
Computing (2008) 83:109–133
DOI 10.1007/s00607-008-0015-6

HOM4PS-2.0: a software package for solving
polynomial systems by the polyhedral homotopy
continuation method

T. L. Lee · T. Y. Li · C. H. Tsai

Received: 17 January 2008 / Accepted: 1 September 2008 / Published online: 1 October 2008
© Springer-Verlag 2008

Abstract HOM4PS-2.0 is a software package in FORTRAN 90 which implements
the polyhedral homotopy continuation method for solving polynomial systems. It
updates its original version HOM4PS in three key aspects: (1) new method for finding
mixed cells, (2) combining the polyhedral and linear homotopies in one step, (3) new
way of dealing with curve jumping. Numerical results show that this revision leads to
a spectacular speed-up, ranging up to 1950s, over its original version on all benchmark
systems, especially for large ones. It surpasses the existing packages in finding isolated
zeros, such as PHCpack (Verschelde in ACM Trans Math Softw 25:251–276, 1999),
PHoM (Gunji et al. in Computing 73:57–77, 2004), and Bertini (Bates et al. in Software
for numerical algebraic geometry. Available at http://www.nd.edu/~sommese/bertini),
in speed by big margins.

Keywords Polynomial systems · Homotopy continuation methods · Polyhedral
homotopy · Numerical experiments · Software package

Mathematics Subject Classification (2000) 65H10 · 65H15 · 90B99

Research supported in part by NSF under Grant DMS-0811172.

T. L. Lee (B) · T. Y. Li · C. H. Tsai
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: leetsung@msu.edu

T. Y. Li
e-mail: li@math.msu.edu

C. H. Tsai
e-mail: tsaichih@msu.edu

123

http://www.nd.edu/~sommese/bertini

110 T. L. Lee et al.

1 Introduction

For a system of polynomials P(x) = (p1(x), . . . , pn(x)) with x = (x1, . . . , xn) ,

write

p j (x) =
∑

a∈S j

c j,a xa, j = 1, . . . , n,

where a = (a1, . . . , an) ∈ N
n , c j,a ∈ C

∗ = C\{0} and xa = xa1
1 · · · xan

n . Here S j , a
finite subset of N

n, is called the support of p j (x), and S = (S1, . . . , Sn) is called
the support of P(x).

Based on Bernshtein’s combinatorial root count [3], the polyhedral homotopies are
established in 1995 [12] to approximate all isolated zeros of P(x) = (p1(x), . . . ,

pn(x)) by the homotopy continuation method. It yields a drastic improvement over
the classical linear homotopies for solving sparse polynomial systems. The software
package HOM4PS, developed over the years by a group led by T. Y. Li at Michigan
State University, implemented this approach for solving polynomial systems. While
detailed description of the algorithms in HOM4PS was not formally published, the
code is widely considered to be faster in speed compared to the published codes
PHCpack [34] and PHoM [11] which also implemented the polyhedral homotopy
method for solving polynomial systems.

In this article, we shall elaborate the details of the most updated version of HOM4PS,
we call it HOM4PS-2.0, which greatly upgrades its original version, leading to a
spectacular speed-up as shown in Sect. 6.

There are three major revisions in HOM4PS-2.0:

• Mixed cell computations
When the polyhedral homotopy is employed to find all isolated zeros of P(x) =
(p1(x), . . . , pn(x)), the process of locating all the mixed cells during the mixed
volume computation plays a crucially important role [20–22]: The mixed volume
determines the number of solution paths which need to be traced and the mixed
cells provide starting points of the solution paths. Computing the mixed cells (and
thus the mixed volume) of the support of P(x) consumes a large part of the com-
putation and therefore dictates the efficiency of the method as well as the scope of
its applications. In 2005, a software package, MixedVol [10], emerged which led
the existing codes for the mixed volume computation by a great margin in speed.
However, soon after MixedVol was published, Mizutani et al. [26] developed a
more efficient algorithm which overshadowed MixedVol in speed by a big amount.
Most recently Lee and Li [16] embedded the novel idea of dynamic enumeration
of mixed cells in [26] into MixedVol and a new code, MixedVol-2.0, was produ-
ced which regains the lead by a substantial margin. Naturally, we adopt this new
algorithm for the mixed cell computation in HOM4PS-2.0 and will outline the
algorithm in Sect. 2.

