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Abstract

The binary response experiments are often used in many areas. In

many investigations, different kinds of optimal designs are discussed under

an assumed model. There are also some discussions on optimal designs for

discriminating models. The main goal in this work is to find an optimal

design with two support points which minimizes the maximal probability

differences between possible models from two types of symmetric location

and scale families. It is called the minimum bias two-points design, or

the mB2 design in short here. D- and A-efficiencies of the mB2 design

obtained here are evaluated under an assumed model. Furthermore, when

the assumed model is incorrect, the biases and the mean square errors in

evaluating the true probabilities are computed and compared with that by

using the D- and A-optimal designs for the incorrectly assumed model.

Keywords : Binary response, symmetric location and scale family, mB2

design, D-efficiency, A-efficiency, bias, mean square error.
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Section 1 1

1 Introduction

1.1 Preliminaries

A binary response experiment is one that the response variable y is 1 or 0. This

response y depends on a random variable Z which may not be observed completely, and

it is less than the predictor variable x if and only if the response y is 1. What we know

only is whether the event {Z < x} happens or not. It can be expressed by the following,

P{y(x) = 1} = P{Z < x} and P{y(x) = 0} = P{Z ≥ x}.

We may not know exactly what the distribution of Z is, but may have the information

that the distribution is continuous. The following four possible families have appeared in

many literatures,

1. probit : FZ(x) = F1(x;µ, σ) =
1√
2π

∫ (x−µ)/σ

−∞
e

−t2

2 dt

2. logit : FZ(x) = F2(x;µ, σ) =
e

x−µ
σ

1 + e
x−µ

σ

3. double exponential : FZ(x) = F3(x;µ, σ) =

∫ (x−µ)/σ

−∞

1

2
e−|t|dt

4. double reciprocal : FZ(x) = F4(x;µ, σ) =

∫ (x−µ)/σ

−∞

1

2(1 + |t|)2
dt

where µ and σ are unknown parameters. We denote that fi = F ′
i for i = 1 . . . 4 in the

following work. Among these models above, the probit model and the logit model are

used most often. It is conventional that Z is from a symmetric location and scale family,

that is,

FZ(x;µ, σ) = F (
x− µ

σ
) and FZ(x;µ, σ) = 1 − FZ(−x;µ, σ)

for all x ∈ R, where F is called the standard distribution of this family. Under this

conventionality, there are a lot of investigations discussing the optimal designs for a binary
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response experiment with a given model. For example Wu (1985), Minkin (1987), Wu

(1988), Khan and Yazdi (1988), Sitter and Wu (1993), Sitter and Fainaru (1997), Dette

and Sahm (1997), and Mathew and Sinha (2001).

While doing a binary response experiment, it is of great interest in finding optimal

designs for estimating the predicted variable xp such that the response variable y is equal

to 1 with probability p as stated in Wu (1988), i.e.

P (Z < xp) = FZ(xp) = F (
xp − µ

σ
) = p,

and xp = µ + σF−1(p) is an unknown parameter. Here, xp is called the pth quantile of

this model. If we know what the model is, we can find estimations of µ and σ to estimate

the pth quantile xp. The corresponding design problems with p = 1
2

has already been

discussed in earlier investigations because x 1
2

only depend on µ and does not depend

on σ. When p is not equal to 1
2
, the optimal design in estimating xp depends on the

distribution of the assumed model. In some applications, it may request the estimation of

some extreme quantile xp with p close to 1. For example, the probability p of detonation

in a pyrotechnics experiment is usually demanded to be 0.99 or even larger. The values

of xp will be quite different between distinct models as p close to 1. For instance, the

value of x0.999 of probit model with mean 0 and variance 1 is 3.09023 and x0.999 of logit

model with the same mean and variance is equal to 3.80789. These two points are quite

far away from each other.

Suppose the design is with only two support points, say a1 and a2. If we have two

possible models with distributions F and G having the same values at a1 and a2, i.e.

F (a1) = G(a1) and F (a2) = G(a2),
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we will not be able to discriminate which model is true. In Chao and Fuh (1999), it

is observed that if the model fitted has been misspecified, the estimation of an extreme

quantile will not be consistent because of assuming an incorrect model. Uncertainty about

the model has been an important issue in designing experiments. Many investigations have

discussed the design problems on how to discriminate between models. See Atkinson and

Fedorov (1975), Yanagisawa (1988), Yanagisawa (1990), and Muller and Ponce de Leon

(1996) etc. If we use these methods, we usually need to do experiments at a lot of different

design points for many times. It is not very efficient and economic to do so if the cost is

high for each experiment.

Note that if the true model is either probit or logit, we may compare the probabilities

of these two 0.999th quantiles for probit and logit models with mean 0 and variance 1 are

F1(3.09023; 0, 1) = 0.9990, F1(3.80789; 0, 1) = 0.9999, and

F2(3.09023; 0,
π√
3
) = 0.9963, F2(3.80789; 0,

π√
3
) = 0.9990.

It can be seen that although the 0.999th quantiles for these two distributions may be far

away, the difference of the probabilities at these two points is not very large in either one

of the two cases. It is observed that even the quantile estimation is far from the true

quantile, if there is no much difference between the probabilities of them, we accept that

the quantile estimation is not bad.

1.2 Optimization criterion

Suppose the possible models are from two symmetric location and scale families with

standard distributions F and G, and we do not know which one is the true model. If

we choose the wrong one, it is impossible that the estimated pth quantiles are consistent
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for all p ∈ (0, 1). Here we cite the definition of the distance between two distribution

functions F and G is

d(F,G) = sup
x∈R

|F (x) −G(x)|.

In this work, if the true model is with distribution F ( · ;µ0, σ0) but we choose the other

model with standard distribution G, we say that G( · ;µ1, σ1) is closer to F ( · ;µ0, σ0)

than G( · ;µ2, σ2) is if the distance between F ( · ;µ0, σ0) and G( · ;µ1, σ1) is less or equal

to the distance between F ( · ;µ0, σ0) and G( · ;µ2, σ2), i.e.

sup
x∈R

|F (x;µ0, σ0) −G(x;µ1, σ1)| ≤ sup
x∈R

|F (x;µ0, σ0) −G(x;µ2, σ2)|.

So the distribution which is the closest to F ( · ;µ0, σ0) from families with G is G( · ;µ∗, σ∗)

where

(µ∗, σ∗) = arg inf
µ∈R,σ>0

sup
x∈R

|F (x;µ0, σ0) −G(x;µ, σ)|.

Since F ( · ;µ0, σ0) is symmetric at µ0 and G( · ;µ, σ) is symmetric at µ, therefore

max{|F (µ0 + c;µ0, σ0) −G(µ0 + c;µ, σ)|, |F (µ0 − c;µ0, σ0) −G(µ0 − c;µ, σ)|}

= max{|F (
c

σ0
) −G(

c+ (µ0 − µ)

σ
)|, |F (

−c
σ0

) −G(
−c+ (µ0 − µ)

σ
)|}

= max{F (
c

σ0
) −G(

c+ (µ0 − µ)

σ
)|, |1 − F (

c

σ0
) − 1 +G(

c+ (µ− µ0)

σ
)|}

= max{F (
c

σ0

) −G(
c+ (µ0 − µ)

σ
)|, |F (

c

σ0

) −G(
c+ (µ− µ0)

σ
)|}

≥ |F (
c

σ0
) −G(

c

σ
)|, for all µ ∈ R and σ > 0.

So we have the following inequality:

sup
x∈R

|F (x;µ0, σ0) −G(x;µ0, σ)| ≤ sup
x∈R

|F (x;µ0, σ0) −G(x;µ, σ)|
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for all µ ∈ R and σ > 0. Then we have the result µ∗ = µ0 and we only need to find σ∗

such that

σ∗ = arg inf
σ>0

sup
x∈R

|F (x;µ0, σ0) −G(x;µ0, σ)|.

Since F and G are from location and scale families, we can reduce the problem to finding

b > 0 such that

b∗ = arg inf
b>0

sup
x∈R

|F (x;µ0, σ0) −G(x;µ0,
σ0

b
)|

= arg inf
b>0

sup
x∈R

|F (
x− µ0

σ0

) −G(
x− µ0

σ0/b
)|

= arg inf
b>0

sup
x∈R

|DF,G(b, x)|,

where DF,G(b, x) = F (x) −G(bx) is called the distance function for all b > 0 and x ∈ R.

