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Abstract

Surgeon operation time is a useful and important information for hospital man-

agement, which involves operation time estimation for patients under different di-

agnoses, operation room scheduling, operating room utilization improvements and

so on. In this work, we will focus on studying the operation time distributions of

thirteen operations performed in the gynecology (GYN) department of one major

teaching hospital in southern Taiwan. We firstly investigate what types of distribu-

tions are suitable in describing these operation times empirically, where log-normal

and mixture log-normal distribution are identified to be acceptable statistically in

describing these operation times. Then we compare and characterize the operations

into different categories based on the operation time distribution estimates. Later

we try to illustrate the possible reason why distributions for some operations with

large data set turn out to be mixture of certain log-normal distributions. Finally we

end with discussions on possible future work.

Keywords: classification, EM algorithm, gynecology, likelihood ratio test, MLE,

mixture of log-normal distributions.
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1. Introduction

In recent years, the managers of hospitals have been confronted with the severe

competition for operation; besides, the policies of our Health insurance program

also make them pay more attention to the cost control. Not only the high cost of

human resource but the capital-intensive attribute of surgeries compel the managers

to think more about appropriate administration and one of the efficient uses of all

resource. Therefore, the surgery management has became important issues to hos-

pital manager. Surgeon operation time is a useful and important information for

hospital management, which involves operation time estimation for patients under

different diagnoses, operation room scheduling, operating room utilization improve-

ments and so on.

In our study, the data of the operation time was collected from the gynecology

(GYN) department at one major teaching hospital in southern Taiwan from January

2000 to June 2003. There are nine doctors in the gynecology department. Because

there are many kinds of operations performed in the GYN department, we analyze

thirteen operations where the data counts exceed thirty. Corresponding variable

name for these operations are listed in Table 1. The descriptive statistics and box-

plots of the operation time for each of the operation (Vi), i= 1,. . . ,13, are presented

in Table 2 and Figure 1. After taking the logarithm of the original time data of each

operation, the descriptive statistics and boxplots (LVi), i= 1,. . . ,13, are separately

listed in Table 3 and Figure 2. Later each operation time distribution has been

fitted by a log-normal distribution verified by Kolmogorov-Smirnov goodness of fit

test (K-S test) respectively. We investigate the characteristics of these distributions

of the logarithm of operation time by statistics.

For those data sets which can be fitted by log-normal distributions, we use stan-

dard one-way analysis of variance to compare the differences between means. If it

is considered to have significant differences between them, we then use Tamhane

T2 test to compare how they are differed in means and characterize the operations

into different categories with ”short”, ”medium”, ”long”, or ”ultra long” operation

times. For those data sets which are rejected as fitted by the K-S test, they are

further fitted by a more general mixture log-normal distribution instead.

In this work, a two-factor factorial design with factor doctor and stage which

means the disease severity of the patients is considered although the response of

the time for each operation which are rejected by the K-S test is assumed to be a

random variable with mixture log-normal distribution, where the parameters of the

distribution such as the mixture proportions, parameters for each distribution in
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the mixtures, depend on the factor. In the following, we will consider the general

mixture model and describe the method we are going to use to do the estimation

and perform the appropriate tests. In the practical problem here it is of interest

to know whether the factor of doctor and stage have effect on the operation time

which be fitted by mixture log-normal distribution. In order to do that, likelihood

ratio tests are used here to accomplish our investigations.

In fact, we should take all the variables which affect operation time distributions

into account when we examine the factor effect on operation time and try to find

other factors which affect operation time distributions to explain why distribution

for some operations turn out to be mixture log-normal distributions. The other

variables which affect operation time distributions are like patient’s age, residents

practicing years, blood transfusion and blood loss et al. For operation time which

are fitted by log-normal distribution, we can use the method of multiple regression

to test the relationship between independent variables (doctor, stage, patient’s age,

residents practicing-years, blood transfusion and blood loss et al) and dependent

variable (operating time) and generalized linear regression to develop a operating

time forecasting model. In multiple regression, we maybe use different models to

find what kind of variables effect operating time most. Hence we not only provide

these relationship results to help the operation room scheduling more efficient, but

also build a surgeon-based model to forecast most operating time by different vari-

ables.

Operating room managers who seek to maximize utilization in their operating

room suite may attempt to build an efficient operating room scheduling. Accurate es-

timation of operating times is a prerequisite for the efficient scheduling of the operat-

ing suite. Operation time distributions of GYN department generally can be consider

two types; log-normal and mixture log-normal distributions. How to calculate the

operation time finishing probability and decide the order of operation be performed

for the operation room scheduling are primary problems. For example, if three

operations are performed today, the operation time of X1 is fitted by log-normal

distribution, the operation time of X2 and X3 are fitted by mixture log-normal dis-

tributions, the finishing probability of operation time, P (X1 + X2 + X3 ≥ T ) where

T is critical value of operation time, is hard to calculate since it doesn’t have close

form. Therefore the method of estimating the finishing probability of operation time

for mixture log-normal distribution is worthy to discuss in the future.

In section 2 we introduce the definition of a finite mixture distribution and use

the method of the maximum likelihood to estimate the parameters. The computa-
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tion algorithm for finding the MLE of parameter vectors of mixture distributions

under different considerations to accommodate the practical situation are also in-

troduced, namely, the EM algorithm proposed first by Dempster. at al(1977), the

EM algorithm for grouped and truncated data proposed by McLachlan and Jones

(1988). Later the mixture of log-normal distribution will be used to fit our data.

The standard errors estimates for MLE (θ) can be computed by taking the square

root of the corresponding diagonal element of I−1(θ), where I(θ) is corresponding

Fisher information matrix. The Kolmogorov-Smirnov goodness of fit test for ascer-

taining whether an assumed probability distribution is consistent with a given set

of data is also stated. In Section 3 likelihood ratio tests for testing the effects of

main factors are formulated. In Section 4 we applied all these methods to the time

data of the operation, and in Section 5 we conclude with a conclusion and discussion.

Table 1 : Thirteen operations in the GYN department.

Code Operation

V1 Anterior-posterior colporrhaphy

V2 BSO + omentec. + ATH + retrope.Lm.R.D

V3 Enucleation of ovarian cyst

V4 Hysterectomy rad. cervical cance

V5 Hysterectomy, total extended

V6 Lapa.oophorectomy, partial/total

V7 Laparoscopy operative

V8 Laparotomy abdomen for 2nd look

V9 Myomectomy

V10 Salpingo-oophorectomy

V11 Total Hysterectomy (ATH/VTH)

V12 Total hysterectomy (LAVTH)

V13 Total vaginectomy resection
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Table 2 : Descriptive statistics of operation times.

Operation Total Min Max Mean Std.Dev.

V1 49 15 204 89.04 31.93

V2 131 80 959 247.15 109.56

V3 243 60 330 126.13 44.22

V4 403 84 540 256.89 59.34

V5 50 154 360 219.62 47.09

V6 96 60 520 137.96 68.94

V7 135 60 475 156.33 79.89

V8 60 90 435 185.07 65.34

V9 260 60 370 131.26 46.37

V10 113 65 520 138.68 64.07

V11 785 60 580 139.66 51.89

V12 947 65 575 149.41 54.19

V13 40 34 129 75.30 24.33

Table 3 : Descriptive statistics of the

logarithm of the operation times.

Operation Total Min Max Mean Std.Dev.

LV1 49 2.71 5.32 4.42 .40

LV2 131 4.28 6.87 5.43 .40

LV3 243 4.09 5.80 4.78 .32

LV4 403 4.43 6.29 5.52 .22

LV5 50 5.04 5.89 5.37 .20

LV6 96 4.09 6.25 4.84 .40

LV7 135 4.09 6.16 4.95 .43

LV8 60 4.50 6.05 5.17 .33

LV9 260 4.09 5.91 4.82 .32

LV10 113 4.17 6.25 4.85 .39

LV11 785 4.09 6.36 4.89 .30

LV12 947 4.17 6.35 4.95 .32

LV13 40 3.53 4.86 4.27 .34
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Figure 1 : Boxplots for operation times.