• Combining the polyhedral and linear homotopies in one step
The polyhedral homotopy method implemented in HOM4PS for solving
polynomial system P(x) = (p1(x), . . . , pn(x)) consists of two main steps:

123

HOM4PS-2.0: a software package for solving polynomial systems 111

(1) A polynomial system Q(x) = (q1(x), . . . , qn(x)) = 0 having the same mono-
mials as P(x) but with randomly chosen coefficients is solved by polyhedral homo-
topies. (2) A linear homotopy H(x, t) = (1 − t)γ Q(x) + t P(x), t ∈ [0, 1] with
generically chosen γ ∈ C, is used to find all isolated zeros of P(x). By Bern-
shtein’s theorem [3], the number of solution paths which need to be traced in
the first step is the mixed volume of the support of P(x). This number remains
the same for the second step. All together the total number of homotopy paths
that need to be traced is twice the mixed volume of the support of P(x). In
HOM4PS-2.0, those two steps were combined in one step so that the total num-
ber of curves that need to be traced is simply the mixed volume of the support
of P(x). While this idea was originally suggested in [12], it had not been suc-
cessfully implemented in HOM4PS because of the involved numerical difficulties
in efficiency and stability. In HOM4PS-2.0, we successfully dealt with the pro-
blems by applying the transformation s = ln t, yielding a family of smooth
solution paths of a homotopy H̄(x, s) = 0, each parametrized by s ∈ (−∞, 0].
We will explain the details in Sect. 3. This strategy was independently developed
in [14].

• Dealing with the ‘Curve Jumping’
Theoretically, with probability 1, two homotopy paths do not cross each other. But,
in practice, when tracing two homotopy paths that are very close to each other, it is
possible that the curve jumping can happen and may thus result in the missing of
zeros. Though a sophisticatedly designed path tracing algorithm seldom encoun-
ters this problem, very seldom indeed, we have zero tolerance for the occurrence of
a missing zero. In HOM4PS, the numerically attained zeros were compared with
each other in a quite straightforward manner to determine possible curve jumping,
followed by retracing the corresponding paths with smaller step sizes. The detec-
ting method used there could potentially cost a substantial amount of computing
time for large systems where over millions of homotopy paths need to be traced. In
HOM4PS-2.0, solutions are divided into many groups so that only solutions in the
same group need to be compared with each other. This technique provides quite a
big saving in computing time, especially for large systems. More details are given
in Sect. 4.

In addition to those key revisions given above, Sect. 5 lists several new aspects of
our algorithms in HOM4PS-2.0 which appeared in HOM4PS in a less sophisticated
manner. This includes schemes in evaluating polynomials and their partial derivatives
in Sect. 5.1, in scaling the coefficients of the polynomial systems in Sect. 5.2 and in
treating the end games in Sect. 5.3. Numerical results are shown in Sect. 6. The speed-
ups of our new package HOM4PS-2.0 over its original version HOM4PS on those
benchmark polynomial systems are shown in Sect. 6.2. As the speed-up increases
when the size of the system becomes bigger, it can reach over 1950s for large systems.
Furthermore, HOM4PS-2.0 can handle much larger systems than its original version.
In Sect. 6.3, we compare our new code with the existing packages, PHCpack [34] and
PHoM [11], which also implemented the polyhedral homotopy method for solving
polynomial systems. While the polyhedral homotopy was not implemented in the
newly available package, Bertini [1], we compared our code with this package in

123

112 T. L. Lee et al.

solving systems by the classical linear homotopy method. As exhibited, HOM4PS-2.0
leads in speed by big margins in all the situations.

Note that while both PHCpack and Bertini have other functions, most notably the
classification of higher dimensional solutions [31,32], our HOM4PS-2.0 only focused
on finding isolated zeros at this stage.

2 Mixed cell computations

For polynomial system P(x) = (p1(x), . . . , pn(x)) with support S = (S1, . . . , Sn),

let ω j : S j → R be a random lifting function on S j which lifts S j to its graph
Ŝ j = {â = (a, ω j (a)) : a ∈ S j } ⊂ R

n+1 for j = 1, . . . , n. For α̂ = (α, 1) ∈ R
n+1,

where α = (α1, . . . , αn) ∈ R
n, let 〈â, α̂〉 denote the usual inner product in Euclidean

space.
A collection of pairs

{
a1, a′

1

} ⊆ S1, . . . ,
{
an, a′

n

} ⊆ Sn is called a mixed cell if
there exists α̂ = (α, 1) ∈ R

n+1 with α ∈ R
n such that

〈
â j , α̂

〉 =
〈
â′

j , α̂
〉
<

〈
â, α̂

〉
for all a ∈ S j\

{
a j , a′

j

}
, j = 1, . . . , n,

and α is called the inner normal of this mixed cell. For 1 ≤ i ≤ n, ê = {â, â
′ } ⊆ Ŝi ,

is called a lower edge of Ŝi if there exists α̂ = (α, 1) ∈ R
n+1 for which the following

relations hold:

〈â, α̂〉 = 〈â′, α̂〉 ≤ 〈b̂, α̂〉 ∀b ∈ Si \{a, a′}.