Two-points designs are the easiest kind of designs to decide two unknown parameters.

When the possible models are from symmetric location and scale families, the best choices

of two-points designs are symmetric, i.e. the support points are symmetric at µ and of

the same weight. Suppose the support points are xp and x1−p for a percentage p �= 1
2

and

there are two possible models from location and scale families of standard distribution

F and G, which are agree some regularity conditions. First, if the true model is with

distribution F ( · ;µ0, σ0) but the assumed model is with distribution G( · , µ1, σ1) where

µ1 and σ1 are unknown, then {µ̂1,N , σ̂1,N} which are the MLEs of {µ1, σ1} converges to

{µ1, σ1} as the number of observations N → ∞ (see Appendix A), i.e.

lim
N→∞

µ̂1,N = µ1 =
xp + x1−p

2
= µ0, lim

N→∞
σ̂1,N = σ1 =

xp − x1−p

2G−1(p)
=
F−1(p)

G−1(p)
σ0.

We define the scale function βF,G as follows

βF,G(p) =

{
G−1(p)
F−1(p)

if p ∈ (0, 1
2
) ∪ (1

2
, 1)

limp→1/2
G−1(p)
F−1(p)

if p = 1
2
.
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For example, if the true model is probit and the assumed model is logit,

βF1,F2(p) =

⎧⎨
⎩

F−1
2 (p)

F−1
1 (p)

if p ∈ (0, 1
2
) ∪ (1

2
, 1)√

8
π

if p = 1
2
.

It is easy to show that

βF,G(p) =
1

βG,F (p)
for all p ∈ (0, 1).

Therefore for all q ∈ (0, 1), the true qth quantile xq is

F−1(q;µ0, σ0) = µ0 + σ0F
−1(q),

but the estimated qth quantile through the assumed model as N → ∞ is

x̃q = lim
N→∞

G−1(q; µ̂1,N , σ̂1,N) = G−1(q;µ1, σ1) = µ0 +
σ0

βF,G(p)
G−1(q).

The maximum difference between probabilities at xq and x̃q for all q ∈ (0, 1) is

sup
q∈(0,1)

|F (xq;µ0, σ0) − F (x̃q;µ0, σ0)| = sup
q∈(0,1)

|q − F (
x̃q − µ0

σ0

)|

= sup
q∈(0,1)

|G(
x̃q − µ1

σ1

) − F (
x̃q − µ0

σ0

)| = sup
q∈(0,1)

|G(
x̃q − µ0

σ0/βF,G(p)
) − F (

x̃q − µ0

σ0

)|

= sup
x∈R

|G(
x− µ0

σ0/βF,G(p)
) − F (

x− µ0

σ0

)| = sup
x∈R

|G(βF,G(p)x) − F (x)|

= sup
x∈R

|F (x) −G(βF,G(p)x)| = sup
x∈R

|DF,G(βF,G(p), x)|.

If we care all quantile estimations fitted or not, we would like to find a symmetric two-

points design ξ∗F,G which assigns equal weight on the (1 − p∗F,G)th and (p∗F,G)th quantiles

such that the maximum difference between probabilities at xq and x̃q for all q ∈ (0, 1)

may be minimized. That is, to find the design ξ∗F,G expressed as

ξ∗F,G =

{
x1−p∗F,G

xp∗F,G
1
2

1
2

}
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where

p∗F,G = arg inf
p∈(0,1)

sup
x∈R

|DF,G(βF,G(p), x)|.

Next, if the true model is with distribution G(x;µ1, σ1) but the assumed model is

with F (x;µ0, σ0) where µ0 and σ0 are unknown, then we would like to find a symmetric

two-points design ξ∗G,F with support points {x1−p∗G,F
, xp∗G,F

} where

p∗G,F = arg inf
p∈(0,1)

sup
x∈R

|DG,F (βG,F (p), x)|.

Since

DG,F (βG,F (p), x) = G(x) − F (βG,F (p)x) = G(x) − F (
x

βF,G(p)
) ∀p ∈ (0, 1),

therefore

sup
x∈R

|DG,F (βG,F (p), x)| = sup
x∈R

|G(x) − F (
x

βF,G(p)
)|

= sup
x∈R

|G(βF,G(p)x) − F (x)| = sup
x∈R

|DF,G(βF,G(p), x)| ∀p ∈ (0, 1).

It implies that p∗G,F = p∗G,F = p∗. That is, whenever F or G is the true model, the design

which minimizes the maximum difference between the true model and the assumed model

is the same. We denote this design ξ∗ = ξ∗F,G = ξ∗G,F to be the minimum bias two-points

design (here it is called the mB2 design in short) for models from symmetric location and

scale families with standard distributions F and G.

After the introduction about the mB2 designs above, this paper is organized as follows.

In Section 2, we exhibit some min-max results concerning about model estimation and

related design problems for the two models. We will study some characteristics of the

mB2 design points for probit-logit case, and later use them to give a numerical method

to find the mB2 design for any two possible models which are from symmetric location
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and scale families. In section 3, numerical and simulation results are presented under

the following two cases, the probit-logit case with mean 0 and variance 1 and the F1-F4

case with location parameter 0 and scale parameter 1. D- and A-efficiencies of the mB2

design are evaluated under an assumed model. Furthermore, when the assumed model

is incorrect, the biases and the mean square errors in evaluating the true probabilities

with the estimated quantiles are computed and compared with that by using the D- and

A-optimal designs for the wrongly assumed model. Finally, we give some discussions and

conclusions in section 4.
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2 The min-max results for two models

As mentioned earlier, F and G are two standard distributions assumed to be from loca-

tion and scale families, the distance functionDF,G(b, x) and the scale function βF,G(p) have

some good properties, like symmetry and continuously differentiable, which are expressed

in Appendix B. According to these properties, the mB2 design points is {x1−p∗F,G
, xp∗F,G

},
where

p∗F,G = inf
p∈[ 1

2
,1)

sup
x>0

DF,G(βF,G(p), x).

Particularly, by the special properties for probit-logit case which are presented in Ap-

pendix B, the mB2 design points for this case is {x1−p∗ , xp∗}, where βF1,F2(xp∗) = b∗

and

b∗ = inf
b>
√

8/π

sup
x>0

DF1,F2(b, x).

Since limx→∞DF,G(b, x) = 0 and limx→0+ DF,G(b, x) = 0 for all b > 0, therefore the

maximizer Mb of |DF,G(b, x)| must be a critical point, i.e.

∂

∂x
D(b, x)|x=Mb

= 0.

We first study some characteristics of the critical points of D(b, x) for all b >
√

8
π

for the probit-logit case, and then we use these to find the mB2 design for probit and

logit models. For the general cases, we only provide a numerical method to find the mB2

designs when the standard distributions are two of the four distributions, i.e. F1, F2, F3,

and F4, as mentioned in Section 1.

2.1 The probit and logit case

In this subsection, we will search for all critical points of D(b, x) for all b >
√

8
π

in

probit-logit case, then find the infimum of {supx>0 |D(b, x)| : b ≥
√

8
π
}. It is observed
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according Figure 2 in Appendix C that there are two extreme points of D(β(p), x) on

{x : x > 0} for almost p ∈ (0, 1), the 1st extreme point is the minimum, the 2nd one is

the maximum, and they are both decreasing as b increases. The following three lemmas

provide theoretical verifications of the above results.

Lemma 2.1.

For all b >
√

8
π
, there are two critical points of D(b, x) on {x : x > 0}. For b0 =

√
8
π
,

there is one critical point of D(b0, x) on {x : x > 0}.

Proof.

For all b ≥
√

8
π
, there is 1 or 2 critical points of D(b, x) = F1(x)−F2(bx) on {x : x > 0}

if and only if there is 1 or 2 roots of ∂
∂x
D(b, x) = f1(x)− bf2(bx) on {x : x > 0}. Now, we

will solve this equation on {x : x > 0} for all b ≥
√

8
π
.