Figure 2 : Boxplots for the logarithm of the

operation times.
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2. Mixture distributions and method of estimation of param-
eters

Let the random variable X have probability density function(p.d.f) f(x) of a

mixture distribution with finite components, the mixture distributions can be rep-

resented in this form

f(x; Φ) =

g∑
i=1

pifi(x; θ), (1)

where fi(x; θ) is the p.d.f corresponding to the ith component of the mixture and

θ denotes the vector of all unknown parameters in the parametric forms adopted

for these g component densities. Φ = (p′, θ′)′ be the vector of all unknown parame-

ters, where p = (p1, ..., pg)
′ is the vector of mixing proportions satisfying

∑g
i=1 pi = 1.

Assume n independent observations, x1,...,xn, were obtained from a mixture dis-

tributions, then the vector of all unknown parameters of (1), Φ = (p′, θ′)′, will be

estimated. For estimating the unknown parameters, we apply the standard max-

imum likelihood estimation (MLE) method. Not only is it appealing on intuitive

grounds, but it also possesses desirable statistical properties such as, under very

general conditions, the estimates obtained by the method are consistent.

In the case of mixture distributions, one of the well-know numerical method for

finding the MLE is described in the following subsection.

2.1 Expectation-maximization (EM) algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an

iterative procedure of maximum likelihood estimation for data containing missing

values. Such a missing value problem includes as a particular case the estimation

of the parameters of a mixture distributions from an observed sample. In order

to train the mixture distributions, the EM algorithm is often applied to optimize

model parameters because of it is easily programmable and satisfies a monotonic

convergence property.

EM algorithm for computing the maximum likelihood estimation (MLE)

The EM algorithm is a standard technique and useful tool for obtaining max-

imum likelihood estimates for finite mixture models. Maximum likelihood estima-

tion (MLE) can be undertaken via the EM algorithm of Dempster, Laird, and Ru-

bin(1977); see also the monographs on mixture distributions by Everitt and Hand
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(1981), Titterington, Smith, and Makov (1985), and more recently, McLachlan and

Basford (1988). The M-steps and E-steps are repeated iteratively until some con-

vergence criterion is satisfied.

EM algorithm for grouped and truncated data

Frequently in practice, data collected on the phenomenon of interest are available

only in grouped form and may also be truncated. We consider here the fitting of

finite mixture distributions to such data. Dempster et al. (1977) showed how EM

algorithm can be used to carry out MLE for grouped and truncated data, although

they did not consider specifically mixture distributions in this context. More re-

cently, McLaren, Brittenham, and Hasselblad (1986) used the EM algorithm to fit a

doubly truncated log-normal distribution in the modeling of the distribution of red

blood cell volumes in healthy individuals and patients with anemia.

In our study, the operation time of the GYN department was recorded a unit

of one minute. Hence the data sets we obtained can be regarded as in grouped

form, and we selected the data sets which the operation time exceed sixty minutes

since operation time is usually at least one hour. That is to say we truncated our

observations before sixty minutes. Our observations are considered to be in grouped

and truncated form.

Mclachlan and Jones (1988) considered the fitting of finite normal mixture mod-

els via the EM algorithm for data which are available only in grouped form and

which may also be truncated. The detail of EM algorithm is given in Appendix (A).

In our study here, we adopt the method of EM algorithm which be proposed by

Mclachlan and Jones (1988) to estimate parameters.

2.2 The standard errors of MLE

Suppose that random variable X has a density function f(x|θ), where θ denotes

unknown parameters, we define the Fisher information matrix I(θ) by

I(θ) = E[
∂

∂θ
log f(X|θ)]2.

Under appropriate smoothness conditions on f(x|θ), I(θ) may also be expressed as

I(θ) = −E[
∂2

∂θ2
log f(X|θ)]. (2)

The large sample distribution of a maximum likelihood estimate (θ̂) is approximately
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normal distribution with mean θ0 and variance 1/nI(θ0) where θ0 is the true value

of θ.

A corresponding result can be proved from the multidimensional case. The vector

of maximum likelihood estimates is asymptotically normally distributed. The mean

of the asymptotic distribution is the vector of true parameters, θ0. The covariance

of the estimates θ̂i and θ̂j is given by the ij entry of the matrix n−1I−1(θ0), where

I(θ) is the matrix with ij component

E[
∂

∂θi

log f(X|θ) ∂

∂θj

log f(X|θ)] = −E[
∂2

∂θi∂θj

log f(X|θ)]. (3)

The standard errors estimates for θ̂ can be computed by taking the square root

of the corresponding diagonal elements of n−2I−1(θ̂).

2.3 Kolmogorov-Smirnov test

As soon as we have obtained the estimation of parameters, we need to test

whether the particular estimated p.d.f. is consistent with those observed data. The

Kolmogorov-Smirnov goodness of fit test will be used.

The data consist of a random sample X1, X2, . . . , Xn of size n associated with

some unknown distribution function by F (x). Let S(x) be the empirical distribution

function based on the random sample X1, X2, . . . , Xn, and F ∗(x) be a completely

specified hypothesized distribution function. If we had wished to test the null hy-

pothesis

H0 : F (x) = F ∗(x) for all x,

H1 : F (x) 6= F ∗(x) for at least one value of x.

Test statistic T is defined

T = sup
x
|F ∗(x)− S(x)|.

Reject H0 at the level of significance α if T exceeds the 1 − α quantile, or by

using p-value given by

p = t

[n(1−t)]∑
j=0

(
n

j

)
(1− t− j

n
)n−j(t +

j

n
)j−1 (4)
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where t is the observed value of the test statistic.

The Kolmogorov-Smirnov test may be preferred over the Chi-squared test for

goodness of fit if the sample size is small; the Kolmogorov-Smirnov test is exact even

for small samples, while the Chi-squared test assumes that number of observations

is large enough so that the Chi-squared distribution provides a good approximation

as the distribution of the test statistic. There is controversy over which test is the

more powerful, but the general feeling seems to be that the Kolmogorov-Smirnov

test is probably more powerful than the Chi-squared test in most situations involv-

ing ordinal data. For further comparisons please see Slakter(1965).

2.4 Tamhane T2 test

We hope to classify operation times base on log-normal distributions. To inves-

tigate pairs of significantly different operation time means, we need to use multiple

comparison. Tamhane T2 procedure based on Student′s t distribution was proposed

by Tamhane (1977, 1979). Tamhane T2 test is based on assumptions that variances

are unequal and sample sizes are unequal. SPSS software provides Tamhane T2 test

for pairwise comparisons.

Consider an experiment with data yij satisfying the one-way, fixed-effects analysis

of variance model

yij = µi + eij ,

where the eij are independent with eij ∼ N(0, σ2
i ) and the µi and σ2

i are unknown,

for i= 1, 2,. . . , k and j= 1, 2,. . . , ni. Denote by yi the ith sample mean and by s2
i

an unbiased estimate of σ2
i based on νi degrees of freedom for level i, ni − 1.

Two means are significantly different if

|yi − yj| ≥ tγ, ν̂ij
(
s2

i

ni

+
s2

j

nj

)1/2,

where tγ, ν̂ij
is the two-sided γ point of Student′s t distribution with ν̂ij df, where

γ = 1−(1−α)1/k∗ , α is experimentwise error rate under the complete null hypothesis,

k∗ = k(k − 1)/2, and ν̂ij denotes as

ν̂ij =
(s2

i /ni + s2
j/nj)

2

s4
i /n

2
i νi + s4

j/n
2
jνj

.
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3. Effect testing

We now discuss that testing of factor effects to from finite mixture log-normal

distributions. Yong. et al (2004) investigated the asymptotic properties of the

likelihood ratio statistic for testing homogeneity in normal mixture models in the

presence of a structural parameter. They showed that the ordinary likelihood ra-

tio test has the simple χ2-type null limiting distribution under some assumptions.