Denote the set of all lower edges of Ŝi by L(Ŝi). For k distinct integers {i1, . . . , ik} ⊆
{1, . . . , n},

Êk = (êi1 , . . . , êik), 1 ≤ k ≤ n, where êi j =
{

âi j , â
′
i j

}
⊆ Ŝi j for j = 1, . . . , k,

(1)
is called a level-k subface of Ŝ = (Ŝ1, . . . , Ŝn) (or simply “level-k subface”) if there
exists α̂ = (α, 1) ∈ R

n+1 such that for each j = 1, . . . , k

〈
âi j , α̂

〉 =
〈
â′

i j
, α̂

〉
≤ 〈̂a, α̂〉 ∀a ∈ Si j\

{
ai j , a′

i j

}
.

For a level-k subface Êk = (êi1 , . . . , êik) of Ŝ = (Ŝ1, . . . , Ŝn) with 1 ≤ k < n
where êi j = {âi j , â

′
i j
} ∈ L(Ŝi j) for j = 1, . . . , k, we say that the lower edge

êik+1 = {âik+1 , â
′
ik+1

} ∈ L(Ŝik+1) for certain ik+1 ∈ {1, 2, . . . , n}\{i1, . . . , ik} extends

the level-k subface Êk if Êk+1 = (êi1 , . . . , êik+1) is a level-(k + 1) subface of
Ŝ = (Ŝ1, . . . , Ŝn). We say Êk is extensible in such situations.

A main strategy for finding mixed cells is the extension of level-k subfaces Êk of
Ŝ = (Ŝ1, . . . , Ŝn) starting from k = 1 and an extensible Êk when k = n − 1 yields
mixed cells of S = (S1, . . . , Sn), induced by elements in Ŝin . In [8–10,23], the order

123

HOM4PS-2.0: a software package for solving polynomial systems 113

of this extension i1, i2, . . . is predetermined and fixed, that is, one always starts from
extending lower edge ê1 of Ŝ1 to a level-2 subface (ê1, ê2) with ê2 ∈ L(Ŝ2), then
extend (ê1, ê2) to a level-3 subface (ê1, ê2, ê3) with ê3 ∈ L(Ŝ3) . . . etc. Software
package MixedVol [10] for the mixed cell computation that was adopted in the original
HOM4PS was developed along this line of approach [8,9,23].

In [26], the novel idea of dynamic enumeration of all mixed cells emerged where
dynamic means that the order of the subface extension will not stay fixed. To extend
a particular level-k subface

Êk = (êi1 , . . . , êik), 1≤k < n, where êi j ={âi j , â
′
i j
}∈ L(Ŝi j)

for j =1,. . ., k, (2)

one searches among M : = { Ŝl : l ∈ {1, . . . , n}\{i1, . . . , ik}} for Ŝik+1 that has
minimal number of suitable points where only lower edges consisting of points among
them can possibly extend Êk to a level-(k + 1) subface. The main strategy suggested
in [26] for finding such Ŝik+1 is the removal of those points in each Ŝl ∈ M which have
no chances to be part of a lower edge in L(Ŝl) that can extend Êk, and select the one
with minimal remaining points as Ŝik+1 .

For level-k subface Êk = (êi1 , . . . , êik) where êi j = {âi j , â
′
i j
} ∈ L(Ŝi j) for j =

1, . . . , k, let Q := {i1, . . . , ik} ⊆ {1, . . . , n}. For a fixed l ∈ {1, . . . , n}\Q, let b̂v

be a particular point in Ŝl , and consider the set of constraints:

〈
âµ, α̂

〉 = 〈
â′
µ, α̂

〉 ∀µ ∈ Q
〈
âµ, α̂

〉 ≤ 〈̂a, α̂〉 ∀ â ∈ Ŝµ\ {
âµ, â′

µ

}
(3)

〈̂
bv, α̂

〉 ≤ 〈̂
b, α̂

〉 ∀b̂ ∈ Ŝl\
{
b̂v

}

in terms of unknowns α̂ = (α, 1) ∈ R
n+1. Apparently, when the set of constraints

in (4) is infeasible, then there is no b̂µ in Ŝl such that {b̂v, b̂µ} can extend Êk to
become a level-(k +1) subface, and therefore b̂v can be safely removed from Ŝl . For
the feasibility of the set of constraints in (4), consider the linear programming (LP)
problem

Max 〈r, α〉
(P)

Subject to (4)

where r∈R
n is any fixed vector. By the duality theorem, the feasibility of the inequa-

lities in (4) can be determined by the boundedness of the dual of the problem in (P),
which can be checked by standard techniques in the textbooks.

The superiority of the resulting software DEMiCs-0.95 in computing mixed cells
with the dynamic enumeration was reported in [26]. Soon after, this idea was embedded
in the original MixedVol and a new code MixedVol-2.0 was developed which improves
the speed of DEMiCs-0.95 by a substantial margin as shown in [16]. Employing the
polyhedral homotopy method for solving polynomial systems, locating all mixed cells

123

114 T. L. Lee et al.

always plays a critically important role [20–22]. The new adoption of MixedVol-2.0
for the mixed cell computation in HOM4PS-2.0 is certainly one of the main factors
accountable for its considerable speed-up.

