 .042 5.037 267
4 17 .023 5.124 440
) 33 .042 5.029 204
6 2 .003 5.074 978
7 48 .061 4.761 225
8 26 .033 4.990 447
9 560 712  4.887 .286
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Table 12 :

Results of fitting mixture of log-normal distributions to

data sets of doctors at V11 operation time. (Standard errors are

in parentheses.)

V11 Total Doctor 1.9 Doctor 2.6.7 Doctor 3.4.5.8
Dy Dy 11pocts Dy 11Docas? Dy 11pocaass
D1 269(.031)  .276(.035) - -
Do 374(.032)  .370(.038) - -
[ 4.720(.024) 4.736(.023)  4.712(.031) 5.037(.032)
flo 4.824(.017) 4.864(.020) - -
fi3 5.100(.027) 5.020(.028) - -
01 214(.018)  .169(.019) .278(.022) .332(.022)
P 166(.014)  .168(.017) - -
03 .358(.018)  .343(.019) - -
K-S p-value 263 110 .380 .450
log L((f) -3963.138  -2969.740 -382.755 -582.98
Table 13 : Descriptive statistic of
doctors at V12 operation time.
Doctor N % Mean Std. Dev.
1 58 .061 4.920 293
2 70 .074 4.607 261
3 62 .065 4.931 .246
4 161 .170 5.157 353
5 35 .037 5.156 201
6 14 .015 5.046 465
7 64 .068 4.828 .269
8 92 .097 5.065 285
9 391 413 4.908 273
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Table 14 : Results of fitting mixture of log-normal distributions to
data sets of doctors at V12 operation time. (Standard errors are
in parentheses.)
V12 Total  Doctor 2 Doctor 1.3.7.9 Doctor 4.5.6.8

Dy Dvi2p0c2 Dy12D0c1379 Dy 12D0c4568

D1 .188(.023) - .207(.037) -

D2 .306(.028) - .399(.042) -
fl1 4.643(.037) 4.607(.031) 4.781(.042) 5.124(.019)

i 4.854(.022) - 4.894(.028) .
fi3 5.100(.019) - 4.982(.028) -

01 344(.027)  .261(.022) .209(.033) .327(.013)

&4 197(.019) - 261(.021) -

&3 324(.014) - .292(.019) -
K-S p-value 303 251 312 .647
log L(®)  -4962.055  -327.212 -2887.211 -1730.165

Table 15 : Likelihood ratio test under the hypothesis-
Hy : the effect of doctor is not significant.
V4 V11 V12 Total Effect

2log A 42,75 5533 34.94 133.02
d.f. 4 4 4 12
p-value 1078 1071 1077 0

4.4 Effect of stage for V4 operation time

Generally speaking, intuitively we feel that that the disease severity of the pa-
tients concerns the operation time for longer operation time. We conjecture that
the disease severity of the patients influence the length of the operation time. Here
we gathered the data sets where doctors made diagnoses of the disease severity of
the patients for V4 operation time. We use ”stage” to express the disease severity
of the patients. Stage 1 means that the disease severity of the patients is incipient,
stage 2 means that the disease severity of the patients is middle, and stage 3 means
that the disease severity of the patients is terminal. Since the stage data sets are not
to collect, we have only collected 148 data sets on stage and some other variables
for V4 operation in number and denoted by V4(145). Now we want to examine the
effect of stage of the patients’ disease on the time data sets of V4(145) operation and

try to illustrate the reason why the overall operation time has the special pattern
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of mixture log-normal distribution.

Since we have only partial data sets, we combine the data sets for three different
stages of the patients’ disease. In order to test the effect of stage of the patients’
disease, we fit mixture of log-normal distributions to each combined data set. The
summary statistics of the time data sets of stages of the patients’ disease at V4
operation are given in Table 16. We draw out the time data sets of stage 1, stage
2, and stage 3 at V4(148) operation, and fit mixture of log-normal distributions, re-
spectively. The MLE for the time data sets of ith stage, 1= 1, 2, and 3, at V4(14s)
operation are denoted by <i>v45tagei, which are displayed in Table 17. The maximized
likelihood L(®) of each data sets of stage of the patients’ disease at V4 145y operation
time are also listed in Table 17.