More recently, Zhang. et al (2004) used the likelihood ratio test to test the existence

of any QTL affecting the expression of an embryo or endosperm trait for mapping

QTL is based on a mixture model. He thought the log-likelihood ratio test statistics

is asymptotically χ2 distributed. Hence we also use likelihood ratio tests to test

whether factors of interest have significant effect to the mixture log-normal distri-

bution model.

3.1 Likelihood ratio test

If X1, . . . , Xn is a random sample from a population with p.d.f f(x|θ) where θ

denotes the parameter vector of distribution. The likelihood function is defined to

be

L(θ) =
n∏

i=1

f(xi|θ).

To test θ ∈ Ω0 versus θ ∈ Ω1, the well known likelihood ratio test statistic is defined

through

λ =
supθ∈Ω0

L(θ)

supθ∈Ω L(θ)
,

where Ω = Ω0 ∪ Ω1. Under some additional regularity conditions, the asymptotic

distribution of the statistic −2 log λ is χ2
k, where k = dim Ω − dim Ω0. One rejects

θ ∈ Ω0 whenever−2 log λ > C, where C is determined by the desired level of the test.

In our study here, we are interested in knowing whether the factor of doctor has

effect on the operation time. Let Φ̂Vi, i= 4, 11, and 12, denote the parameter vectors

of the distribution of V4, V11, and V12 operation time, respectively. If we want to

test the effect of doctor at V4 operation, the test statistic used here is through

λV4Doc =
L(Φ̂V4)

L(Φ̂V4Doc4)L(Φ̂V4Doc7)L(Φ̂V4Doc9)
, (5)

where L(Φ̂V4) =
∏n

i f(xi|Φ̂V4) is the maximized likelihood for V4 operation time.

Φ̂V4Doci is the estimation of the parameter vector of the time distribution of the ith

doctor at V4 operation, i= 4, 7, and 9. L(Φ̂V4Doci) is the maximized likelihood of

13



the ith time data set of doctor at V4 operation, i= 4, 7, and 9. Log-likelihood ratio

(−2 log λV4Doc) is asymptotically χ2 distributed with the degrees of freedom equals

to the difference between the sum of the number of parameters of Φ̂V4Doc4, Φ̂V4Doc7,

and Φ̂V4Doc9 and the number of parameters of Φ̂V4.

To test the effect of doctor at V11 operation, the test statistic λV11Doc is

λV11Doc =
L(Φ̂V11)

L(Φ̂V11Doc19)L(Φ̂V11Doc267)L(Φ̂V11Doc3458)
, (6)

where L(Φ̂V11) is the maximized likelihood for V11 operation. Φ̂V11Doc19 denote the

parameter vector of the combined time data sets of the 1st and 9th doctor at V11

operation. Φ̂V11Doc267 is the parameter vector of the combined time data sets of the

2nd, 6th, and 7th doctor at V11 operation. Similarly, Φ̂V11Doc3458 is the parameter

vectors of the combined time data sets of the 3rd, 4th, 5th and 8th doctor at V11 op-

eration. Log-likelihood ratio (−2 log λV11Doc) is asymptotically χ2 distributed with

the degrees of freedom equal to the difference in dimension between the sum of the

number of parameters of Φ̂V11Doc19, Φ̂V11Doc267, and Φ̂V11Doc3458 and the sum of the

number of parameters of Φ̂V11.

To test the effect of doctor at V12 operation, the test statistic is adopted in the

same manner, where

λV12Doc =
L(Φ̂V12)

L(Φ̂V12Doc1379)L(Φ̂V12Doc2)L(Φ̂V12Doc4568)
, (7)

where L(Φ̂V12) is the maximized likelihood for V12 operation. Φ̂V12Doc1379 denote

the parameter vector of the combined time data sets of the 1st, 3rd, 7th, and 9th

doctor at V12 operation. Φ̂V12Doc2 is the parameter vector of the time data set of

the 2nddoctor at V12 operation. Similarly, Φ̂V11Doc4568 is the parameter vectors of

the combined time data sets of the 4th, 5th, 6th and 8th doctor at V12 operation.

Log-likelihood ratio (−2 log λV12Doc) is asymptotically χ2 distributed with the de-

grees of freedom equal to the difference in dimension between the sum of the number

of parameters of Φ̂V12Doc1379, Φ̂V12Doc2, and Φ̂V12Doc4568 and the sum of the number

of parameters of Φ̂V12.

Regardless of doctors, the effect of stage of the patients’ disease at V4 operation

can be tested by

λV4Stage =
L(Φ̂V4)

L(Φ̂V4Stage1)L(Φ̂V4Stage2)L(Φ̂V4Stage3)
. (8)

Φ̂V4Stagei is the estimation of the parameter vector of the time distribution of the

ith stage at V4 operation, i= 1, 2, and 3. L(Φ̂V4Stagei) is the maximized likelihood
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of the ith time data set of stage at V4 operation, i= 1, 2, and 3. Log-likelihood

ratio (−2 log λV4Doc) is asymptotically χ2 distributed with the degrees of freedom

equals to the difference between the sum of the number of parameters of Φ̂V4Stage1,

Φ̂V4Stage2, and Φ̂V4Stage3 and the number of parameters of Φ̂V4.

4. Statistical analysis results

In our work, we focus on studying the operation time distributions of thirteen

operations of the gynecology (GYN) department. The sets of observed frequency

counts in histogram form are given in Appendix (C). We fit log-normal distribu-

tions for those data and test results are given in Table 4. For those data sets which

can be fitted by log-normal distributions, we use standard one way analysis of vari-

ance to compare the differences between means and characterize the operations into

different categories with ”short”, ”medium”, or ”long” operation times. For those

data sets which are rejected as fitted by the K-S test, they are further fitted by a

three-component mixture of log-normal distribution instead, and later we examine

the effect of doctor and stage of the patients’ disease on the operation time which

those fitting are rejected.

4.1 Classification of operations based on operation time

Each operation time distribution is fitted by log-normal distribution and verified

by Kolmogorov-Smirov gooodness of fit test respectively. From Table 4, we know

the results of fitting log-normal distribution.

Table 4 : Results of K-S test.

Operation LV1 LV2 LV3 LV4 LV5 LV6 LV7

K-S Test .354 .180 .349 .004 .804 .249 .465

Operation LV8 LV9 LV10 LV11 LV12 LV13

K-S Test .768 .244 .216 .000 .017 .158

For those data sets of operation time (V1, V2, V3, V5, V6, V7, V8, V9, V10,

and V13) which can be fitted by log-normal distributions, we use standard one way

analysis of variance to compare the differences between means. From Table 5, be-

cause Sig. = .000, we conclude that the means of those data sets of the operation

time have significant differences.
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Because it is significant differences between them, we then use Tamhane T2 test

to compare how they are differed in means. Tamhane T2 test is used to compare

all pair of means with unequal group variances. A graph underlying those means

of the operation time that are not significantly different is shown in Figure 3. We

can characterize the operations into different categories with ”short”, ”medium”,

”long”, or ”ultra-long” operation times from results of Tamhane T2 test. From the

analysis we see that there are significant differences between all pairs of means ex-

cept V1 and V13, V3, V6, V7, V9, and V10, V2 and V5. Therefore we categorize

V1 and V13 with short operation times; V3, V6, V7, V9, and V10 with medium

operation times; V8 with long operation times; and V2 and V5 with ultra-long op-

eration times, respectively.

Table 5 : One way ANOVA.

Source Sum of squares df Mean square F0 Sig.