3 Constructing the polyhedral-linear homotopy

For polynomial system P(x) = (p1(x), . . . , pn(x)) with

p j (x) =
∑

a ∈ S j

c j,a xa , j = 1, . . . , n,

let Q(x) = (q1(x), . . . , qn(x)) = 0 be a polynomial system having the same mono-
mials as P(x) but with randomly chosen coefficients, i.e., q j (x) = ∑

a∈S j
c̄ j,a xa

where c̄ j,a are randomly chosen complex numbers. In HOM4PS this system is first
solved by using a polyhedral homotopy Q̂(x, t) = (q̂1(x, t), . . . , q̂n(x, t)), t ∈
[0, 1] with a random lifting given by ω = (ω1, . . . , ωn), ω j : S j → R; i.e.,
q̂ j (x, t) = ∑

a∈S j
c̄ j,a xatω j (a) for j = 1, . . . , n. Then a linear homotopy H(x, t) =

(1 − t) γ Q(x) + t P(x), t ∈ [0, 1] with generically chosen complex number γ, is
constructed, the so-called cheater’s homotopy [24] (or the coefficient-parameter conti-
nuation [28]). It is known that all isolated solutions of P(x) = 0 can be obtained by
following the smooth solution paths of H(x, t) = 0 emanating from the solutions to
Q(x) = 0 found above.

In HOM4PS-2.0, these two steps were combined in one step by considering the
polyhedral-linear homotopy

H(x, t) = (h1(x, t), . . . , hn(x, t)), x = (x1, . . . , xn), t ∈ [0, 1]

where

h j (x, t) =
∑

a∈S j

((1 − t)c̄ j,a + tc j,a)xatω j (a), j = 1, . . . , n.

Note that H(x, 1) = P(x). For a given mixed cell C = ({a11, a12}, . . . , {an1, an2})
with inner normal α ∈ R

n, where {a j1, a j2} ⊆ S j for each j = 1, . . . , n, after
applying the change of variables x = ytα where y = (y1, . . . , yn) and x j =
y j tα j for j = 1, . . . , n, and keeping the variable x in place of y, we reach the
homotopy H̃(x, t) = (h̃1(x, t), . . . , h̃n(x, t)), t ∈ [0, 1], where for j = 1, . . . , n

h̃ j (x, t)=
∑

a∈S j

[(1−t)c̄ j,a + tc j,a]xat 〈â,α̂〉, with â =(a, w j (a)) for a ∈ S j .

Letting

β j = min
a∈S j

〈â, α̂〉 for j = 1, . . . , n

123

HOM4PS-2.0: a software package for solving polynomial systems 115

and “factoring out the lowest power of t ” yields Ĥ(x, t) = (ĥ1(x, t), . . . , ĥn(x, t)),
where t ∈ [0, 1] and

ĥ j (x, t) =
∑

a∈S j

[(1 − t)c̄ j,a + tc j,a]xat (〈â,α̂〉−β j), for j = 1, . . . , n. (4)

Note that we still have Ĥ(x, 1) = P(x), because x = y when t = 1. In following
the solution paths of Ĥ(x, t) = 0 by the prediction-correction method, the first step
of the predictor at t = 0 cannot be taken if a power of t in Ĥ(x, t) is less than one,

since ∂ Ĥ(x,t)
∂t , denoted by Ĥt , would then be undefined at t = 0. If the minimum

power of t in (4) is, say, t0.01, then changing variables with T = t0.01 would solve
the immediate problem. But it would reduce numerical stability and computational
efficiency if large powers of t , such as t1,000, were also contained in Ĥ(x, t). Then

the tangent vector ẋ = Ĥ−1
x ∗ Ĥt , where Ĥx := ∂ Ĥ(x,t)

∂x , would contain the terms
in the order of 100, 000 ∗ t99999 which, if evaluated at any t ∈ [0, 1), would give
0. Close to 1, however, the tangent vector would become extremely steep, and step
sizes for following the homotopy path would have to be correspondingly minuscule.
Actually this sort of problems already exist when “the polyhedral step” and “the linear
step” are split as implemented in HOM4PS, they become multiply amplified when
the combined polyhedral-linear homotopy is used. Ironically, the difference between
the computing time of these two approaches is almost negligible most of the time
notwithstanding the number of paths which need to be followed differs by a half
between them.

In HOM4PS-2.0, we address this problem by applying the transformation s =
ln t in (4), resulting in the homotopy H̄(x, s) = (h̄1(x, s), . . . , h̄n(x, s)), s ∈
(−∞, 0], where

h̄ j (x, s) =
∑

a∈S j

[(1 − es)c̄ j, a + esc j, a]xaes∗(〈â,α̂〉−β j) for j = 1, . . . , n.

Recall that mixed cell C = ({a11, a12}, {a21, a22}, . . . , {an1, an2}) with inner normal
α ∈ R

n satisfies the relations

〈â j1, α̂〉 = 〈â j2, α̂〉,
〈â j1, α̂〉 < 〈â, α̂〉 ∀ â ∈ Ŝ j\{â j1, â j2}, j = 1, . . . , n.

