
The Kolmogorov Goodness-of-Fit Test
(Kolmogorov-Smirnov one-sample test)

Introduction

• A test for goodness of fit usually involves examining a random sample
from some unknown distribution in order to test the null hypothesis
that the unknown distribution function is in fact a known, specified
function.

• We usually use Kolmogorov-Smirnov test to check the normality as-
sumption in Analysis of Variance.

• A random sample X1, X2, . . . , Xn is drawn from some population
and is compared with F ∗(x) in some way to see if it is reasonable to
say that F ∗(x) is the true distribution function of the random sample.

• One logical way of comparing the random sample with F ∗(x) is by
means of the empirical distribution function S(x)
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Definition Let X1, X2, . . . , Xn be a random sample. The empiri-
cal distribution function S(x) is a function of x, which equals the
fraction of Xis that are less than or equal to x for each x, −∞<x<∞,
i.e

S(x) =
1

n

n∑

i=1
I{xi≤x}

• The empirical distribution function S(x) is useful as an estimator of
F (x), the unknown distribution function of the Xis.

• We can compare the empirical distribution function S(x) with hy-
pothesized distribution function F ∗(x) to see if there is good agree-
ment.

• One of the simplest measures is the largest distance between the two
functions S(x) and F ∗(x),measured in a vertical direction.This is the
statistic suggested by Kolmogorov (1933).
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Kolmogorov-Smirnov test (K-S test)

• The data consist of a random sample X1, X2, . . . , Xn of size n asso-
ciated with some unknown distribution function,denoted by F (x)

• The sample is a random sample

• Let S(x) be the empirical distribution function based on the random
sample X1, X2, . . . , Xn. Let F ∗(x) be a completely specified hypoth-
esized distribution function

• Let the test statistic T be the greatest (denoted by ”sup” for supre-
mum) vertical distance between S(x) and F ∗(x).In symbols we say

T = sup
x

| F ∗(x) − S(x) |
For testing

H0 : F (x) = F ∗(x) for all x from −∞ to ∞
H1 : F (x) �= F ∗(x) for at least one value of x

3



If T exceeds the 1-α quantile as given by Table then we reject H0 at
the level of significance α. The approximate p-value can be found by
interpolation in Table.

Example

A random sample of size 10 is obtained: X1 = 0.621, X2 = 0.503, X3 =
0.203, X4 = 0.477, X5 = 0.710, X6 = 0.581, X7 = 0.329, X8 = 0.480, X9 =
0.554, X10 = 0.382.The null hypothesis is that the distribution function
is the uniform distribution function whose graph in Figure 1.The math-
ematical expression for the hypothesized distribution function is

F ∗(x) =




0, if x < 0
x, if 0 ≤ x < 1
1, if 1 ≤ x

Formally , the hypotheses are given by

H0 : F (x) = F ∗(x) for all x from −∞ to ∞
H1 : F (x) �= F ∗(x) for at least one value of x
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where F (x) is the unknown distribution function common to the Xis
and F ∗(x) is given by above equation.
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Figure 1

The Kolmogorov test for goodness of fit is used.The critical region of
size α = 0.05 corresponds to values of T greater than the 0.95 quantile
0.409,obtained from Table for n=10.

The value of T is obtained by graphing the empirical distribution func-
tion S(x) on the top of the hypothesized distribution function F ∗(x),as
shown in Figure 2.The largest vertical distance separating the two graphs
in Figure 2 is 0.290,which occurs at x = 0.710 because S(0.710) = 1.000
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and F ∗(0.710) = 0.710.In other words,

T = sup
x

| F ∗(x) − S(x) |
= | F ∗(0.710) − S(0.710) |
= 0.290

Since T=0.290 is less than 0.409,the null hypothesis is accepted.The p-
value is seen,from Table,to be larger than 0.20.
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Table (Quantiles of the Kolmogorov Test Statistic)

n p=0.80 p=0.90 p=0.95 p=0.98 p=0.99
1 0.900 0.950 0.975 0.990 0.995
2 0.684 0.776 0.842 0.900 0.929
3 0.565 0.636 0.708 0.785 0.829
4 0.493 0.565 0.624 0.689 0.734
5 0.447 0.509 0.563 0.627 0.669
6 0.410 0.468 0.519 0.577 0.617
7 0.381 0.436 0.483 0.538 0.576
8 0.358 0.410 0.454 0.507 0.542
9 0.339 0.387 0.430 0.480 0.513
10 0.323 0.369 0.409 0.457 0.489
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Operation of S-PLUS
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From the result of computer software, we have the same conclusion as
above, that is, the unknown distribution function is in fact the uniform
distribution function.
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