Operations 82.806 9 9.201 72.353 .000

Error 146.748 1154 .127

Total 229.555 1163

V1 V13 V3 V9 V6 V10 V7 V8 V2 V5

4.25 4.42 4.78 4.82 4.83 4.85 4.95 5.16 5.37 5.43

Figure 3 : Results of Tamhane T2 test

4.2 Mixture log-normal distribution

From Table 4, we know that the time data sets of V4, V11, and V12 operation

are rejected as fitted by the K-S test. The sets of observed frequency counts in

histogram form presented in Appendix (D) suggests that the operation time distri-

butions are mixture models, which also seem to be able to explain the real situation

reasonably. Hence we will fit a more general mixture log-normal distribution for

those data sets of V4, V11, and V12 operation time.

A random variable Y is said to be log-normally distributed if X=log Y is nor-

mally distributed. Only positive values are possible for the variable Y , and the

distribution is skewed to the left. The p.d.f. of log-normal distribution is

f(y|µ, σ2) =
1√
2πσ

e−(log y−µ)2/2σ2

y
, 0 ≤ y < ∞,−∞ < µ < ∞. (9)
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For those operation (V4, V11, and V12) times which are rejected as fitted by the

K-S test, they are fitted by a more general mixture log-normal distribution instead.

Since the operation time was recorded a unit of one minute, the time data sets we

obtained can be regarded as in grouped form, and because the operation time is

usually at least one hour, we selected the data with operation time exceeding sixty

minutes. Hence our observations are considered to be in grouped and truncated

form. We can think of the data which operation time is less than sixty minutes as

special case and discuss them further. In order to obtain the MLE of mixture of

log-normal distributions for our data, the formulas for performing EM algorithm and

EM algorithm for grouped and truncated data are used in our estimates. We first

fit three-component mixture of log-normal distributions to these data set of opera-

tion time (V4, V11, and V12) via formulas deduced by McLachlan and Jones (1988).

To estimate the MLE of parameter vector Φ = (p1, p2, µ1, µ2, µ3, σ1, σ2, σ3) of a

mixture of three log-normal distributions, we only take the logarithm of the origi-

nal data and estimate the MLE of parameter vector of a mixture of three normal

distributions. Because the minute is a unit of operation time, we try to group the

operation time into five types, that is, each one of the interval of operation time is

one, two, three, four and five minutes respectively. For example, if we consider six

observations of operation time are 60, 61, 62, 63, 64, 65 minutes, then the grouping

is over six intervals of equal width of one minute, that is, one frequency for each

interval. For the interval of equal width of two minutes, we have [60,62), [62,64),

and [64,66) three intervals, and each interval has two frequencies. According to the

EM algorithm for mixture of log-normal distributions, we obtain the estimates of

parameter vectors Φ̂i, i= 4, 11, and 12, listed at Table 6, 7, and 8 respectively.

To test whether the three-component mixture of log-normal distributions is con-

sistent with the observed data, the Kolmogorov-Smirnov goodness-of-fit statistic is

considered. The test results are also given in Table 6, 7, and 8 for each time data

of V4, V11, and V12 operation along with the associated p-value. According to the

results of Table 6, 7, and 8 we find that the interval of different width influence the

results of fitting mixture distributions to operation time. It seems interested in the

results. Here we adopt the results which each one of the interval of operation time is

one minute. Hence in the following the discussion will be restricted to the estimates

obtained by each one of the interval of operation time is one minute. The plots of

the estimated density function for the time data sets of V4, V11, and V12 opera-

tions are presented in Figure 4 and it can be seen that three-component log-normal

distribution fits the data sets of V4, V11, and V12 operation time.
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Table 6 : Results of fitting a three-component mixture of log-normal dis-

tributions to V4 operation time. (Standard errors are in parentheses)

Minute(s)/Group

V4

Φ̂4 1 2 3 4 5

p̂1 .010(.005) .010(.005) .010(.005) .009(.005) .009(.005)

p̂2 .745(.047) .729(.047) .729(.047) .727(.047) .728(.047)

µ̂1 4.613(.062) 4.619(.063) 4.633(.066) 4.634(.067) 4.634(.059)

µ̂2 5.494(.010) 5.496(.010) 5.497(.010) 5.504(.010) 5.502(.010)

µ̂3 5.718(.034) 5.668(.035) 5.666(.033) 5.667(.033) 5.660(.034)

σ̂1 .110(.047) .113(.047) .119(.050) .118(.051) .105(.045)

σ̂2 .144(.008) .144(.008) .144(.008) .142(.008) .140(.008)

σ̂3 .285(.024) .288(.024) .273(.023) .277(.023) .284(.024)

K-S p-value .630 .395 .247 .087 .132

Table 7 : Results of fitting a three-component mixture of log-normal dis-

tributions to V11 operation time. (Standard errors are in parentheses)

Minute(s)/Group

V11

Φ̂11 1 2 3 4 5

p̂1 .269(.031) .219(.031) .202(.031) .198(.031) .193(.030)

p̂2 .374(.032) .343(.031) .340(.031) .337(.031) .331(.031)

µ̂1 4.720(.024) 4.734(.030) 4.737(.032) 4.747(.034) 4.721(.033)

µ̂2 4.824(.017) 4.824(.016) 4.826(.018) 4.830(.019) 4.822(.019)

µ̂3 5.100(.027) 5.037(.024) 5.307(.023) 5.042(.025) 5.039(.023)

σ̂1 .214(.018) .205(.025) .199(.026) .202(.028) .195(.026)

σ̂2 .166(.014) .149(.014) .162(.015) .167(.015) .165(.015)

σ̂3 .358(.018) .391(.016) .388(.016) .422(.017) .378(.015)

K-S p-value .263 .205 .056 .023 .050
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Table 8 : Results of fitting a three-component mixture of log-normal dis-

tributions to V12 operation time. (Standard errors are in parentheses)

Minute(s)/Group

V12

Φ̂12 1 2 3 4 5

p̂1 .188(.023) .141(.022) .121(.021) .126(.020) .121(.019)

p̂2 .306(.028) .278(.027) .243(.026) .255(.026) .250(.026)

µ̂1 4.643(.037) 4.648(.044) 4.645(.050) 4.622(.048) 4.568(.052)

µ̂2 4.854(.022) 4.803(.021) 4.807(.024) 4.817(.022) 4.620(.023)

µ̂3 5.100(.019) 5.095(.017) 5.079(.016) 5.094(.016) 5.077(.016)

σ̂1 .344(.027) .205(.031) .199(.035) .202(.034) .195(.037)

σ̂2 .197(.019) .149(.018) .162(.020) .167(.018) .165(.019)

σ̂3 .324(.014) .391(.012) .388(.011) .422(.011) .378(.012)

K-S p-value .303 .159 .023 .009 .059
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Figure 4 : Plots of mixture of log-normal distributions for V4, V11, and V12

operation times.
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4.3 Effect of doctor for three operations

We now examine the effect of doctor on the data sets of operation time which are

accepted as fitted three-component mixture of log-normal distributions by the K-S

test. Regarding the data sets of V4, V11 and V12 operation time, we may proceed

to consider the likelihood ratio test to test the effect of doctor.

In order to test the effect of doctor, we combine the data sets for different doctors

combinations and fit mixture of log-normal distributions to each combined data set.

The descriptive statistics of the time data sets of doctors at V4 operation are given

in Table 9. Because Doctor 4 , Doctor 7, and Doctor 9 performed the V4 operation,

we draw out the time data sets of Doctor 4, Doctor 7, and Doctor 9 at V4 operation,

and fit mixture of log-normal distributions, respectively. The MLE for the time data

sets of ith doctor, i= 4, 7, and 9, at V4 operation are denoted by Φ̂V4Doci, which are

displayed in Table 10. The maximized likelihood L(Φ̂) of each data sets of doctors

at V4 operation time are also listed in Table 10.

The descriptive statistics of the time data sets of doctors at V11 operation are

given in Table 11. We combine the time data sets of 1st and 9th; 2nd, 6th, and

7th; 3rd, 4th, 5th, and 8th, doctor at V11 operation and fit mixture of log-normal

distributions, respectively. The analysis of the MLE for combined time data sets

and the maximized likelihood of each data sets of doctors at V11 operation time are

are shown in Table 12.