We test the effect of stage at V4 operation time, i.e., the null hypothesis is Hy:
the effect of stage at V4(i45) operation time is not significant. We consider the
likelihood ratio test statistics A in (8) and the results listed in Table 18 show that at
level o= .05 the effect of stage at V4 operation time which is indicated by Avistage
is significant, since p-value is .001 smaller than .05 . For that reason we conclude
that there is obviously indication that there is significant effect of stage at V4(i4s

operation time.

Table 16 : Summary statistic of
stages at V4(145) operation time.
Stage N % Mean Std. Dev.

1 11 .074  5.427 .262
2 109 .736 5.410 141
3 28 190 5.461 336

Table 17: Results of fitting mixture of log-normal distributions to
data sets of stages at V4(145) operation time. (Standard errors are

in parentheses.)

Vi (14s) Stage 1 Stage 2 Stage 3
Dy, (i)V4Stagel (i)V4Stage2 (i)V4Stage3
D1 .165(.040) - .170(.040) -
fl1 5.237(.100) 5.427(.023) 5.225(.087)  5.461(.030)
flo 5.419(.008) - 5.414(.007) -
&1 A78(.072)  .262(.017)  .420(.062)  .336(.021)
1o .077(.006) - .067(.005) -
K-S p-value 713 877 .958 575
log L(®) -740.616 -60.087 -509.431 -161.571
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Figure 5 : Boxplots of stage for V4(,45) operation time.

Table 18 : Likelihood ratio
test for the effect of stage.

V4148
-2log A 19.052
d.f. 4
p-value .001

4.5 Other variables for V4 operation

Besides doctor and stage, we also collected data on four factor variables which
may affect V4 operation time distribution: residents practicing years (R. Year),
blood transfusion (Blood T), blood loss (Blood L), and patient’s age (Age). We
only focus on analyzing variables for V4 operation time in stage 2 as there are more
data in that category. The correlation matrix of those variables are shown in Table
19. Comparing the correlation matrix, we find the correlations between Time and
Blood L, Blood L and Blood T and Blood T and Age are more significant than

others.

In multiple regression, we may use different models to find what kind of vari-
ables affect the operating time most. But under the assumption that the error
follows normal distribution, the usual method in multiple regression dose not work
for the operation time while fitted by mixture log-normal distribution. How to find

a method to develop a operation time forecasting model should be investigated.

25



We take the logarithm of the data set of operation time in stage 2 and fit two-
component mixture of bivariate normal distributions to those data sets of operation
time and blood loss in stage 2 via the EM algorithm. Table 20 presents the estimated
results, i.e. mean vector, covariance matrices and the weight. Then we try to make
95% prediction confidence ellipse for operation time based on two-component mix-
ture of bivariate normal distributions. We do the scatter plot with 95% prediction
confidence ellipses from component 1 and component 2 with mean vector (1) and

covariance matrix (2) to explore relationships among pairs of variables respectively.

Figure 6 displays a scatter plot with 95% prediction confidence ellipses.

The broken curve is 95% confidence ellipse for the distribution corresponding to
the component 1 of the mixture and the solid curve is 95% confidence ellipse for the
distribution corresponding to the component 2 of the mixture. We think that the
probability which is on the ellipse of component 1 is p;(.356) x 0.95 = 0.338 and the
probability which is on the ellipse of component 2 is py(.644) x 0.95 = 0.612. The
probability of joint confidence region is 0.272. Scatter plots of Blood L and Blood
T and Blood T and Age are presented in Figure 7 and Figure 8 respectively. The
ellipse shows graphically a positive correlation between variables Time and Blood
L. If operation time falls outside the ellipse, we say it is not normal case and need

further discussion.