1√
2π
e−x2/2 − bebx

(1 + ebx)2
= 0

⇔ (1 + ebx)2 =
√

2πbebxex2/2

⇔ 2 ln(1 + ebx) = ln(b) + ln(2π)/2 + x2/2 + bx

⇔ ψ(b, x) =
x2

2
− bx+ ln(b) +

ln(2π)

2
− 2 ln(1 + e−bx) = 0. (2.1)

By (2.1),

∂

∂x
ψ(b, x) = x− b+

2b

1 + e−bx
,

∂2

∂x2
ψ(b, x) = 1 − 2b2ebx

(1 + e−bx)2
. (2.2)
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By (2.2), we let xb,1 = 1
b
ln(b2 − 1 + b

√
b2 − 2) for all fixed b ≥

√
8
π
, then

(A1)
∂

∂x
ψ(b, x) is strictly decreasing for all x ∈ (0, xb,1) since

∂2

∂x2
ψ(b, x) < 0 there.

(A2) ψ(xb,1) is the minimum since
∂2

∂x2
ψ(b, x)|x=xb,1

= 0.

(A3)
∂

∂x
ψ(b, x) is strictly increasing for all x > xb,1 since

∂2

∂x2
ψ(b, x) > 0 there.

Since ∂
∂x
ψ(b, x) = 0 as x → 0+ and (A1), therefore ∂

∂x
ψ(b, xb,1) < 0 for all b ≥

√
8
π
.

With (A1) to (A3) and by the fact that ∂
∂x
ψ(b, x) → ∞ as x → ∞, it can be obtained

that:

(B1) There exists a unique xb,2 ∈ (xb,1,∞) such that
∂

∂x
ψ(b, x)|x=xb,2

= 0.

(B2) xb,2 is the minimizer of ψ(b, x) since
∂2

∂x2
ψ(b, x)|x=xb,2

> 0 .

(B3) ψ(b, x) is strictly decreasing ∀x ∈ (0, xb,2) and is strictly increasing ∀x > xb,2.

Since ψ(
√

8
π
, x) = 0 and ψ(b, x) > 0 as x→ 0+ for all b >

√
8
π
, ψ(b, x) → ∞ as x→ ∞

for all b ≥
√

8
π
, and (B1) to (B3), if we can show that ψ(b, xb,2) < 0, then it implies that

(C1) For all b >
√

8
π
, ψ(b, x) has a unique root in (0, bb,2) and a unique root in (bb,2,∞).

(C2) For b =
√

8
π
, ψ(b, x) has no roots in (0, bb,2) and a unique root in (bb,2,∞).

Although we do not know what xb,2 is for all b ≥
√

8
π
, if we can show that there

is a xb,3 > 0 for all b ≥
√

8
π

which satisfies ψ(b, xb,3) < 0, then we have proved that

ψ(b, xb,2) ≤ ψ(b, xb,3) < 0.
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Let xb,3 = b for all b ≥
√

8
π
, then it is easily shown that

ψ(b, xb,3) = ψ(b, b) =
b2

2
− b2 + ln(b) +

ln(2π)

2
− 2 ln(1 + e−b2)

=
b2

2
+ b2 + ln(b) +

ln(2π)

2
− 2 ln(1 + eb2)

≤ b2

2
+ ln(b) +

ln(2π)

2
− 2 ln(eb2)

=
−b2
2

+ ln(b) +
ln(2π)

2
< 0 for all b ≥

√
8
π
.

Then we have proved that there exists a point rb,1 ∈ (0, xb,2) for all b >
√

8
π

and a point

rb,2 ∈ (xb,2,∞) for all b ≥
√

8
π

such that

f(rb,1) − bg(brb,1) = 0 and f(rb,2) − bg(brb,2) = 0. (2.3)

That is, there are exact two extreme points rb,1 and rb,2 for D(b, x) on {x : x > 0} for all

b >
√

8
π

and there is a unique extreme point rb,2 for D(
√

8
π
, x). �

Lemma 2.2.

Let R1(b) = rb,1 for all b >
√

8
π

and R2(b) = rb,2 for all b ≥
√

8
π
, where rb,1 and rb,2

are defined in the proof of Theorem 3.1. Then R1 and R2 are continuously differentiable

on (
√

8
π
,∞), and R2 is continuous on [

√
8
π
,∞).

Proof.

Since

ψ(b, x) =
x2

2
− bx+ ln(b) +

ln(2π)

2
− 2 ln(1 + e−bx)

is a continuously differentiable function on {(b, x) : b ≥
√

8
π
, x > 0} ⊆ R2. Let

ψ1(b, x) = (b, ψ(b, x)) on D1 = {(b, x) : b >

√
8

π
, x ∈ (0, xb,2)}

ψ2(b, x) = (b, ψ(b, x)) on D2 = {(b, x) : b ≥
√

8

π
, x > xb,2}
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where xb,2 is defined in Lemma 3.1.

First we will prove that R1(b) is continuously differentiable on its domain. Since the

Jacobian determinant of ψ1(b, x)

|J1| =

∣∣∣∣ 1 ∂
∂b
ψ1(b, x)

0 ∂
∂x
ψ1(b, x)

∣∣∣∣ =
∂

∂x
ψ(b, x) < 0

for all b, x ∈ D1, andD1 is an open set in R2. Therefore, by the Inverse Function Theorem,

ψ−1
1 exists and is continuously differentiable on ψ1(D1). Since {(b, 0) : b >

√
8
π
} ⊆ ψ1(D1),

therefore ψ−1
1 (b, 0) = (b, R1(b)) is continuously differentiable on ψ1(D1), and then we get

that R1(b) = rb,1 is a continuously differentiable function on {b : b >
√

8
π
}.

Similarly, since the Jacobian determinant of ψ2(b, x)

|J2| =

∣∣∣∣ 1 ∂
∂b
ψ1(b, x)

0 ∂
∂x
ψ1(b, x)

∣∣∣∣ =
∂

∂x
ψ(b, x) > 0

for all b, x ∈ D′
2, where D′

2 = {(b, x) : b >
√

8
π
, x > xb,2} is the interior set of D2. There-

fore, by the Inverse Function Theorem, ψ−1
2 exists and is continuously differentiable on

ψ2(D
′
2). Since {(b, 0) : b >

√
8
π
} ⊆ ψ2(D

′
2), therefore ψ−1

2 (b, 0) = (b, R2(b)) is continuously

differentiable on ψ2(D
′
2), and then we obtain that R2(b) = rb,2 is a continuously differen-

tiable function on {b : b >
√

8
π
}.

Finally, since ψ2 : D2 → R2 is a continuous function. If ψ2 : D2 → R2 is a

one-to-one function, then ψ−1
2 : ψ2(D2) → R2 exists and is continuous on D2. If

ψ2(b1, x1) = ψ2(b2, x2), then b1 = b2, and ψ(b1, x1) = ψ(b1, x2). Since for all fixed

b ≥√( 8
π
), ∂

∂x
ψ(b, x) > 0 for all x > xb,2, and x1, x2 > xb1,2. Therefore ψ(b1, x1) = ψ(b1, x2)

if and only if x1 = x2. It implies that ψ2 : D2 → R2 is one-to-one and then we get that

ψ−1
2 : ψ2(D2) → R2 exists and is continuous. Since {(b, 0) : b ≥

√
8
π
} ⊆ ψ2(D2), therefore

ψ−1
2 (b, 0) = (b, R2(b)) is continuous on ψ2(D2), and then we get that R2(b) = rb,2 is a
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continuous function on {b : b ≥
√

8
π
}. �

Lemma 2.3.

D(b, R1(b)) is negative and strictly decreasing on {b : b >
√

8
π
}. D(b, R2(b)) is positive

and strictly decreasing on {b : b ≥
√

8
π
}.

Proof.

For all b >
√

8
π
,

∂

∂b
D(b, R1(b)) =

∂

∂b
[F1(R1(b)) − F2(bR1(b))]

= f1(R1(b)) × ∂R1(b)

∂b
− f2(bR1(b)) × (R1(b) + b

∂R1(b)

∂b
)

=
∂R1(b)

∂b
[f1(R1(b)) − bf2(bR1(b))] − f2(bR1(b))R1(b) (by (2.3))

= −f2(bR1(b))R1(b) < 0,

and similarly by (2.3),

∂

∂b
D(b, R2(b)) < 0.

Since ∂
∂b
D(b, R1(b)) < 0 and ∂

∂b
D(b, R2(b)) < 0 for all b >

√
8
π
, therefore D(b, R1(b))

and D(b, R2(b)) are strictly decreasing on {b : b >
√

8
π
}. Since D(b, R2(b)) is continuous

on {b : b ≥
√

8
π
}, therefore D(b, R2(b)) is strictly decreasing there.