Similarly, for V12 operation the descriptive statistics of the time data sets of

doctors are given in Table 13. We also combine the time data sets of 2nd; 1st, 3rd,

7th, and 9th; 4th, 5th, 6th, and 8th, doctor at V12 operation and fit mixture of

log-normal distributions, respectively. The results of the MLE for combined data

sets and the maximized likelihood of each data sets of doctors at V12 operation time

are listed in Table 14.

In the practical problem here it is of interest to know whether the factor of doc-

tor has effect on the operation time. Hence we test the effect of doctor, i.e., the null

hypothesis is H0: the effect of doctor is not significant. We consider the likelihood

ratio test statistics λ in and (5), (6), and (7). The results listed in Table 15 show

that at level α=.05 the effect of doctor at V4, V11, and V12 operation time which

are indicated by λV4Doc, λV11Doc, and λV12Doc separately is significant, since p-value

are almost zero. Therefore we conclude that there is obviously indication that there

is significant effect of doctor at V4, V11, and V12 operation time.
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Table 9 : Descriptive statistic of

doctors at V4 operation time.

Doctor N % Mean Std. Dev.

4 23 .057 5.805 .297

7 24 .060 5.467 .162

9 355 .883 5.510 .208

Table 10: Results of fitting mixture of log-normal distributions to

data sets of doctors at V4 operation time. (Standard errors are

in parentheses.)

V4 Total Doctor 4 Doctor 7 Doctor 9

Φ̂V4 Φ̂V4Doc4 Φ̂V4Doc7 Φ̂V4Doc9

p̂1 .010(.005) - - .027(.010)

p̂2 .745(.047) - - .832(.052)

µ̂1 4.613(.062) 5.805(.062) 5.467(.033) 4.644(.238)

µ̂2 5.494(.010) - - 5.513(.057)

µ̂3 5.718(.034) - - 5.559(.010)

σ̂1 .110(.047) .297(.044) .162(.023) .533(.162)

σ̂2 .144(.008) - - .153(.040)

σ̂3 .285(.024) - - .289(.008)

K-S p-value .630 .942 .786 .556

log L(Φ̂) -2155.189 -137.749 -121.68 -1874.383

Table 11 : Descriptive statistic of

doctors at V11 operation time.

Doctor N % Mean Std. Dev.

1 37 .047 4.867 .202

2 29 .037 4.607 .267

3 33 .042 5.037 .267

4 17 .023 5.124 .440

5 33 .042 5.029 .204

6 2 .003 5.074 .978

7 48 .061 4.761 .225

8 26 .033 4.990 .447

9 560 .712 4.887 .286
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Table 12 : Results of fitting mixture of log-normal distributions to

data sets of doctors at V11 operation time. (Standard errors are

in parentheses.)

V11 Total Doctor 1.9 Doctor 2.6.7 Doctor 3.4.5.8

Φ̂V11 Φ̂V11Doc19 Φ̂V11Doc267 Φ̂V11Doc3458

p̂1 .269(.031) .276(.035) - -

p̂2 .374(.032) .370(.038) - -

µ̂1 4.720(.024) 4.736(.023) 4.712(.031) 5.037(.032)

µ̂2 4.824(.017) 4.864(.020) - -

µ̂3 5.100(.027) 5.020(.028) - -

σ̂1 .214(.018) .169(.019) .278(.022) .332(.022)

σ̂2 .166(.014) .168(.017) - -

σ̂3 .358(.018) .343(.019) - -

K-S p-value .263 .110 .380 .450

log L(Φ̂) -3963.138 -2969.740 -382.755 -582.98

Table 13 : Descriptive statistic of

doctors at V12 operation time.

Doctor N % Mean Std. Dev.

1 58 .061 4.920 .293

2 70 .074 4.607 .261

3 62 .065 4.931 .246

4 161 .170 5.157 .353

5 35 .037 5.156 .201

6 14 .015 5.046 .465

7 64 .068 4.828 .269

8 92 .097 5.065 .285

9 391 .413 4.908 .273
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Table 14 : Results of fitting mixture of log-normal distributions to

data sets of doctors at V12 operation time. (Standard errors are

in parentheses.)

V12 Total Doctor 2 Doctor 1.3.7.9 Doctor 4.5.6.8

Φ̂V12 Φ̂V12Doc2 Φ̂V12Doc1379 Φ̂V12Doc4568

p̂1 .188(.023) - .207(.037) -

p̂2 .306(.028) - .399(.042) -

µ̂1 4.643(.037) 4.607(.031) 4.781(.042) 5.124(.019)

µ̂2 4.854(.022) - 4.894(.028) -

µ̂3 5.100(.019) - 4.982(.028) -

σ̂1 .344(.027) .261(.022) .209(.033) .327(.013)

σ̂2 .197(.019) - .261(.021) -

σ̂3 .324(.014) - .292(.019) -

K-S p-value .303 .251 .312 .647

log L(Φ̂) -4962.055 -327.212 -2887.211 -1730.165

Table 15 : Likelihood ratio test under the hypothesis-

H0 : the effect of doctor is not significant.

V4 V11 V12 Total Effect

-2log λ 42.75 55.33 34.94 133.02

d.f. 4 4 4 12

p-value 10−8 10−11 10−7 0

4.4 Effect of stage for V4 operation time

Generally speaking, intuitively we feel that that the disease severity of the pa-

tients concerns the operation time for longer operation time. We conjecture that

the disease severity of the patients influence the length of the operation time. Here

we gathered the data sets where doctors made diagnoses of the disease severity of

the patients for V4 operation time. We use ”stage” to express the disease severity

of the patients. Stage 1 means that the disease severity of the patients is incipient,

stage 2 means that the disease severity of the patients is middle, and stage 3 means

that the disease severity of the patients is terminal. Since the stage data sets are not

to collect, we have only collected 148 data sets on stage and some other variables

for V4 operation in number and denoted by V4(148). Now we want to examine the

effect of stage of the patients’ disease on the time data sets of V4(148) operation and

try to illustrate the reason why the overall operation time has the special pattern
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of mixture log-normal distribution.

Since we have only partial data sets, we combine the data sets for three different

stages of the patients’ disease. In order to test the effect of stage of the patients’

disease, we fit mixture of log-normal distributions to each combined data set. The

summary statistics of the time data sets of stages of the patients’ disease at V4

operation are given in Table 16. We draw out the time data sets of stage 1, stage

2, and stage 3 at V4(148) operation, and fit mixture of log-normal distributions, re-

spectively. The MLE for the time data sets of ith stage, i= 1, 2, and 3, at V4(148)

operation are denoted by Φ̂V4Stagei, which are displayed in Table 17. The maximized

likelihood L(Φ̂) of each data sets of stage of the patients’ disease at V4(148) operation

time are also listed in Table 17.

We test the effect of stage at V4 operation time, i.e., the null hypothesis is H0:

the effect of stage at V4(148) operation time is not significant. We consider the

likelihood ratio test statistics λ in (8) and the results listed in Table 18 show that at

level α= .05 the effect of stage at V4 operation time which is indicated by λV4Stage

is significant, since p-value is .001 smaller than .05 . For that reason we conclude

that there is obviously indication that there is significant effect of stage at V4(148)

operation time.

Table 16 : Summary statistic of

stages at V4(148) operation time.

Stage N % Mean Std. Dev.

1 11 .074 5.427 .262

2 109 .736 5.410 .141

3 28 .190 5.461 .336

Table 17: Results of fitting mixture of log-normal distributions to

data sets of stages at V4(148) operation time. (Standard errors are

in parentheses.)