Table 19 : Correlation Matrix

Correlation Time(Stage2) | R. Year | Blood L | Blood T | Age
Time(Stage2) 1 -.032 371 187 | -.050
R. Year -.032 1 -.043 047 | -.098
Blood L 371 -.043 1 688 | 131
Blood T A87 .047 .688 1] .326
Age -.050 -.098 131 326 1

Table 20 : The fitted results.(Comp. component)

Comp. 1 Comp. 2
Mean(a?)  5.338 431.018 5.439 881.123
Covariance )W I
Weight(p) .356 644
( s | o7 4.563 } s, { 011 18.548 } )
4563 12821.580 18.548  145349.079
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Figure 8 : Scatter plot of Blood T and
Age for V4 operation in stage 2

4.6 Poisson regression model for V4 operation

The best known models for counts data assume a poisson distribution for the
response. Suppose Y has poisson distribution with mean A, then using a generalized

linear model with log link, we get a poisson regression model
log(\) = o+ BX.

Goal of the study here is to find a model for relations between blood transfusion
(Blood T, blood loss (Blood L), and patient’s age (Age). The main effect of ”Blood
L” and "Age” are denoted by Xpoom and X,e.. We only analyze variables for V4
operation time in stage 2 and use the statistical software S-PLUS to fit those data
but only consider the main effect of ”Blood L” and ” Age”. All of fitted results using
S-PLUS software are listed in Appendix (B) and partial results are shown in Table
21.
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According Table 21, we know assuming that the blood transfusion (Blood T)

has a poisson distribution, we get a model of
1Og()‘) =a+ ﬁleloodl + ﬁ?Xagea (10)

where & = —0.443, Bl = 0.001, and 62 = 0.012. All of main factor terms with large
absolute t value (i.e. > 2) are the candidate of the significant terms. The poisson
regression model is good because the deviance is 87.28839, which is much smaller
than the critical value of chi-square distribution with 107 degrees of freedom at level
0.05 (X%057.05 = 129.918). Hence we accept Hy: the poisson model provides a good
fit. In other words, the model in this fitting is a good description of those data.
We display a plot of the response variable versus the fitted values in Figure 9. The

broken line is a diagonal line and the solid line is a poisson regression line.

Specifically, blood transfusion can be forecasted by using poisson regression
model (10). For example, if a patient who age and blood loss are 50 years old

and 1000 c.c, average blood transfusion of the patient is
exp (—0.44285 + 0.00101 x 1000 + 0.01218 x 50) = 3.242.

We can infer that the patient is transfused about three bags of blood.

Table 21 : Results of fitting poisson regression model

Value Std. Error t value
Intercept -0.44285 0.26379 -1.67882
BloodL 0.00101 0.00014 7.37748
Age 0.01218 0.00465 2.61800

Null Deviance: 154.7614 on 107 degrees of freedom
Residual Deviance: 87.28839 on 105 degrees of freedom

Fitted : BloodL + Age

Figure 9 : Response variable versus the fitted values.
The solid line is a poisson regression line.
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5. Conclusion and discussion

In this work, we have studied the operation time distributions of thirteen oper-
ations. Log-normal and mixture log-normal distribution are identified to be accept-
able statistically in describing these operation times respectively. In order to obtain
the MLE of mixture log-normal distributions, the method of computing EM algo-
rithm for grouped and truncated data is used in our estimates. In order to classify
those operations with operation times fitted by log-normal distributions into differ-
ent categories such as "short”, "medium”, "long”, "ultra-long” operation times, we
use standard one-way analysis of variance and Tamhane T2 test to compare the dif-
ferences between means of operation time. Finally we investigate the effect of doctor
and stage on the data sets of operation time for those identified as three-component

mixture of log-normal distributions by the K-S test.

According to the results from Table 6, 7, and 8, we find that bandwidth inter-
val selection in fitting the distribution would make a difference in the fitting of the
mixture distributions on operation time. For V11 operation, test result with one
minute as the basic interval unit situation is different from test result with that of
four minutes. It is worth noting that through rigorous statistical analysis presented
here, it helps to provide an objective estimation on the distribution of the operation

time.

To investigate effects of other factor variables which may affect V4 operation time
distribution, we only have some partial information. Those factor variables reveals
only part of the affecting operation time distribution, not express all of situations.
If we can collect and discuss all of factor variables of V4, V11, and V12 operation

time, it could enable us to understand further about operation time distributions.