Next, we will show that D(b, R1(b)) is negative and D(b, R1(b)) is positive. By the

definition of ψ(b, x),

ψ(b, x) > 0 ⇔ ln(
bf2(bx)

f1(x)
) > 0 ⇔ bf2(bx)

f1(x)
> 1

⇔ ∂

∂x
D(b, x) = f1(x) − bf2(bx) < 0,
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∂
∂x
ψ(b, x) < 0 for all x < R1(b) < xb,2, and ψ(b, R1(b)) = 0, we can deduce that ψ(b, x) > 0

for all x ∈ (0, R1(b)). So we know that ∂
∂x
D(b, x) < 0 for all x ∈ (0, R1(b)). Since

limx→0+ D(b, x) = 0 for all b >
√

8
π
, therefore we have proved that

D(b, R1(b)) < lim
x→0+

D(b, x) = 0, ∀b >
√

8

π
.

Similarly, since ∂
∂x
ψ(b, x) > 0 for all x > R2(b) > xb,2 and ψ(b, R2(b)) = 0, therefore

ψ(b, x) > 0 and ∂
∂x
D(b, x) < 0 for all x > R2(b). Since limx→∞D(b, x) = 0 for all b ≥

√
8
π
,

therefore we have proved that

D(b, R2(b)) > lim
x→∞

D(b, x) = 0, ∀b ≥
√

8

π
.

�

By Lemma 2.1 and Lemma 2.3, it is easy to know that :

sup
x>0

|D(b, x)| = max{|D(b, R1(b))|, |D(b, R2(b))|} ∀b >
√

8

π
, (2.4)

sup
x>0

|D(

√
8

π
, x)| = |D(

√
8

π
,R2(

√
8

π
))|, (2.5)

for probit-logit case. According to (2.4) and (2.5), Table 1 is obtained by numerical com-

putation to get more information about the maximum and the maximizer of D(β(p), x)

for all p ≥ 0.5.

According to Table 1, the maximizer is R1(b) for some b and is R2(b) for the others. We

can see that maxx>0 |D(b, x)| is decreasing at first and then increasing, and the maximizer

is R2(b) at first and then is R1(b). By the property of maxx>0D|(b, x)| above, we have

the following theorem to tell us where the mB2 design points are.
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Table 1: maxx>0 |D(β(p), x)| for some p

p b = β(p) R1(b) |D(b, R1(b))| R2(b) |D(b, R2(b))| maximum maximizer
0.5 1.5958 – – 1.7318 0.01767 0.01767 R2(1.5958)
0.55 1.5969 0.0724 < 10−5 1.7350 0.01756 0.01756 R2(1.5969)
0.7 1.6158 0.2912 0.00095 1.7881 0.01581 0.01581 R2(1.6158)
0.8 1.6472 0.4397 0.00362 1.8797 0.01319 0.01319 R2(1.6472)
0.88 1.6957 0.5605 0.00877 2.0249 0.00982 0.00982 R2(1.6957)
0.89 1.7046 0.5758 0.00978 2.0517 0.00929 0.00978 R1(1.7046)
0.9 1.7145 0.5911 0.01092 2.0814 0.00872 0.01092 R1(1.7145)
0.95 1.7901 0.6681 0.01984 2.3058 0.00530 0.01984 R1(1.7901)
0.99 1.9753 0.7292 0.04145 2.8223 0.00139 0.04145 R1(1.9753)

0.9999 2.4765 0.7115 0.09185 4.0519 0.00002 0.09185 R1(2.4765)

Theorem 2.4.

There exists a unique b∗ >
√

8
π

such that |D(b∗, R1(b
∗))| is equal to |D(b∗, R2(b

∗))| and

sup
x>0

|D(b∗, x)| = inf
b≥
√

8/π

sup
x>0

|D(b, x)|

Proof.

First, we prove that there exists a unique b∗ uniquely. AsD(b∗, R1(b
∗)) andD(b∗, R2(b

∗))

are strictly decreasing on {b : b >
√

8
π
}, D(b∗, R1(b

∗)) < 0, and D(b∗, R2(b
∗)) > 0 for all

b >
√

8
π
, therefore ,by the proof of Lemma 3.3, we have that

|D(b, R1(b))| − |D(b, R2(b))| = −D(b, R1(b)) −D(b, R2(b))

is a strictly increasing function. Since

|D(1.6, R1(1.6))| − |D(1.6, R2(1.6))| < 0 and

|D(1.8, R1(1.8))| − |D(1.8, R2(1.8))| > 0,

therefore there exists a unique b∗ ∈ (1.6, 1.8) such that

|D(b∗, R1(b
∗))| − |D(b∗, R2(b

∗))| = 0, i.e. |D(b∗, R1(b
∗))| = |D(b∗, R2(b

∗))|.
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and

|D(b, R1(b))| < |D(b, R2(b))| ∀b ∈ (

√
8

π
, b∗)

|D(b, R1(b))| > |D(b, R2(b))| ∀b ∈ (b∗,∞).

Finally, we will show that b∗ is the minimizer of supx>0 |D(b, x)| for all b ≥
√

8
π
. Since

|D(b, R1(b))| < |D(b, R2(b))| ∀b ∈ (

√
8

π
, b∗),

|D(b, R1(b))| > |D(b, R2(b))| ∀b ∈ (b∗,∞),

|D(b, R1(b))| is strictly increasing on {b : b >

√
8

π
},

|D(b, R2(b))| is strictly decreasing on {b : b ≥
√

8

π
}, and

sup
x>0

|D(

√
8

π
, x)| = |D(

√
8

π
,R2(

√
8/π))|.

Therefore,

sup
x>0

|D(b, x)| = |D(b, R2(b))| > |D(b∗, R2(b
∗))| = max

x>0
|D(b∗, x)| ∀b ∈ [

√
8

π
, b∗)

sup
x>0

|D(b, x)| = |D(b, R1(b))| > |D(b∗, R1(b
∗))| = max

x>0
|D(b∗, x)| ∀b ∈ (b∗,∞)

that is,

max
x>0

|D(b∗, x)| = inf
b≥
√

8/π

sup
x>0

|D(b, x)|.

�

By the theorem above and after using Mathematica for some computation, we obtain

that:

b∗ = 1.7017,

p∗ = 0.8869 which satisfies β(p∗) = b∗ and p ≥ 1
2
, and

inf
b≥
√

8/π

sup
x>0

|D(b, x)| = max
x>0

|D(b∗, x)| = 0.00946.
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It means that the mB2 design for probit and logit models is {x1−p∗ , xp∗} where xp∗ denotes

the (p∗)th quantile of the true model. Moreover, if we choose the wrong model, the

maximum difference between the probabilities of a quantile and its estimation is 0.00946.

2.2 General cases

For the general cases with the standard distributions being any two of F1, F2, F3, and

F4, we only provide some numerical results. Note that

δF,G(p) = sup
x>0

DF,G(βF,G(p), x) + inf
x>0

DF,G(βF,G(p), x).

The figures in Appendix C show the similarities of the properties in these cases. For

instance, when p > 1
2
, δ(p) is strictly monotone, and the maximum of |D(b, x)| is smaller

as δ(p) is closer to 0. Now the question become to find the unique root of δ(p) for p > 1
2
.

In many works, Newton’s Method is used to find roots, but it is not useful here since the

derivatives of δ(p) is hard to solved. We provide a numerical bisection method to find the

corresponding mB2 design for arbitrary two models with standard distributions F and G,

where F and G are two of F1, F2, F3, or F4.

Step 1: Find p2,0 > p1,0 >
1
2

such that

δF,G(p1,0) × δF,G(p2,0) ≤ 0.

Step 2: Let p3,n =
p1,n+p2,n

2
, and

(p1,n+1, p2,n+1) =

{
(p1,n, p3,n) if δF,G(p1,0) × δF,G(p3,0) ≤ 0,
(p3,n, p2,n) otherwise.

Step 3: Repeat Step 2 until p2,n − p1,n is small enough. Let p∗n =
p2,n+p1,n

2
. Then the

approximate mB2 design is ξ∗n

ξ∗n =

{
x1−p∗n xp∗n
1
2

1
2

}
.
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By using this method, we find the approximate mB2 designs in Table 2 when the

possible models are from two of the four families with standard distributions F1, F2, F3,

or F4.