V4(148) Stage 1 Stage 2 Stage 3

Φ̂V4 Φ̂V4Stage1 Φ̂V4Stage2 Φ̂V4Stage3

p̂1 .165(.040) - .170(.040) -

µ̂1 5.237(.100) 5.427(.023) 5.225(.087) 5.461(.030)

µ̂2 5.419(.008) - 5.414(.007) -

σ̂1 .478(.072) .262(.017) .420(.062) .336(.021)

σ̂2 .077(.006) - .067(.005) -

K-S p-value .713 .877 .958 .575

log L(Φ̂) -740.616 -60.087 -509.431 -161.571
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Figure 5 : Boxplots of stage for V4(148) operation time.

Table 18 : Likelihood ratio

test for the effect of stage.

V4(148)

-2log λ 19.052

d.f. 4

p-value .001

4.5 Other variables for V4 operation

Besides doctor and stage, we also collected data on four factor variables which

may affect V4 operation time distribution: residents practicing years (R. Year),

blood transfusion (Blood T), blood loss (Blood L), and patient’s age (Age). We

only focus on analyzing variables for V4 operation time in stage 2 as there are more

data in that category. The correlation matrix of those variables are shown in Table

19. Comparing the correlation matrix, we find the correlations between Time and

Blood L, Blood L and Blood T and Blood T and Age are more significant than

others.

In multiple regression, we may use different models to find what kind of vari-

ables affect the operating time most. But under the assumption that the error

follows normal distribution, the usual method in multiple regression dose not work

for the operation time while fitted by mixture log-normal distribution. How to find

a method to develop a operation time forecasting model should be investigated.
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We take the logarithm of the data set of operation time in stage 2 and fit two-

component mixture of bivariate normal distributions to those data sets of operation

time and blood loss in stage 2 via the EM algorithm. Table 20 presents the estimated

results, i.e. mean vector, covariance matrices and the weight. Then we try to make

95% prediction confidence ellipse for operation time based on two-component mix-

ture of bivariate normal distributions. We do the scatter plot with 95% prediction

confidence ellipses from component 1 and component 2 with mean vector (µ̂) and

covariance matrix (Σ̂) to explore relationships among pairs of variables respectively.

Figure 6 displays a scatter plot with 95% prediction confidence ellipses.

The broken curve is 95% confidence ellipse for the distribution corresponding to

the component 1 of the mixture and the solid curve is 95% confidence ellipse for the

distribution corresponding to the component 2 of the mixture. We think that the

probability which is on the ellipse of component 1 is p1(.356)×0.95 = 0.338 and the

probability which is on the ellipse of component 2 is p2(.644) × 0.95 = 0.612. The

probability of joint confidence region is 0.272. Scatter plots of Blood L and Blood

T and Blood T and Age are presented in Figure 7 and Figure 8 respectively. The

ellipse shows graphically a positive correlation between variables Time and Blood

L. If operation time falls outside the ellipse, we say it is not normal case and need

further discussion.

Table 19 : Correlation Matrix

Correlation Time(Stage2) R. Year Blood L Blood T Age

Time(Stage2) 1 -.032 .371 .187 -.050

R. Year -.032 1 -.043 .047 -.098

Blood L .371 -.043 1 .688 .131

Blood T .187 .047 .688 1 .326

Age -.050 -.098 .131 .326 1

Table 20 : The fitted results.(Comp. component)

Comp. 1 Comp. 2

Mean(µ̂T ) 5.338 431.018 5.439 881.123

Covariance Σ̂1 Σ̂2

Weight(p̂) .356 .644

(
Σ̂1 =

[
.017 4.563

4.563 12821.580

]
, Σ̂2 =

[
.011 18.548

18.548 145349.079

] )
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Figure 6 : Scatter plot with confidence ell- Figure 7 : Scatter plot of Blood L and

ipse for V4 operation time in stage 2. Blood T for V4 operation in stage 2

Figure 8 : Scatter plot of Blood T and

Age for V4 operation in stage 2

4.6 Poisson regression model for V4 operation

The best known models for counts data assume a poisson distribution for the

response. Suppose Y has poisson distribution with mean λ, then using a generalized

linear model with log link, we get a poisson regression model

log(λ) = α + βX.

Goal of the study here is to find a model for relations between blood transfusion

(Blood T), blood loss (Blood L), and patient’s age (Age). The main effect of ”Blood

L” and ”Age” are denoted by Xbloodl and Xage. We only analyze variables for V4

operation time in stage 2 and use the statistical software S-PLUS to fit those data

but only consider the main effect of ”Blood L” and ”Age”. All of fitted results using

S-PLUS software are listed in Appendix (B) and partial results are shown in Table

21.
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According Table 21, we know assuming that the blood transfusion (Blood T)

has a poisson distribution, we get a model of

log(λ) = α + β1Xbloodl + β2Xage, (10)

where α̂ = −0.443, β̂1 = 0.001, and β̂2 = 0.012. All of main factor terms with large

absolute t value (i.e. > 2) are the candidate of the significant terms. The poisson

regression model is good because the deviance is 87.28839, which is much smaller

than the critical value of chi-square distribution with 107 degrees of freedom at level

0.05 (χ2
105,.05 = 129.918). Hence we accept H0: the poisson model provides a good

fit. In other words, the model in this fitting is a good description of those data.

We display a plot of the response variable versus the fitted values in Figure 9. The

broken line is a diagonal line and the solid line is a poisson regression line.

Specifically, blood transfusion can be forecasted by using poisson regression

model (10). For example, if a patient who age and blood loss are 50 years old

and 1000 c.c, average blood transfusion of the patient is

exp (−0.44285 + 0.00101× 1000 + 0.01218× 50) = 3.242.

We can infer that the patient is transfused about three bags of blood.

Table 21 : Results of fitting poisson regression model

Value Std. Error t value

Intercept -0.44285 0.26379 -1.67882

BloodL 0.00101 0.00014 7.37748

Age 0.01218 0.00465 2.61800

Null Deviance: 154.7614 on 107 degrees of freedom

Residual Deviance: 87.28839 on 105 degrees of freedom

Figure 9 : Response variable versus the fitted values.
The solid line is a poisson regression line.
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5. Conclusion and discussion

In this work, we have studied the operation time distributions of thirteen oper-

ations. Log-normal and mixture log-normal distribution are identified to be accept-

able statistically in describing these operation times respectively. In order to obtain

the MLE of mixture log-normal distributions, the method of computing EM algo-

rithm for grouped and truncated data is used in our estimates. In order to classify

those operations with operation times fitted by log-normal distributions into differ-

ent categories such as ”short”, ”medium”, ”long”, ”ultra-long” operation times, we

use standard one-way analysis of variance and Tamhane T2 test to compare the dif-

ferences between means of operation time. Finally we investigate the effect of doctor

and stage on the data sets of operation time for those identified as three-component

mixture of log-normal distributions by the K-S test.

According to the results from Table 6, 7, and 8, we find that bandwidth inter-

val selection in fitting the distribution would make a difference in the fitting of the

mixture distributions on operation time. For V11 operation, test result with one

minute as the basic interval unit situation is different from test result with that of

four minutes. It is worth noting that through rigorous statistical analysis presented

here, it helps to provide an objective estimation on the distribution of the operation

time.

To investigate effects of other factor variables which may affect V4 operation time

distribution, we only have some partial information. Those factor variables reveals

only part of the affecting operation time distribution, not express all of situations.

If we can collect and discuss all of factor variables of V4, V11, and V12 operation

time, it could enable us to understand further about operation time distributions.

On the whole, it seems one main factor affecting the operation time is the dis-

ease severity of the patients. The doctors usually diagnose the disease severity of the

patients into three groups, that is, incipient, middle, and terminal. In general, the

stage of patients’ disease is in proportion to operation time. We conjecture that the

patients with disease severity as terminal have longer operation time, and the pa-

tients with disease severity as incipient have shorter operation time. For operations

with large data set, operation time appears to be affected by the stage of patients’

disease more clearly. It is of interest to see if three proportions of the disease sever-

ity of the patients (incipient, middle, and terminal) are significantly related to the

estimates of the vector of mixing proportions.