So, in each h̄ j (x, s), there are exactly two powers of e equal to 0, namely, for each
j = 1, . . . , n,

β j = min
a∈S j

〈â, α̂〉 = 〈â j1, α̂〉 = 〈â j2, α̂〉.

123

116 T. L. Lee et al.

Therefore at s = −∞, H̄(x,−∞) becomes a binomial system,

c̄11xa11 + c̄12xa12 = 0,

...

c̄n1xan1 + c̄n2xan2 = 0,

having |det (a11 − a12, . . . , an1 − an2)| number of nonsingular isolated solutions
which provide the starting points for following the solution paths of H̄(x, s) =
0 from s = −∞ to 0. We will not detail the standard procedure for solving binomial
systems here, see [20,22].

Since H̄(x, s) = Ĥ(x, es), thus for H̄(x(s), s) = 0 we have

d H̄

ds
(x(s), s) = d

ds
Ĥ(x, es) = Ĥx

dx

ds
+ Ĥt e

s = 0. (5)

It follows that
dx

ds
|s=−∞ = 0 and the values of x(s) stay close to invariant for large

negative s. Thus, to keep H̄(x, s) ≈ 0, we choose s0 so that terms e s0∗(〈â,α̂〉−β j) for
a ∈ S j\{a j1, a j2} are negligible for all j = 1, . . . , n, say on the order of 10−8, as our
starting s value for following the solution paths of H̄(x, s) = 0. Since s ∈ (−∞, 0]
the dominant or largest term with base e and exponent s ∗ (< â, α̂ > −β j) in the
polynomial

h̄ j (x, s) =
∑

a∈S j

[(1 − es)c̄ j, a + esc j, a]xaes∗(〈â,α̂〉−β j)

for all j = 1, . . . , n is given by

µ := exp

(
s ∗

[
min

a∈S j \{a j1,a j2}
(〈â, α̂〉 − β j)

])
, for j = 1, . . . , n.

Setting µ = 10−8 and solving for s, yields

s0 = −8 ln 10

mina∈S j \{a j1,a j2}
j∈{1,2,...,n}

(〈â, α̂〉 − β j)
.

Tracing solution paths x(s) of H̄(x, s) = 0 from s0 will reach zeros of P(x) when
s reaches 0. As this is quite different from following paths in [0,1], one must move
more aggressively, especially when the magnitude of s0 is very large. From (5),

dx

ds
= −Ĥ−1

x Ĥt es, with Ĥ(x, t) as in (4) and t = es .

123

HOM4PS-2.0: a software package for solving polynomial systems 117

So
dx

ds
is small for large negative s0, which justifies the adoption of a large step

size at s0, say δ0 = −s0

3
, making s1 = s0 + δ0. It is then followed by a standard

prediction–correction algorithm at s1 for tracing homotopy paths. In general, at sk,

we choose initial step size δk = min

{
δk−1,

−sk

3

}
, namely, the step size remains

the same as that of the previous stage, but not excessively large—not over a third of
the remaining distance. When two consecutive points on the path are available along
with their tangents to the path, we use the cubic Hermite interpolation rather than
the Euler method as our predictor, followed by the Newton corrector. As usual, step
sizes are adjusted by the chosen tolerance parameters. For instance, normally it takes
no more than three iterations for Newton corrector to converge within the desired
accuracy. Therefore if the number of Newton’s iterations for the correction is strictly
greater than 3, the step size will be cut in half to minimize the possibility that the
beginning predictor estimate was too far away from the curve. On the other hand, if in
two consecutive stages the step sizes were not cut, we assume the curve is flat at this
moment and will take the initial step size to be the minimum of doubling the previous
step size and a third of the remaining distance to 0.

As mentioned before, combining linear and nonlinear homotopies in the polyhe-
dral homotopy method to reduce the number of solution paths by half was originally
suggested back in 1995 [12], but with no successful implementation in HOM4PS.
Addressing the difficulties in HOM4PS-2.0 by the transformation s = ln t and para-
meterizing the solution paths by s ∈ (−∞, 0] as shown above, a substantial impro-
vement in algorithmic efficiency and stability has been achieved as evidenced by the
results of intensive numerical experiments. This combination strategy is particularly
important when the polyhedral homotopies are used to solve large problems where
mixed volumes of the systems are more than millions.

4 On curve jumping

Following two very close homotopy paths may increase the chance of curve jumping
that can occur at each stage of the prediction and correction. When Euler’s method,
or the cubic Hermite interpolation, is applied to predict a beginning estimate for the
Newton correction of one homotopy path, the resulting point may become too close
to the other homotopy path. Thus the correction sequence will converge to a point
that is not on the desired path. Subsequently, continued with the prediction-correction
procedure, we are in effect following the second path which will also be traversed
independently beginning with its own starting point. From the numerical results, it
looks as though two different curves each with different starting points both reach
the same solution. On the other hand, reaching the same solution may not indicate
the occurrence of curve jumping because of possible singular solutions. For example,
when solving cyclic-4 [4] and cyclic-8 [4] systems by the homotopy method, both
have more than one curve leading to the same singular solution that lies on a positive
dimensional solution component.