Table 2: The mB2 designs for some cases
Distributions p∗ b∗ = β(p∗) maxx∈RD(b∗, x)

F1, F2 0.8869 1.7017 0.00946
F1, F3 0.8386 1.1437 0.02821
F1, F4 0.8362 2.0963 0.07524
F2, F3 0.8126 0.6690 0.01978
F2, F4 0.8293 1.2204 0.06702
F3, F4 0.8423 1.8808 0.05095

The method above is just a way to find the mB2 design. If the choices of p1,0 and p2,0

are both close to p∗, then this method is quite efficient. From the numerical computations,

it indicates that p∗ is usually in (0.8, 0.9). If there are any other two distributions which

have similar properties as the above cases, it is advised to choose b1,0 = 0.8 and b2,0 = 0.9

at first.
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3 Efficiencies and biases comparisons

Suppose that there is a design ξ,

ξ =

{
x1 x2 . . . xn

p1 p2 . . . pn

}
, where pi > 0 ∀i = 1, 2, . . . n and

n∑
i=1

pi = 1,

and the model is from a symmetric location and scale family with standard distribution

F . Then the information matrix for estimating µ and σ is

M =

n∑
i=1

pi

Fi(1 − Fi)

(
(∂Fi

∂µ
)2 (∂Fi

∂µ
)(∂Fi

∂σ
)

(∂Fi

∂µ
)(∂Fi

∂σ
) (∂Fi

∂σ
)2

)
, where Fi = F (

xi − µ

σ
).

Note that the D- and A-efficiencies of design ξ is

D-efficiency(ξ) =
det(Mξ)

det(MD)
, A-efficiency(ξ) =

tr(M−1
A )

tr(M−1
ξ )

,

where MD and MA are the information matrices of the D- and A-optimal designs respec-

tively under the true model.Let ξDi
and ξAi

are the D- and A-optimal designs respectively,

and Di- and Ai-efficiencies are D- and A-efficiencies respectively when the true model is

with standard distribution Fi, i = 1 . . . 4. We compare the mB2 design with the D- and

A- optimal designs under the D- and A-optimality criteria. Next, we do some numeri-

cal works and simulations. First, we compute the probability bias of qth quantile as the

number of observations N → ∞, i.e.

bias∞(q) = q − F (G−1(q;µ0;
σ0

βF,G(p)
);µ0, σ0),

where F ( · ;µ0, σ0) is the true model, and G( · ;µ0;
σ0

βF,G(p)
) is the assumed model, where

{x1−p, xp} are the design points. Also, we point out the maximum and the minimum of

bias∞(q) for all q > 0.5, say qM and qm respectively, from each design to compare the

maximum probability bias. Next, we simulate 1000 times with 1000 observations each
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time to compute the probability biases and mean square errors of some qth quantiles.

That is, for q ∈ (1
2
, 1), the bias and MSE are computed by

bias1000(q) = q − 1

1000

1000∑
n=1

F (x̃q,n),

MSE1000(q) =
1

1000

1000∑
n=1

(q − F (x̃q,n))2,

where x̃q,n = µ̂+ σ̂G−1(q) and µ̂ and σ̂ are the MLEs.

3.1 The probit and logit case

Suppose that the true model is probit or logit with mean 0 and variance 1. The effi-

ciencies of mB2 design, D-, and A-optimal designs for these two models are presented in

Table 3. We can see that the mB2 design is not bad under the assumed model. The effi-

ciencies of the mB2 design are greater than 98% under the probit model, and are greater

than 76% under the logit model.

Table 3: Comparison of efficiencies for probit-logit case
design p weight D1-eff. A1-eff. D2-eff. A2-eff.
mB2 (0.113, 0.887) (0.5, 0.5) 99.17% 98.35% 85.15% 76.79%
D1 (0.128, 0.872) (0.5, 0.5) 100% 99.73% 91.35% 82.84%
A1 (0.138, 0.862) (0.5, 0.5) 99.63% 100% 94.70% 86.61%
D2 (0.176, 0.824) (0.5, 0.5) 92.85% 96.65% 100% 96.62%
A2 (0.214, 0.786) (0.5, 0.5) 80.53% 87.85% 95.52% 100%

When the true model is logit but the assumed model is probit, mB2, D1-, and A1-

optimal designs are compared and the results are presented in Table 3 - Table 5. We can

see that the maximum probability bias from the mB2 design is smaller than that of the

others but the mean square errors are not outstanding.
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Table 4: Bias and MSE on the mB2 design under logit model with misspecified probit
link function

q xq x̃q F2(x̃q) bias∞(q) x̃q F2(x̃q) bias1000

√
MSE1000

0.51 0.0221 0.0235 0.5107 -0.0007 0.0258 0.5117 -0.0017 0.0227
0.55 0.1106 0.1179 0.5533 -0.0033 0.1200 0.5541 -0.0041 0.0228
0.6 0.2235 0.2377 0.6061 -0.0061 0.2395 0.6067 -0.0067 0.0229

0.7160qm 0.5098 0.5358 0.7255 -0.0095 0.5370 0.7255 -0.0095 0.0216
0.8 0.7643 0.7896 0.8072 -0.0072 0.7903 0.8069 -0.0069 0.0179
0.9 1.2114 1.2024 0.8985 0.0015 1.2023 0.8979 0.0021 0.0116

0.9795qM
2.1318 1.9169 0.9700 0.0095 1.9153 0.9696 0.0099 0.0111

0.99 2.5334 2.1826 0.9813 0.0087 2.1805 0.9809 0.0091 0.0097

Table 5: Bias and MSE on the D1-optimal design under logit model with misspecified
probit link function

q xq x̃q F2(x̃q) bias∞(q) x̃q F2(x̃q) bias1000

√
MSE1000

0.51 0.0221 0.0234 0.5106 -0.0006 0.0238 0.5108 -0.0008 0.0207
0.55 0.1106 0.1171 0.5529 -0.0029 0.1174 0.5529 -0.0029 0.0209
0.6 0.2235 0.2360 0.6054 -0.0054 0.2361 0.6053 -0.0053 0.0211

0.7085qm 0.4896 0.5115 0.7166 -0.0081 0.5113 0.7162 -0.0076 0.0205
0.8 0.7643 0.7840 0.8056 -0.0056 0.7835 0.8050 -0.0050 0.0173
0.9 1.2114 1.1938 0.8971 0.0029 1.1928 0.8963 0.0037 0.0125

0.9776qM
2.0818 1.8690 0.9674 0.0102 1.8672 0.9668 0.0108 0.0121

0.99 2.5334 2.1670 0.9807 0.0093 2.1648 0.9803 0.0097 0.0104

Table 6: Bias and MSE on the A1-optimal design under logit model with misspecified
probit link function

q xq x̃q F2(x̃q) bias∞(q) x̃q F2(x̃q) bias1000

√
MSE1000

0.51 0.0221 0.0232 0.5105 -0.0005 0.0235 0.5106 -0.0006 0.0206
0.55 0.1106 0.1165 0.5526 -0.0026 0.1170 0.5528 -0.0027 0.0207
0.6 0.2235 0.2349 0.6049 -0.0049 0.2356 0.6051 -0.0051 0.0209

0.7032qm 0.4756 0.4947 0.7104 -0.0072 0.4959 0.7105 -0.0073 0.0204
0.8 0.7643 0.7804 0.8046 -0.0046 0.7821 0.8046 -0.0046 0.0172
0.9 1.2114 1.1884 0.8962 0.0038 1.1909 0.8960 0.0040 0.0127

0.9763qM
2.0500 1.8392 0.9656 0.0107 1.8429 0.9654 0.0109 0.0124

0.99 2.5334 2.1572 0.9804 0.0096 2.1616 0.9802 0.0098 0.0105
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On the other hand, when the true model is probit but the assumed model is logit, mB2,

D2-, and A2-optimal designs are compared and the results are presented in Appendix D.

The outcomes are similar that the maximal probability bias of the mB2 design is the

smallest and the mean square errors from that is not outstanding.

3.2 The probit and double reciprocal case

The F1-F4 case is considered in this subsection since the min-max difference between

these two models is larger than that in the other 5 cases. Suppose that the true model

is probit or double reciprocal with location parameter 0 and scale parameter 1. The

efficiencies of mB2 design, D-, and A-optimal designs for these two models are presented

in Table 7. The D4- and A4-efficiencies of mB2, D1-, and A1-optimal designs are poor,

and the D1- and A1-efficiencies from D4- and A4-optimal designs are not acceptable.