Furthermore, we have also established a poisson regression model for relationship
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for blood transfusion with respect to blood loss and age of the patient. Later blood

transfusion can be predicted by using poisson regression model. We relationship

between operation time and blood loss are also interested in finding the which seem

to be distributed as mixture of bivariate normal distributed. We can judge further

whether operation time is normal or not . Hence it is worth discussing that how

to make a 95% prediction confidence region based on mixture of bivariate normal

distribution.

Understanding the operation time distributions and the factor effect to operation

time is helpful in making an efficient operating room scheduling in the future. It is

of interest to develop a method to model the operating time and make estimation of

the probability to finish the operation on time with mixture log-normal distribution,

and predict the extra cost due to over time operation.
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Appendix

(A) EM algorithm for grouped and truncated data.

We consider fitting of finite normal mixture models via the EM algorithm with

grouped and truncated data. Suppose the sample space of X, Ω, is partitioned into

ν = r+t mutually exclusive subsets Ωj (j = 1, . . . , ν). Independent observations are

made on X, but only the number nj falling in Ωj (j = 1, . . . , r) is recorded. That

is, in addition to the individual observations, the number of observations nj falling

in Ωj (j = r + 1, . . . , ν) are not available for the subsequent estimation of Φ.

For given n =
∑r

j=1 nj, it is assumed that observed data y = (n1, . . . , nr) has

a multinomial distribution consisting of n draws on r categories with probabilities

Pj(Φ)/P (Φ),j = 1, . . . , r, where

Pj(Φ) =

∫

Ωj

f(x; Φ)dx

and

P (Φ) =
r∑

j=1

Pj(Φ).

This gives the likelihood function

L(Φ;y) =

(
n!∏r

j=1 nj!

)
r∏

j=1

[
Pj(Φ)

P (Φ)

]nj

. (A.1)

We can undertake solving the likelihood equation ∂L(Φ; y)/∂Φ=0 within the

EM framework by introducing the random variables u = (nr+1, . . . , nν)
′ and

xj = (xj1, . . . , xjnj
)′ (j = 1, . . . , ν),

where, conditional on y, u has probability function

[
(
∑ν

j=r+1 nj + n = 1)!

(n− 1)!

]
[P (Φ)]n

ν∏
j=r+1

[Pj(Φ)]nj

nj!
.

Conditional on y and u, the xjk (k = 1, . . . , nj) denote nj independent obser-

vations with density f(x, Φ)/Pj(Φ) for j = 1, . . . , ν. The EM machinery is then

invoked by declaring

w = (y′,x′1, . . . ,x
′
ν ,u

′)′ (A.2)

as the complete data vector. The log-likelihood for this complete data specification

is equal to
ν∑

j=1

nj∑

k=1

log f(xjk; Φ), (A.3)
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and it implies the likelihood (A.1) for the incomplete data y.

If we work with the complete data vector w specified by (A.2) and f(x; Φ) is a

mixture density, then the M-step of the EM algorithm will require itself an iterative

procedure. Consequently, for mixture densities we propose a further extension of

the complete data vector w to include the zero-one indicator variables in zik =

(z1jk, . . . , zgjk)
′ (j = 1, . . . , ν; k = 1, . . . , nj), where

∑g
i=1 zijk = 1 and where, given

the xjk, the zjk are conditionally independent with

Pr{zijk = 1|xjk} =
πifi(xjk; θ)

f(xjk; Φ)
= τi(xjk; Φ), say,

for i = 1, . . . , g. Note that τi(xjk; Φ) is the probability that xjk belongs to the

ith component given its value.

With the inclusion of these indicator variables zijk in the complete data specifi-

cation, the log-likelihood (A.3) becomes

g∑
i=1

ν∑
j=1

nj∑

k=1

zijk[log fi(xjk; θ + log πi)]. (A.4)

E-step

The E-step of the EM algorithm at (p+1)th stage requires taking its expectation

conditional on the observed data y, using the current fit Φ(p) for Φ.

Q(Φ; Φ(p))

= E(

g∑
i=1

ν∑
j=1

nj∑

k=1

zijk[log fi(xjk; θ) + log πi]|y = (n1, . . . , nr)
′)

=

g∑
i=1

ν∑
j=1

E(

nj∑

k=1

zijk[log fi(xjk; θ) + log πi]|y = (n1, . . . , nr)
′)

=

g∑
i=1

ν∑
j=1

E(nj|y = (n1, . . . , nr)
′)E(zijk[log fi(xjk; θ) + log πi]|y = (n1, . . . , nr)

′)

=

g∑
i=1

ν∑
j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))[log fi(X; θ) + log πi]},

where E
(p)
j refers to expectation with respect to the density f(x, Φ(p))/Pj(Φ

(p)) and

mj(Φ
(p)) =





nj , j = 1, . . . , r;

n
PjΦ

(p)

P (Φ(p))
, j = r + 1, . . . , ν.

33



M-step for Normal mixtures

At the (p + 1)th stage of the M-step, the intent is to maximize Q(Φ; Φ(p)) with

respect to Φ, to produce a new estimate of Φ, Φ(p+1). We consider this now, first

for mixtures with normal component densities having mean µi and variance σ2
i

(i = 1, . . . , g).

The estimates of πi, µi, and σ2
i (i = 1, . . . , g) so obtained at the (p + 1)th stage

of the M-step satisfy

∂Q(Φ; Φ(p))

∂µi

=
ν∑

j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))[

∂

∂µi

log fi(X; θ) + log πi)]

=
ν∑

j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))(X − µi)}

∂Q(Φ; Φ(p))

∂σ2
i

=
ν∑

j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))[

∂

∂σ2
i

log fi(X; θ) + log πi)]

=
ν∑

j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))[σ−2

i (X − µi)
2]}

∂Q(Φ; Φ(p))

∂πi

=
∂

∂πi

ν∑
j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))[log fi(X; θ) + log πi)]

=

∑ν
j=1 mj(Φ

(p))E
(p)
j {τi(X; Φ(p))}

πi

−
ν∑

j=1

mj(Φ
(p))

Therefore

µ̂
(p+1)
i =

∑ν
j=1 mj(Φ

(p))E
(p)
j {τi(X; Φ(p))X}

ci(Φ(p))
,

[̂σ
(p+1)

i ]2 =

∑ν
j=1 mj(Φ

(p))E
(p)
j {τi(X; Φ(p))(X − µ

(p+1)
i )2}

ci(Φ(p))
,

π̂
(p+1)
i =

∑ν
j=1 mj(Φ

(p))E
(p)
j {τi(X; Φ(p))}∑ν

j=1 mj(Φ(p))
,

where

ci(Φ
(p)) =

ν∑
j=1

mj(Φ
(p))E

(p)
j {τi(X; Φ(p))}.
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(B)

Table A1 : Results of fitting poisson regression model using

S-PLUS software.

∗ ∗ ∗ Generalized Linear Model ∗ ∗ ∗
Call : glm (formula = Bloodt ∼ BloodL + Age, family= poisson

(link = log), data = SDF100, na.action = na.exclude, control=

list (epsilon = 0.0001, maxit=50, trace=T))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.338 -0.433 -0.020 0.318 2.576

Coefficients:

Value Std. Error t value

(Intercept) -0.442854279 0.2637894141 -1.678817

BloodL 0.001005496 0.0001362925 7.377483

Age 0.012179204 0.0046521065 2.617998

(Dispersion Parameter for Poisson family taken to be 1 )

Null Deviance: 154.7614 on 107 degrees of freedom

Residual Deviance: 87.28839 on 105 degrees of freedom

Number of Fisher Scoring Iterations: 4
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(C) Histograms for the thirteen operation times
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Figures A1: (a)-(m) are histograms for the thirteen operation time in GYN

department.