123

118 T. L. Lee et al.

Before dealing with the curve jumping, we wish, in the first place, to minimize the
chance for curve jumping to happen during the curve tracing procedure. In HOM4PS-
2.0, a more sophisticated selection for the tolerance parameters is designed for dyna-
mically determining step size during the curve following. For instance, for Newton
correction at s = sk, we consider any two consecutive iteration points x (m) and

x (m+1) too far apart from each other if the relative error
‖ x (m+1) − x (m) ‖

‖ x (m) ‖ > 10%.

In this situation, we will repeat the prediction-correction process with the step size
being cut in half. In addition, as mentioned before, if more than 3 steps of Newton’s
iterations were required to converge within the desired accuracy, we yet again cut the
step size in half to minimize the possibility that the beginning predictor estimate was
too far away from the curve. As shown in Sect. 6.1, these collective treatments greatly
decrease the occurrences of curve jumping. In fact, they never appear in most of the
systems we solved.

To check if curve jumping occurs, we must verify all the attained solutions to see if
there are two solutions that are very close to each other. We may, for instance, consider
two solutions to be numerically identical if the relative error of these two solutions is
less than a chosen parameter ε0 > 0. In HOM4PS, this task was performed in a quite
straightforward manner, essentially each pair of solution points were compared. This
will naturally become very costly when the number of solutions is big, say 100,000.
Then there are 100, 000 × 99, 999/2 solution pairs, and the relative error of each
pairs must all be computed.

In HOM4PS-2.0, we divide all the solutions into different groups and only check
solution pairs within the same group for closeness. For each isolated solution point
z = (z1, . . . , zn) ∈ C

n we will focus on the imaginary part of its first component
z1 = A1 + B1i where A1, B1 ∈ R. The decimal representation of B1 always has
a positive or negative sign associated with it and the solutions will be divided into
groups that are characterized by this sign as well as the chosen and fixed kth digit and
(k + 1)th digit after the decimal point of the decimal representation of B1. Each digit
place has ten possibilities {0, 1, 2, . . . , 9}. So in total, the solution set is divided into
200 groups, and each group of solution points is characterized by having the same
sign, the same kth digit bk and (k + 1)th digit bk+1 of the decimal representation
of the imaginary part of its first component. This strategy is known as the radix sort.
Obviously, to locate solution pairs that are numerically identical, one only needs to
compare solution pairs within the same group. Along the same line, the number of
groups can certainly be increased if one wishes to deal with even bigger solution
set. During the process, all the solutions are stored in a two dimensional array of
complex numbers for the purpose of conveniently retrieving the necessary information
to retrace the homotopy paths, if needed, and ultimately updating the new solutions.
While this memory requirement may become the main bottleneck when solving very
large systems, at this moment 1 GB memory is sufficient to store all the solutions of
large systems we have solved in Sect. 6. For instance, it took about 0.32 GB to store
all 1,048,576 solutions of the katsura-20 system, and only about 0.5 GB was reserved
for storing 3,628,800 potential solutions of the reimer-9 system (though the number
of solutions obtained is 86,400).

123

HOM4PS-2.0: a software package for solving polynomial systems 119

Now, after two (or more) numerically identical solutions are detected, call it x̄, we
first check the smallest singular value σ of the Jacobian matrix Px (x) evaluated at
x̄ . When σ is bigger than a chosen threshold ε1 > 0, then the solution x̄ will be
considered isolated and nonsingular. The curve jumping clearly occurs. In such cases,
we retrace the two associated curves with smaller step sizes. When σ < ε1, and the
solution x̄ is isolated, we will infer that the two curves reach the same solution x̄ and
curve jumping does not occur, and the deflation technique was introduced in [17–19],
newly inserted in PHCpack, to identify the multiplicity of x̄ . However, we can not
rule out the possibility of curve jumping if the solution x̄ is a nonsingular point lying
on a higher dimensional solution component Z . A point z ∈ Z is called nonsingular
if

rankC

∂ (p1, . . . , pn)

∂ (x1, . . . , xn)
(z) = n − dim Z . (6)

To differentiate those cases, the algorithm developed in [15] is used to determine the
dimension of the solution component to which the solution x̄ belongs first, followed
by checking the rank condition of x̄ in (6). For the rank revealing of the Jacobian,
we use the scheme developed in [25] rather than calculating the whole singular value
decomposition (SVD) of the matrix.

When x̄ is singular, it commonly attracts more than one different solution curves
as in solving cyclic-4 and cyclic-8 systems [15]. Curve jumping is only allowed to
exist if x̄ is nonsingular.