Table 7: Comparison of efficiencies for F1-F4 case

design p weight D1-eff. A1-eff. D4-eff. A4-eff.
mB2 (0.164, 0.836) (0.5, 0.5) 95.79% 98.40% 7.94% 30.90%
D1 (0.128, 0.872) (0.5, 0.5) 100% 99.73% 3.29% 15.48%
A1 (0.138, 0.862) (0.5, 0.5) 99.63% 100% 4.34% 19.28%
D4 (0.207, 0.5, 0.793) (0.262, 0.478, 0.262) 49.28% 59.90% 100% 78.00%
A4 (0.207, 0.5, 0.793) (0.401, 0.198, 0.401) 70.28% 79.64% 71.80% 100%

In many cases, we use probit link function when we do not know what the true model is.

In the case when the true model is double reciprocal, mB2, D1-, and A1-optimal designs

are compared and the results are presented in Appendix E. We can see that although the

maximum probability bias from mB2 design is the best one, but it is still poor. It would

be better to discriminate the model first.
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4 Discussions and conclusions

In many binary experiments, we may not know exactly what the true model is. If

the assumed model is incorrect, the true qth quantile may be distant from its estimation

for some q. In this work, we introduce a criterion evaluating the closeness between two

distributions by the CDF differences between them. We use this criterion to define the

mB2 design for two possible models. In other words, the maximum probability bias of

qth quantile estimation for all q ∈ (0, 1) of the mB2 design reaches the minimum as the

number of observations N goes to infinity. A numerical method is also given to find the

mB2 design points in the general cases.

For probit-logit case, it is observed that when the assumed model is the correct one,

the efficiencies of the mB2 design is not bad. The D- and A-efficiencies of mB2 design

are more than 98% when the true model is the probit and are more than 76% when the

true model is the logit. If the model is incorrect, the maximal probability bias of the mB2

design as N → ∞ is smaller than those by other designs, but the mean square errors by

the mB2 design are not outstanding. For F1-F4 case, the efficiencies of each of the design

discussed here is not good if the design is not correctly specified, but the efficiencies of

the mB3 design, which is discussed in Appendix F, are acceptable for each model, the Di-

and Ai-efficiencies are more than 78% for i = 1, 4. If the true model is F4 but we use F1,

then the maximum probability bias of mB2 or mB3 design as N → ∞ is the smallest, but

is still greater than 7%. This indicates the seriousness of using a misspecified link model

in quantile estimation.

Since we can not discriminate the models discussed here by any two-points designs or

symmetric three-points designs, therefore the probability bias of the quantile estimations
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may be very large, for instance, when the true model is F4 but we use F1. For avoiding

this kind of mistakes in quantile estimation, a procedure is recommended as follows.

Step 1. Using model discrimination designs first, sequential design approach following

that by Muller and Ponce de Leon (1996) can be considered.

Step 2. If there is a model clearly classified to be suitable, then we may perform some

further experiments using the optimal design under that model later. Otherwise,

it would be better to use the mB2 or the mB3 design for the smallest maximal

probability bias depending on the results from the first step.

In the future, it would be of interest to find the minimum mean square error design

with model uncertainty in mind. Moreover, sometimes we only care whether the extreme

quantiles are estimated with high accuracy, such as in the pyrotechnics experiments. We

may try to find an optimal design which minimizes the maximum bias of the probabilities

with interval restrictions. Finally, for some experiments, the possible models may not be

symmetric, the minimum bias designs for these cases can also be considered.
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A The convergence of MLEs for two-points designs

with a misspecified link model

Let the true model be F ( · ;µ0, σ0) and the assumed model be G( · ;µ1, σ1) where µi

and σi are unknown parameters, i=0 or 1. Consider a two-points design ξ with sample

size N , and supports at x1, x2 corresponding weights N1

N
, N2

N
respectively.

ξ =

{
x1 x2
N1

N
N2

N

}
, where N1, N2 ∈ N, and N1 +N2 = N .

Let Si be the number of responses observing 1 at xi in Ni runs, i = 1 or 2. Then

Si ∼ B(Ni, F (
xi − µ0

σ0

)), i = 1 or 2.

The log likelihood function of the assumed model is

lnL = S1 lnG1 + (N1 − S1) ln(1 −G1) + S2 lnG2 + (N2 − S2) ln(1 −G2),

where G1 = G(x1−µ1

σ1
) and G2 = G(x2−µ1

σ1
). Then by the following equations,

∂

∂µ1
lnL =

g1

σ1
(
1 − S1/N1

1 −G1
− S1/N1

G1
) +

g2

σ1
(
1 − S2/N2

1 −G2
− S2/N2

G2
),

∂

∂σ1
lnL =

g1(x1 − µ1)

σ2
1

(
1 − S1/N1

1 −G1
− S1/N1

G1
) +

g2(x2 − µ1)

σ2
1

(
1 − S2/N2

1 −G2
− S2/N2

G2
).

where gi = G′
i. The MLEs of µ1 and σ1, say µ̂1 and σ̂1, should satisfy the following

equations, {
1−S1/N1

1−G1
− S1/N1

G1
= 0

1−S2/N2

1−G2
− S2/N2

G2
= 0

which in turn implies: {
S1

N1
= G(x1−µ̂1

σ̂1
)

S2

N2
= G(x1−µ̂1

σ̂1
)

and {
µ̂1 = x1G−1(S2/N2)−x2G−1(S1/N1)

G−1(S2/N2)−G−1(S1/N1)

σ̂1 = x2−x1

G−1(S2/N2)−G−1(S1/N1)
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According to the following Theorem in Roussas (1997), we could show that µ̂1 and σ̂1

would be convergent almost surely.

Theorem A.1. If for j = 1, . . . , k,X
(j)
n ,n ≥ 1, and X(j) are r.v.’s, and g : Rk → R

is continuous, so that g(X
(1)
n , . . . , X

(k)
n ) and g(X(1), . . . , X(k)) are r.v.’s, then X

(j)
n → Xj

almost surely for j = 1, . . . , k imply g(X
(1)
n , . . . , X

(k)
n ) → g(X(1), . . . , X(k)) almost surely.

Let F (xi−µ0

σ0
) = pi for i = 1 or 2. By Theorem A.1., since Si

Ni
→ pi almost surely by

the Strong Law of Large Number and xi = µ0 + σ0F
−1(pi) for i = 1 or 2, therefore

µ̂1 → [µ0 + σ0F
−1(p1)]G

−1(p2) − [µ0 + σ0F
−1(p2)]G

−1(p1)

G−1(p2) −G−1(p1)

= µ0 +
σ0[F

−1(p1)G
−1(p2) − F−1(p2)G

−1(p1)]

G−1(p2) −G−1(p1)
and

σ̂1 → [µ0 + σ0F
−1(p2)] − [µ0 + σ0F

−1(p1)]

G−1(p2) −G−1(p1)
= σ0

F−1(p2) − F−1(p1)

G−1(p2) −G−1(p1)

almost surely as N1, N2 → ∞.

Particularly, when x1 and x2 are equal to x1−p and xp respectively for some p �= 1
2

and

N1 = N2 = N
2
, then

µ̂1 → µ0 and σ̂1 → σ0
F−1(p)

G−1(p)

almost surely as N → ∞.
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B Properties of the scale function βF,G(p) and the dis-

tance function DF,G(b, x)

In Appendix B, the main goal is to present some properties about βF,G(p) andDF,G(b, x)

where F and G are standard distributions from certain symmetric location and scale

families. According to Figure 1, β function appears to be symmetric and continuously

differentiable, and the maximum value of |D(b, x)| for all x ∈ R seems to be equal to the

maximum value of |D(b, x)| for x > 0. We will verify these theoretically in this section.

More specifically, we discuss some specific properties for the probit-logit case. In general,

these two functions for any two of the possible models from the four families given above

have similar properties.

In the following, we assume all of the possible models are from symmetric location and

scale families.
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Figure 1: (a):graph of βF1,F2(p). (b):graph of DF1,F2(1.8, x).

Lemma B.1.

Suppose F and G are two standard distributions of possible models. Then for all p in

(0, 1), βF,G(p) is equal to βF,G(1 − p).
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Proof.