37



(D) Histograms for the logarithm of the thirteen operation times
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Figures A2: (a)-(m) are histograms for the logarithm of the thirteen operation

time in GYN department.
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(E) EM algorithm for grouped and truncated data using Mathematica 5 
software 

 
[1] “a” is list of number from shortest operation time to longest opsration time. 
 

<<Statistics`ContinuousDistributions` 

a=Table[i,{i,60,540}]; 

b=Append[a,　]; 

x=Prepend[b,0]; 

 
[2] Three component mixture of log-normal distribution. 
 
f @ x _ , u _ , s _ D : = P D F @ N o r m a l D i s t r i b u t i o n @ u , s D , x D
f f @ x _ , p i 1 _ , p i 2 _ , u 1 _ , s 1 _ , u 2 _ , s 2 _ , u 3 _ , s 3 _ D : =

p i 1 ∗ P D F @ N o r m a l D i s t r i b u t i o n @ u 1 , s 1 D , x D +

p i 2 ∗ P D F @ N o r m a l D i s t r i b u t i o n @ u 2 , s 2 D , x D +

H 1 − p i 1 − p i 2 L ∗ P D F @ N o r m a l D i s t r i b u t i o n @ u 3 , s 3 D , x D ;
P @ j _ , p i 1 _ , p i 2 _ , u 1 _ , s 1 _ , u 2 _ , s 2 _ , u 3 _ , s 3 _ D : =

‡
Log x j

Log@ x@ @ j+ 1D D D
f f @ y , p i 1 , p i 2 , u 1 , s 1 , u 2 , s 2 , u 3 , s 3 D  y ;

@ @ @ D D D  

 
[3] Initial values 
 

pi1=0.2625078816031413`; 

pi2=0.009303529391563604`; 

u1=5.654585814499704`; 

u2=4.610202770196282`; 

u3=5.491969502758988`; 

s1=0.27985722968656435`; 

s2=0.11113668260933902`; 

s3=0.1480334356538293`;pi3=1-pi1-pi2;  

 

[4] data : each one of the interval of operation time is one minute. 
 

Do[m={403*P[1,pi1,pi2,u1,s1,u2,s2,u3,s3]/(1-P[1,pi1,pi2,u1,s1,u2,s2,u3,

s3]-P[482,pi1,pi2,u1,s1,u2,s2,u3,s3]),data, 

403*P[482,pi1,pi2,u1,s1,u2,s2,u3,s3]/(1-P[1,pi1,pi2,u1,s1,u2,s2,u3,s3]-

P[482,pi1,pi2,u1,s1,u2,s2,u3,s3])};  
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a a = T a b l e @ 8 P @ j , p i 1 , p i 2 , u 1 , s 1 , u 2 , s 2 , u 3 , s 3 D ,
8 x @ @ j D D , x @ @ j + 1 D D < , m @ @ j D D < , 8 j , 4 8 2 < D ;

p p = 8 < ; x x = 8 < ; m m = 8 < ;
D o @ I f @ a a @ @ h , 1 D D ≠ 0 , A p p e n d T o @ p p , a a @ @ h , 1 D D D ;

A p p e n d T o @ m m , a a @ @ h , 3 D D D ; A p p e n d T o @ x x , a a @ @ h , 2 D D D D ,
8 h , L e n g t h @ a a D < D ;

E X 1 @ j _ D : =
1

p p @ @ j D D ‡
Log@ xx@ @ j,1D D D

Log@ xx@ @ j,2D D D
p i 1 ∗ f @ y , u 1 , s 1 D  y ;

E X 2 @ j _ D : =
1

p p @ @ j D D ‡
Log@ xx@ @ j,1D D D

Log@ xx@ @ j,2D D D
p i 2 ∗ f @ y , u 2 , s 2 D  y ;

E X 3 @ j _ D : =
1

p p @ @ j D D ‡
Log@ xx@ @ j,1D D D

Log@ xx@ @ j,2D D D
H 1 − p i 1 − p i 2 L ∗ f @ y , u 3 , s 3 D  y ;

c 1 = ‚
k = 1

Length @ ppD
m m @ @ k D D ∗ E X 1 @ k D ;

c 2 = ‚
k = 1

Length @ ppD
m m @ @ k D D ∗ E X 2 @ k D ;

c 3 = ‚
k = 1

Length @ ppD
m m @ @ k D D ∗ E X 3 @ k D ;

 

p i 1 1 =
⁄ k = 1

Length @ ppD m m @ @ k D D ∗ E X 1 @ k D
⁄ k = 1

Length@ ppD m m @ @ k D D
;

p i 2 2 =
⁄ k = 1

Length @ ppD m m @ @ k D D ∗ E X 2 @ k D
⁄ k = 1

Length@ ppD m m @ @ k D D
;

p i 3 3 =
⁄ k = 1

Length @ ppD m m @ @ k D D ∗ E X 3 @ k D
⁄ k = 1

Length@ ppD m m @ @ k D D
;

u 1 1 =
1
c 1

 

i

k
jjjj ‚

k = 1

Length@ ppD
m m @ @ k D D ∗

1
p p @ @ k D D

‡
Log@ xx@ @ k,1D D D

Log@ xx@ @ k,2D D D
y ∗ p i 1 ∗ f @ y , u 1 , s 1 D  y

y

{
zzzz ;

u 2 2 =
1
c 2

 

i

k
jjjj ‚

k = 1

Length@ ppD
m m @ @ k D D ∗

1
p p @ @ k D D

‡
Log xx k,1

Log@ xx@ @ k,2D D D
y ∗ p i 2 ∗ f @ y , u 2

@ @ @ D D D
, s 2 D  y

y

{
zzzz ;
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u33 =
1
c3

 

i

k
jjjj ‚

k= 1

Length@ ppD
mm @ @ kD D ∗

1
pp@ @ kD D

‡
Log@xx@ @ k,1D D D

Log@xx@ @ k,2D D D
y ∗ H 1 − pi1 − pi2L ∗ f@ y, u3, s3D  y

y

{
zzzz ;

s11 =
1
c1

 

i

k
jjjj ‚

k= 1

Length@ ppD
mm @ @ kD D ∗

1
pp@ @ kD D

‡
Log@xx@ @ k,1D D D

Log@xx@ @ k,2D D D
H y − u1L 2 ∗ pi1 ∗ f@ y, u1, s1D  y

y

{
zzzz ;

s 2 2 =
1
c 2

 

i

k
jjjj ‚

k = 1

Length@ ppD
m m @ @ k D D ∗

1
p p @ @ k D D

‡
Log@ xx@ @ k,1D D D

Log@ xx@ @ k,2D D D
H y − u 2 L 2 ∗ p i 2 ∗ f @ y , u 2 , s 2 D  y

y

{
zzzz ;

s 3 3 =
1
c 3

 

i

k
jjjj ‚

k= 1

Length@ ppD
mm @ @ k D D ∗

1
p p @ @ k D D

‡
Log@ xx@ @ k,1D D D

Log@ xx@ @ k,2D D D
H y − u 3 L 2 ∗ p i3 ∗ f @ y , u 3 , s 3 D  y

y

{
zzzz ;

pi 1 = p i 1 1 ;
p i 2 = p i 2 2 ;
p i 3 = p i 3 3 ;
u 1 = u 1 1 ;
u 2 = u 2 2 ;
u 3 = u 3 3 ;

s 1 =
è ! ! ! ! ! ! !!s 1 1 ;

s 2 =
è ! ! ! ! ! ! !!s 2 2 ; s 3 =

è !! ! ! ! ! !!s 3 3 ; , 8 z , 1 < E  
p i 1 = p i 1 1
p i 2 = p i 2 2
p i 3 = p i 3 3
u 1 = u 1 1
u 2 = u 2 2
u 3 = u 3 3

s 1 =
è ! ! ! ! ! ! !!s 1 1

s 2 =
è ! ! ! ! ! ! !!s 2 2

s 3 =
è ! ! ! ! ! ! !!s 3 3  
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