On the whole, it seems one main factor affecting the operation time is the dis-
ease severity of the patients. The doctors usually diagnose the disease severity of the
patients into three groups, that is, incipient, middle, and terminal. In general, the
stage of patients’ disease is in proportion to operation time. We conjecture that the
patients with disease severity as terminal have longer operation time, and the pa-
tients with disease severity as incipient have shorter operation time. For operations
with large data set, operation time appears to be affected by the stage of patients’
disease more clearly. It is of interest to see if three proportions of the disease sever-
ity of the patients (incipient, middle, and terminal) are significantly related to the

estimates of the vector of mixing proportions.

Furthermore, we have also established a poisson regression model for relationship
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for blood transfusion with respect to blood loss and age of the patient. Later blood
transfusion can be predicted by using poisson regression model. We relationship
between operation time and blood loss are also interested in finding the which seem
to be distributed as mixture of bivariate normal distributed. We can judge further
whether operation time is normal or not . Hence it is worth discussing that how
to make a 95% prediction confidence region based on mixture of bivariate normal

distribution.

Understanding the operation time distributions and the factor effect to operation
time is helpful in making an efficient operating room scheduling in the future. It is
of interest to develop a method to model the operating time and make estimation of
the probability to finish the operation on time with mixture log-normal distribution,

and predict the extra cost due to over time operation.
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Appendix
(A) EM algorithm for grouped and truncated data.

We consider fitting of finite normal mixture models via the EM algorithm with
grouped and truncated data. Suppose the sample space of X, €2, is partitioned into
v = r+t mutually exclusive subsets ; (j = 1,...,v). Independent observations are
made on X, but only the number n; falling in Q; (j = 1,...,r) is recorded. That
is, in addition to the individual observations, the number of observations n; falling
in Q; (j =r+1,...,v) are not available for the subsequent estimation of .

For given n = 377,
a multinomial distribution consisting of n draws on r categories with probabilities
P;(®)/P(®),j=1,...,r, where

nj, it is assumed that observed data y = (n4,...,n,) has

P®) = | flasd)ds

and

This gives the likelihood function

n! ~ [P(®)]™
L(®;y) = (H—ng'> 11 {P@J . (A1)

i=1 ;

We can undertake solving the likelihood equation OL(®; y)/0®=0 within the

EM framework by introducing the random variables u = (n,,1,...,n,) and

X; = (T, gm,) (G=1,...,v),

where, conditional on y, u has probability function

(> +n=1)!
(n—1)!

j=r+1
Conditional on y and u, the z;;, (k = 1,...,n;) denote n; independent obser-
vations with density f(z,®)/P;(®) for j = 1,...,v. The EM machinery is then
invoked by declaring
w=(y,x},...,x,,u) (A.2)
as the complete data vector. The log-likelihood for this complete data specification
is equal to

S log fa @), (A3)

j=1 k=1
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and it implies the likelihood (A.1) for the incomplete data y.

If we work with the complete data vector w specified by (A.2) and f(x; ®) is a
mixture density, then the M-step of the EM algorithm will require itself an iterative
procedure. Consequently, for mixture densities we propose a further extension of
the complete data vector w to include the zero-one indicator variables in z;, =
(Zjks -5 2g5k) (J =1,...,v5k =1,...,n;), where > |z, = 1 and where, given

the zj, the z;, are conditionally independent with

Wifi<xjk§ 0)
f(@j; @)
for i = 1,...,9. Note that 7,(z;; ®) is the probability that z;; belongs to the

1th component given its value.

PI‘{Zijk = 1’$]k} = = Tz<xjk7 (I))a say,

With the inclusion of these indicator variables z;j; in the complete data specifi-
cation, the log-likelihood (A.3) becomes

v nj

DD zellog filwns 0 + log ). (A.4)

i=1 j=1 k=1

E-step

The E-step of the EM algorithm at (p+1)th stage requires taking its expectation

conditional on the observed data y, using the current fit ®® for ®.