5 Miscellaneous

5.1 Evaluating polynomials and derivatives

The prediction-correction process for following the homotopy paths of H̄(x, s) =
(h̄1(x, s), . . . , h̄n(x, s)) = 0 where for j = 1, . . . , n,

h̄ j (x, s) =
∑

a∈S j

[(1 − es)c̄ j,a + esc j,a]xaes∗(〈â,α̂〉−β j) and xa = xa1
1 . . . xan

n ,

requires the computation of H̄(x, s), H̄s(x, s), and the matrix H̄x (x, s) for fixed s.
What is essentially involved in evaluating H̄(x, s), H̄s(x, s) and H̄x (x, s) at a
given point x = (x1, . . . , xn) is the evaluation of multivariate polynomials and
their partial derivatives. In HOM4PS, a multivariate polynomial g(x1, . . . , xn) was
evaluated via Horner’s rule for univariate polynomials. By singling out a variable,
say x1, g(x1, . . . , xn) may be considered a polynomial in x1 with coefficients in
C[x2, . . . , xn]. By the same principle, those coefficients, as polynomials in one less
variable, were evaluated by singling out another variable. This may continue until the
variables are exhausted.

If multivariate polynomials are evaluated in this manner, the repeated computation
of the same powers of some variables seems inevitable. For instance, for the system
P = (p1(x1, x2, x3), p2(x1, x2, x3), p3(x1, x2, x3)) where

123

120 T. L. Lee et al.

p1 = 2 ∗ x6
1 + 3 ∗ x4

2 + 5 ∗ x5
3 − 1

p2 = 3 ∗ x6
1 ∗ x4

2 + 2 ∗ x6
1 ∗ x5

3 + 4 ∗ x4
2 ∗ x5

3 − 5

p3 = 5 ∗ x6
1 ∗ x4

2 ∗ x5
3 − 7,

x6
1 , x4

2 , and x5
3 appear in all p1, p2, and p3 . When the above rule is applied, those

quantities must be computed repeatedly.
For j = 1, . . . , n, let

Max Deg(j) = max{a j |(a1, . . . , an) ∈ S1 ∪ · · · ∪ Sn}
= maximum power of the variable x j appearing in the entire

polynomial system

and

M = max
j=1,...,n

Max Deg(j)

= the largest power of all the variables in the entire polynomial system.

In HOM4PS-2.0, a table T of size n × M is established to store all possible powers
of x j , j = 1, . . . , n which may appear in H̄(x, s), H̄s(x, s), and H̄x (x, s).

Table T

x1 x2
1 . . . x Max Deg(1)

1

x2 x2
2 . . . x Max Deg(2)

2
...

... …
...

xn x2
n . . . x Maxdeg(n)

n

The first row of T stores the monomials x1, x2
1 , . . . , x Max Deg(1)

1 , the second row

stores the monomials x2, x2
2 , . . . , x Max Deg(2)

2 , and similarly, the last row stores the

monomials xn, x2
n , . . . , x Max Deg(n)

n . Since H̄x (x, s) contains the partial derivatives
of xa = xa1

1 · · · xan
n that appear in H̄(x, s), and since H̄s(x, s) contains the same

xa = xa1
1 · · · xan

n as H̄(x, s), table T stores all possible powers of x j appearing
in all of H̄(x, s), H̄s(x, s), and H̄x (x, s). The value of a monomial evaluated at a
point x = (x1, . . . , xn) can easily be obtained from table T . For example, for n = 3,

the quantity of x2
1 x3

2 x3 is T (1, 2) ∗ T (2, 3) ∗ T (3, 1).

For the above system, we have Max Deg(1)=6, Max Deg(2)=4, Max Deg(3)=
5 and hence M =6. The 3 × 6 table T is given as follows:

Table T

x1 x2
1 x3

1 x4
1 x5

1 x6
1

x2 x2
2 x3

2 x4
2

x3 x2
3 x3

3 x4
3 x5

3

123

HOM4PS-2.0: a software package for solving polynomial systems 121

and those powers that are involved in any monomial evaluations, no matter how often
they appear, will never be computed repeatedly.

5.2 Scaling of the coefficients

Certain polynomial systems, such as cohn 2 and cohn 3 [6], have large coefficients.
Large magnitudes in coefficients will result in large magnitudes in tangent vectors of
the homotopy paths. This will effect the efficiency of the curve tracing because smaller
step sizes need to be taken to follow the homotopy paths. The idea of scaling the system
to reduce the magnitudes of the coefficients of the polynomials first appeared in [27].
We shall illustrate our scaling method by way of an example.