It is trivial when p = 1
2
. Since

F−1(p) = −F−1(1 − p), G−1(p) = −G−1(1 − p), and F−1(p) �= 0.

for all p in (0, 1) and p �= 1
2
. Therefore,

βF,G(p) =
G−1(p)

F−1(p)
=
G−1(1 − p)

F−1(1 − p)
= βF,G(1 − p).

�

Theorem B.2.

βF,G(p) is continuously differentiable on (0, 1) except 1
2
. If the densities of F and G are

continuous and limp→1/2 β
′
F,G(p) exists, limp→1/2 β

′
F,G(p) = 0 and βF,G(p) is continuously

differentiable on (0, 1).

Proof.

First, we show that if limp→1/2 β
′
F,G(p) exists then it is equal to 0. Suppose limp→1/2 β

′
F,G(p)

exists and equal to t ∈ R. By Lemma 2.1, we conclude that βF,G(p) = βF,G(1 − p), so

βF,G(1
2

+ h) = βF,G(1
2
− h) for all h ∈ (0, 1

2
). It implies

β ′
F,G(

1

2
+ h) = lim

k→0

βF,G(1/2 + h+ k) − βF,G(1/2 + h)

k

= lim
k→0

βF,G(1/2 − h− k) − βF,G(1/2 − h)

k

= − lim
k→0

βF,G(1/2 − h− k) − βF,G(1/2 − h)

−k = −β ′
F,G(

1

2
− h).

Therefore,

t = lim
h→0+

β ′
F,G(

1

2
+ h) = lim

p→1/2
β ′

F,G(p) = lim
h→0−

β ′
F,G(

1

2
− h) = −t.
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It means that t must be 0.

Next, we show the continuously differentiation. Since F ′(x) and G′(x) are continuous

and greater than 0 for all x ∈ R, by Inverse Function Theorem, F−1(p) and G−1(p) are

continuously differentiable on (0, 1). Also, F−1(p) �= 0 for all p ∈ (0, 1) except 1
2
, therefore

βF,G(p) = G−1(p)
F−1(p)

is continuously differentiable for all p ∈ (0, 1) except 1
2
.

By the definition of the differentiation,

β ′
F,G(

1

2
) = lim

h→0

βF,G(1
2

+ h) − b0

h
,

where b0 = limx→1/2. Since

lim
h→0

h = 0 and lim
h→0

[ βF,G(
1

2
+ h) − b0 ] = b0 − b0 = 0.

Therefore,

β ′
F,G(

1

2
) = lim

h→0

β ′
F,G(1

2
+ h) − 0

1
= lim

p→ 1
2

β ′
F,G(p) by L’Hospital’s Rule.

It implies that βF,G(p) is continuously differentiable at 1
2
. So βF,G(p) is continuously dif-

ferentiable on (0, 1). �

Corollary B.3.

Let β(p) = βF1,F2(p), where F1 and F2 are standard normal and logistic distributions

respectively. Then β ′(p) is continuously differentiable on (0, 1).

Proof.

Since the densities of F1 and F2 are continuous, therefore we only need to show that

limp→1/2 β
′(p) exists. Let xp = F−1(p),

β ′(p) =
F−1

2 (p)′

F−1
1 (p)

− F−1
2 (p)F−1

1 (p)′

(F−1
1 (p))2

=
1

p(1 − p)f1(xp)
η0(p),
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for all p in (0, 1) except 1
2
, where

η0(p) =
xpf1(xp) − (ln p

1−p
)p(1 − p)

x2
p

.

Since limp→ 1
2

1
p(1−p)f1(xp)

= 4
√

2π ∈ R, therefore limp→ 1
2
β ′(p) exists if limp→ 1

2
η0(p) exists.

lim
p→ 1

2

η0(p) = lim
p→ 1

2

xpf1(xp) − (ln p
1−p

)p(1 − p)

x2
p

= lim
x→0

xf1(x) − (ln F1(x)
1−F1(x)

)F1(x)[1 − F1(x)]

x2
(
0

0
)

(by L’Hospital’s Rule)

= lim
x→0

−x2f1(x) − (ln F1(x)
1−F1(x)

)[f1(x) − 2f1(x)F1(x)]

2x
(
0

0
)

(by L’Hospital’s Rule)

= lim
x→0

1

2
{−2xf1(x) + x3f1(x) − (ln

F1(x)

1 − F1(x)
)f1(x)[x− 2f1(x)

2 − 2xf1(x)F1(x)]

− f1(x)

F1(x)(1 − F1(x))
f1(x)[1 − 2F1(x)]} = 0.

It implies that limp→ 1
2
η0(p) exists and β(p) is continuously differentiable on (0, 1). �

Corollary B.4.

Let β(p) = βF1,F2(p), where F1 and F2 are standard normal and logistic distributions.

Then β(p) is a strictly increasing function on p ∈ [1
2
, 1), and β : [1

2
, 1) → [

√
8
π
,∞) is a

one-to-one and onto function.

Proof.

For all p in (1
2
, 1),

β ′(p) =
F−1

2 (p)′

F−1
1 (p)

− F−1
2 (p)F−1

1 (p)′

(F−1
1 (p))2

=
F−1

2 (p)′

(F−1
1 (p))2

η1(p),
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where

η1(p) = F−1
1 (p) − F−1

2 (p)F−1
1 (p)′

F−1
2 (p)′

.

Let f1 = F ′
1 xp = F−1

1 (p). According to Inverse Function Theorem, we have

η1(p) = xp − [ ln(p) − ln(1 − p) ]
p(1 − p)

f1(xp)
.

Because
F−1

2 (p)′

(F−1
1 (p))2

> 0 for all p in (1
2
, 1), β(p) is strictly increasing on p ∈ (1

2
, 1) if η1(p) > 0.

If we can show that the infimum of η1(p) on p ∈ (1
2
, 1) is greater than 0, then this

property is proved. It is easy to show that

η′1(p) =
1

f1(xp)
− (

1

p
− 1

1 − p
)
p(1 − p)

f1(xp)
+

(ln(p) − ln(1 − p))(1 − 2p− (p− p2)xp)

f1(xp)

=
(ln(p) − ln(1 − p))(1 − 2p− (p− p2)xp)

f1(xp)

≥ (ln(p) − ln(1 − p))

f1(xp)
× η2(p)

for all p ∈ (1
2
, 1), where

η2(p) = 1 − 2p− (1 − p)xp.

Because ln(p)−ln(1−p)
f1(xp)

> 0 and limp→ 1
2
η1(p) = 0, now we should show that η2(p) > 0 for all

p ∈ (1
2
, 1), so that η1(p) > 0.

Let

η3(u) = η2(F1(u)), ∀u > 0.

Since there exists a u > 0 such that F1(u) = p for all p ∈ (1
2
, 1), we have η2(p) > 0 for all

p ∈ (1
2
, 1) if we claim that η3(u) > 0 for all u > 0. By the definition of η3(u),

η′3(u) = 2f1(u) − 1 + F1(u) + f1(u)u,

η′′3(u) = f1(u)(−u2 − 2u+ 2).
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Let u0 =
√

3 − 1, then

η′′3 (u) > 0 and η′3(u) is increasing when u ∈ (0, u0),

η′′3 (u) = 0 and η′3(u0) is the maximum,

η′′3 (u) < 0 and η′3(u) is decreasing when u ∈ (u0,∞).

Since limu→0+ η′3(u)
.
= 0.297885, and limu→∞ η′3(u) = 0, therefore η′3(u) > 0 for all u > 0.

So we have that

η3(u) > η3(0) = 0, for all u > 0.

Now, we have proved that β(p) is strictly increasing on p ∈ (1
2
, 1). Because of the

continuity of β(p) on p ∈ [1
2
, 1), β(p) is strictly increasing on p ∈ [1

2
, 1).

Moreover, because β(1
2
) =

√
8
π
, limp→∞ β(p) = ∞ and β(p) is continuous and strictly

increasing on [1
2
, 1), β : [1

2
, 1) → [

√
8
π
,∞) is a one-to-one and onto function. �

Theorem B.5.

Suppose F and G are standard distributions of possible models. Then for all b > 0,

supx∈R |DF,G(b, x)| = supx>0 |DF,G(b, x)|.

Proof.