Q((I)‘ (I)(P))

- Zzzzwk log fi(z;1;0) +log milly = (n1,...,n,)")

Zl]lkl

- ZZEZzwklogf@ 2it;0) +log mlly = (m1,.....m,))

2131

S Blaly = (1, ) Eeiellon fizi6) + log mlly = (s, ))

i=1 j=1

= 3N m (@) EP{n(X; D) log fi(X;6) + log mi]},

i=1 j=1

where E ) refers to expectation with respect to the density f(z,@®)/P;(®®) and

n; i =1,...,7;
mj(q)(p)) = ; qu)(p) S ,
P((b(p)) 7] AR
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M-step for Normal mixtures

At the (p + 1)th stage of the M-step, the intent is to maximize Q(®; d®
respect to ®, to produce a new estimate of ®, @+,

for mixtures with normal component densities having mean p,; and variance o;

(1=1,...,9).

The estimates of m;, p;, and o2(i = 1,...

of the M-step satisfy

0Q(®; o)
O

0Q(2; 2)
871',‘

Therefore

where

) with

We consider this now, first
2

,g) so obtained at the (p + 1)th stage

0
P (X 00) 5

log fi(X;0) + log ;)]

Zm cp(p
Z m( (ID(p

(XG0 (X — 1)}

0 (X 2]

ij(cp )
ij(cb )

log fi(X; 0) + log ;)]

PUT(X0P)[072(X — )}
ij N EP7,(X; 8P log fi(X; 6) + log ;)]

23;1 m;(®P)EP {7,(X

S} R
= =D my(@?
(3 J:1

Z;Zl mj(q)(p))EJ(p){Ti(X; o)X}
(D) :
-1 mj(q)(p))EJ(-p){Ti(X; W) (X — pPh2)
c;(P®) )
S my (@) EP 7(X; 0)}
Z]V-:l m](qﬂp)) y

T (G B0}

Zmz
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(B)

Table A1 : Results of fitting poisson regression model using
S-PLUS software.

* ok % Generalized Linear Model * ok ok

Call : glm (formula = Bloodt ~ BloodL + Age, family= poisson
(link = log), data = SDF100, na.action = na.exclude, control=
list (epsilon = 0.0001, maxit=>50, trace=T))

Deviance Residuals:
Min 1Q Median 3Q Max
-2.338  -0.433 -0.020 0.318 2.576

Coefficients:

Value Std. Error t value
(Intercept) -0.442854279 0.2637894141  -1.678817
BloodL 0.001005496  0.0001362925 7.377483
Age 0.012179204  0.0046521065  2.617998

(Dispersion Parameter for Poisson family taken to be 1)

Null Deviance: 154.7614 on 107 degrees of freedom
Residual Deviance: 87.28839 on 105 degrees of freedom

Number of Fisher Scoring Iterations: 4
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(C) Histograms for the thirteen operation times
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Figures Al: (a)-(m) are histograms for the thirteen operation time in GYN

department.
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(D) Histograms for the logarithm of the thirteen operation times
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Figures A2: (a)-(m) are histograms for the logarithm of the thirteen operation
time in GYN department.
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(E) EM algorithm for grouped and truncated data using Mathematica 5
software

[1] “a” is list of number from shortest operation time to longest opsration time.

<<Statistics ContinuousDistributions™
a=Tablel[i,{i,60,540}];

b=Append[a, 1;

x=Prepend [b, 0] ;

[2] Three component mixture of log-normal distribution.

fix_,u_, s_1 :=PDF[NormalDistribution[u, s], X]
ff(x_, pil_, pi2_, ul _, sl ,u2_, s2_,u3_, s3] :=
pils«PDF[NormalDistributionful, sl11, X] +
pi2« PDF[NormalDistribution[u2, s2], X] +
(1 - pil - pi2) » PDF[NormalDistribution[fu3, s31, X1 ;
Prjg_, pil_, pi2_,ul ,s1 ,u2_, s2_,u3_, s3] :=
J‘LOGIX[[j+1]H

ffry, pil, pi2, ul, s1, u2, s2, u3, s3] dy;
Logrx[[J111

[3] Initial values

pil=0.2625078816031413" ;
pi2=0.009303529391563604 " ;
ul=5.654585814499704" ;
u2=4.610202770196282" ;
u3=5.491969502758988" ;
s1=0.27985722968656435" ;
s2=0.11113668260933902" ;
s3=0.1480334356538293" ;pi3=1-pil-pi2;

[4] data : each one of the interval of operation time is one minute.