Since F and G are symmetric at 0, therefore F (x) = 1−F (−x) andG(bx) = 1−G(−bx)
for all b > 0 and x ∈ R. It implies that

|DF,G(b, x)| = |F (x) −G(bx)| = |F (−x) −G(−bx)| = DF,G(p,−x).

So supx∈R |DF,G(p, x)| = supx≥0 |DF,G(p, x)|.
Since F (0) =G(0)= 1

2
, therefore |DF,G(b, 0)| = 0 for all b > 0, and |D(b, x)| ≥ 0 for all
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b > 0 and x > 0, So

sup
x∈R

|DF,G(b, x)| = sup
x≥0

|DF,G(b, x)| = sup
x>0

|DF,G(b, x)|

�
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C Figures of difference between two models
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Figure 2: F1(x) − F2(βF1,F2(p)x) for p = 0.7, p = 0.88, and p = 0.95
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Figure 3: F1(x) − F3(βF1,F3(p)x) for p = 0.7, p = 0.84, and p = 0.95
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Figure 4: F1(x) − F4(βF1,F4(p)x) for p = 0.7, p = 0.83, and p = 0.95
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Figure 5: F2(x) − F3(βF2,F3(p)x) for p = 0.7, p = 0.81, and p = 0.95
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Figure 6: F2(x) − F4(βF2,F4(p)x) for p = 0.7, p = 0.86, and p = 0.95
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Figure 7: F3(x) − F4(βF3,F4(p)x) for p = 0.75, p = 0.88, and p = 0.95
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D Tables for probit being the true model with logit

link function

Table 8: Bias and MSE on the mB2 design for F1 and F2

q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0251 0.0235 0.5094 0.0006 0.0246 0.5098 0.0002 0.0230
0.55 0.1257 0.1179 0.5469 0.0031 0.1187 0.5472 0.0028 0.0230
0.6 0.2533 0.2383 0.5942 0.0058 0.2387 0.5942 0.0058 0.0234

0.7255qM
0.5993 0.5711 0.7160 0.0095 0.5705 0.7154 0.0100 0.0238

0.8 0.8416 0.8146 0.7924 0.0076 0.8134 0.7914 0.0086 0.0217
0.9 1.2816 1.2912 0.9017 -0.0017 1.2885 0.9004 -0.0004 0.0150

0.9700qm 1.8808 2.0431 0.9795 -0.0095 2.0382 0.9785 -0.0085 0.0105
0.99 2.3264 2.7002 0.9965 -0.0065 2.6934 0.9962 -0.0062 0.0064

Table 9: Bias and MSE on the D2-optimal design
q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0251 0.0241 0.5096 0.0004 0.0239 0.5095 0.0005 0.0198
0.55 0.1257 0.1210 0.5482 0.0018 0.1208 0.5480 0.0020 0.0200
0.6 0.2533 0.2445 0.5966 0.0034 0.2443 0.5964 0.0036 0.0203

0.6876qM
0.4891 0.4757 0.6829 0.0047 0.4755 0.6825 0.0051 0.0207

0.8 0.8416 0.8358 0.7984 0.0016 0.8356 0.7978 0.0022 0.0192
0.9 1.2816 1.3248 0.9074 -0.0074 1.3245 0.9065 -0.0065 0.0159

0.9598qm 1.7484 1.9136 0.9722 -0.0124 1.9133 0.9713 -0.0115 0.0137
0.99 2.3264 2.7705 0.9972 -0.0072 2.7702 0.9969 -0.0069 0.0071

Table 10: Bias and MSE on the A2-optimal design using logit model
q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0251 0.0244 0.5097 0.0003 0.0251 0.5100 -1.6 × 10−5 0.0186
0.55 0.1257 0.1223 0.5487 0.0013 0.1229 0.5489 0.0011 0.0187
0.6 0.2533 0.2470 0.5976 0.0024 0.2476 0.5977 0.0023 0.0190

0.6653qM
0.4270 0.4186 0.6622 0.0031 0.4190 0.6622 0.0031 0.0195

0.8 0.8416 0.8446 0.8008 -0.0008 0.8447 0.8003 -0.0003 0.0190
0.9 1.2816 1.3387 0.9097 -0.0097 1.3383 0.9087 -0.0087 0.0172

0.9551qm 1.6965 1.8624 0.9687 -0.0137 1.8616 0.9677 -0.0126 0.0152
0.99 2.3264 2.7997 0.9974 -0.0074 2.7980 0.9971 -0.0071 0.0072
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E Tables for double-reciprocal being the true model

with probit link

Table 11: Bias and MSE on the mB2 design for F1 and F4

q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0204 0.0526 0.5250 -0.0150 0.0536 0.5231 -0.0131 0.0448
0.55 0.1111 0.2635 0.6043 -0.0543 0.2648 0.6021 -0.0521 0.0614

0.6238qm 0.3291 0.6614 0.6991 -0.0752 0.6635 0.6982 -0.0744 0.0769
0.7 0.6667 1.0995 0.7618 -0.0618 1.1022 0.7615 -0.0615 0.0628
0.8 1.5000 1.7646 0.8191 -0.0191 1.7685 0.8190 -0.0190 0.0208
0.9 4.0000 2.6869 0.8644 0.0356 2.6924 0.8643 0.0357 0.0361
0.95 9.0000 3.4486 0.8876 0.0624 3.4554 0.8876 0.0624 0.0626

0.9876qM
40.152 4.7217 0.9124 0.0752 5.7147 0.9124 0.0752 0.0754

Table 12: Bias and MSE on the D1-optimal design
q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0204 0.0643 0.5302 -0.0202 0.0603 0.5249 -0.0149 0.0563
0.55 0.1111 0.3224 0.6219 -0.0719 0.3185 0.6167 -0.0667 0.0781

0.6286qm 0.3463 0.8420 0.7286 -0.1000 0.8383 0.7264 -0.0978 0.1001
0.7 0.6667 1.3456 0.7868 -0.0868 1.3421 0.7856 -0.08562 0.0868
0.8 1.500 2.1596 0.8418 -0.0418 2.1564 0.8411 -0.0411 0.0420
0.9 4.0000 3.2885 0.8834 0.0166 3.2857 0.8831 0.0169 0.0179
0.95 9.0000 4.2207 0.9042 0.0458 4.2183 0.9040 0.0460 0.0462

0.9902qM
49.761 5.9839 0.9284 0.0617 5.9822 0.9282 0.0619 0.0620

Table 13: Bias and MSE on the A1-optimal design
q xq x̃q F1(x̃q) bias∞(q) x̃q F1(x̃q) bias1000

√
MSE1000

0.51 0.0204 0.0604 0.5285 -0.0185 0.0694 0.5291 -0.0191 0.0529
0.55 0.1111 0.3030 0.6163 -0.0663 0.3112 0.6154 -0.0654 0.0747

0.6276qm 0.3426 0.7848 0.7199 -0.0923 0.7915 0.7195 -0.0919 0.0940
0.7 0.6667 1.2644 0.7792 -0.0792 1.2695 0.7789 -0.0789 0.0800
0.8 1.5000 2.0292 0.8349 -0.0349 2.0319 0.8347 -0.0347 0.0356
0.9 4.0000 3.0900 0.8777 0.0223 3.0892 0.8775 0.0225 0.0232
0.95 9.0000 3.9658 0.8993 0.0507 3.9624 0.8991 0.0509 0.0511

0.9894qM
46.170 5.5560 0.9237 0.0657 5.5475 0.9235 0.0659 0.0660



Appendix 41

F Some further works about mB3 design for the pro-

bit and double reciprocal case

Since D4- and A4-optimal designs have 3 points and they seems to be more efficient

than others. We guess that the mB3 design,which is adding x 1
2

into the mB2 design,

would more efficient. Let mB3 design is

ξ∗3 =

{
x1−p x 1

2
xp

q∗ 1 − 2q∗ q∗

}
,

where q∗ = max
q≤0.5

min{Di-efficiency, Ai-efficiency, i = 1, 4}.

By some numerical computation, we can find q∗ = 0.3663 and the efficiencies of mB3

design for F1-F4 case. By comparison of Table 7 and Table 14, mB3 design is better than

others.

Table 14: Efficiencies of mB3 deisgn
design D1-eff. A1-eff. D4-eff. A4-eff.
mB3 78.22% 86.62% 95.97% 78.22%



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