Do[m={403*P[1,pil,pi2,ul,sl,u2,s2,u3,s3]/(1-P[1,pil,pi2,ul,sl,u2,s2,u3,
s3]-P[482,pil,pi2,ul,sl,u2,s2,u3,s3]),data,
403*P[482,pil,pi2,ul,sl,u2,s2,u3,s3]/(1-P[1,pil,pi2,ul,sl,u2,s2,u3,s3]-
P[482,pil,pi2,ul,sl,u2,s2,u3,s3])};
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aa = Table[{P[}J, pil, pi2, ul, s1, u2, s2, u3, s3],
(X[O[J11, X003 +211%), mi[J11}, (3, 482}1;
pp={}; XX ={}; mm= {};
Dortfraarrh, 111 # 0, AppendTo[pp, aarth, 11113
AppendTo[mm, aa[[h, 3]11; AppendTo[xx, aa[[h, 21111,
{h, Lengthraa]}];
1 LogIxX[[§,211]

EX1rj_1 :-= ————T———j ils F[y, ul, sl] dy;
] ppl[d1] Log[xx[[§,1111 P ¥ Y y

1 J‘ Log[xx[[J,211]

EX2[] —
(31 PPL[I]]

pi2« Fry, u2, s21 dy;
LogIxx[[J,1111

EX3[]J_1
1 J‘ LogIxxX[[J,2111]

- - 1 - il - i2 T , U3, s3]1 dvy;
PPILi1] ( p p ) * TLY 1 Yy

LogIxX[[§.,111]

Length[ pp]

cl mmiirkil] « EX1[K] ;

1

Length[ pp]
mm[[K]] » EX2[K];

c2

1
Length[ pp]

c3 = mm[i[k]] » EX3[k];

1

> EENONIPPY k1] « EX1[K]
2 KBS EPP (k)

o
-
=
=
n

> EENONIPPY k1] « EX2[K]
2 KL PP (k)

> EENONIPPY mm k1] « EX3[K]
2 KBS EPP (k)

fLen thippl : 1
mmIE[K]] ¥ ——————
\ =5l PPLLKI]
Logrxx[[k,2111

y*pil*f[y,ul,sl]dy];
Logrxx[[k,1111 )

mm k _—
" A T YE L3R

J LogIxx[[k,2]111
Log[xx[[k,1111

2
fLen thippl 1
\

y*piz*f[y,uz,SZ]dy];
)
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1
c3
[Leng h{pp] K 1
mmEIKIT * —————
\ 2 " PPk
L k,2
J- 0g[XX[[ ]]]y*(l_pil_piz)*f[y,u3,S3]CﬂY];
Logrxx[[k,1111] !
sll =
1
cl

Lengthy[ pp] K 1
mm T .+
;l T IA13E

J- Log[xx[[k,2]11]
Logixx[[k,111]

o —

(y-ul)z*pil*f[y,ul,sl]dy];
),

s22 =
1
c2
Length[ pp] 1
|( mmiprkil] « ——————
| a Pprlkl]
L k,2
J~ 0gIXX[I[ ]]](y_uz)z*piz*f[y,u2,52]dly1;
Logrxxprk,1111 !
s33 =
1
c3

Length[ pp] 1
f g; mmip[rK]]
\ -

1 PPILKII
j Log[xx[[k,2]]](y - U3)2* pi3 «fly, u3, s3] dly];
Logrxx[[k,111] ]
pil= pill;
pi2 = pi22;

u2 = u22;
u3 = u33;

sl = +7817T;
s2 =+ 827 ;s3=+7833;, (z, 1}

pil= pill
pi2 = pi22
pi3 = pi33
ul = ull
u2 = u22
u3 = u33
sl=+7s1IT
s2 = 827
s3 =+ 's33
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