Example Consider the following system of two equations in two unknowns

8,000 x2
1 x2

2 − 2,000 x1 + 1 = 0 (7)

5,000 x1x2 − 30 = 0. (8)

To scale the variables, let x1 = 10c1 z1 and x2 = 10c2 z2, and to scale the equations,
multiply (7) by 10c3 and multiply (8) by 10c4 . This gives

10c3(8,000 ∗ 102c1+2c2 z2
1z2

2 − 2,000 ∗ 10c1 z1 + 1) = 0

10c4(5,000 ∗ 10c1+c2 z1z2 − 30) = 0, or,

10E1 z2
1z2

2 − 10E2 z1 + 10E3 = 0

10E4 z1z2 − 10E5 = 0

where

E1 = 2c1 + 2c2 + c3 + log10(8,000)

E2 = c1 + c3 + log10(2,000)

E3 = c3

E4 = c1 + c2 + c4 + log10(5,000)

E5 = c4 + log10(30).

To have the numerical stability afforded by coefficients centered about unity, we want
each Ei to be close to 0. Furthermore, to reduce variability among the magnitude of
the coefficients in each equation, we want the difference between each pair of E ′

i s in
an equation to be close to 0. Thus, setting

r1 ≡ E2
1 + E2

2 + E2
3 + E2

4 + E2
5

r2 ≡ [(E1 − E2)
2 + (E2 − E3)

2 + (E1 − E3)
2] + [(E4 − E5)

2],

123

122 T. L. Lee et al.

we wish to minimize r = r1 + r2. More explicitly,

r = (2c1 + 2c2 + c3 + log(8,000))2 + (c1 + c3 + log(2,000))2 + c2
3

+ (c1 + c2 + c4 + log(5,000))2 + (c4 + log(30))2

+ (c1 + 2c2 + log(8,000) − log(2,000))2 + (2c1 + 2c2 + log(8,000))2

+ (c1 + log(2,000))2 + (c1 + c2 + log(5,000) − log(30))2. (9)

While in [27] r is considered as a second degree polynomial in four unknowns
c1, c2, c3, c4 and is minimized by the solution of

∂r

∂ci
= 0 for i = 1, 2, 3, 4,

we rewrite r in (9) as

r =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 1 0

1 0 1 0

0 0 1 0

1 1 0 1

0 0 0 1

1 2 0 0

2 2 0 0

1 0 0 0

1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛

⎜⎜⎜⎝

c1

c2

c3

c4

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
x

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− log(8,000)

− log(2,000)

0

− log(5,000)

− log(30)

log(2,000) − log(8,000)

− log(8,000)

− log(2,000)

log(30) − log(5,000)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(10)

= ‖ Ax − b ‖2
2 ,

and consider its minimization as a linear least squares problem. With the solution of
this least squares problem c1 = −3.3437, c2 = 1.3495, c3 = 0.0427, and c4 =
−1.5909, the original equations then become

0.9064 z2
1z2

2 − z1 + 1.1033 = 0

1.2996 z1z2 − 0.7695 = 0.

Clearly, the new system has coefficients with magnitudes smaller than those of the
original one. They are closer to unity and to each other. When solutions z = (z1, z2)

of the new system are located, the solutions x = (x1, x2) can be attained by applying
the transformation x1 = 10c1 z1 and x2 = 10c2 z2.

123

HOM4PS-2.0: a software package for solving polynomial systems 123

5.3 The end game

Some of the homotopy paths x(s) of H̄(x, s) = 0 for s ∈ (−∞, 0] may diverge,
or go to ∞, as s approaches 0. (In fact, solving systems like reimer-n [33] by the
homotopy continuation method, the majority of homotopy paths diverge.) Tracing
divergent paths usually consumes a multiple computing time. Typically near the end
of the solution path, very small step sizes must be taken to determine the convergence
of the path. For a more efficient method, write

x j (s) = a j (1 − es)
ω j
m

(
1 +

∞∑

i=1

ai j (1 − es)
i
m

)
, j = 1, . . . , n (11)

where m, called the winding number, is a positive integer andω = (ω1, . . . , ωn) ∈ Z
n .

It was shown in Morgan et al. [29] that such expansions exist for each path in the
neighborhood of s = 0. Taking the logarithm of the absolute value of both sides of
Eq. (11) yields

log |x j (s)| = log |a j | + ω j

m
log(1 − es) +

∞∑

i=1

bi j (1 − es) j . (12)

Here
∑∞

i=1 bi j (1 − es) j is the Taylor expansion of log(1 + ∑∞
i=1 ai j (1 − es)

i
m).

During the process of homotopy continuation, a sequence of points x(sk), −∞ <

s0 < s1 < · · · ≤ 0 were generated. Choose two consecutive sk and sk+1 close to 0,
say 1 − esk < 10−6. By Eq. (12),

log |x j (sk)| − log |x j (sk+1)|
log |1 − esk | − log |1 − esk+1 | = ω j

m
+ O(1 − esk).

Therefore
ω j

m
may be estimated by the left hand side of the above equation when

sk is close to 0. A more accurate estimation by extrapolation developed by Huber
and Verschelde [13] exists in PHCpack [34]. The extrapolation in PHCpack is able to
compute the winding numbers as well, which are very important for singularities.

In HOM4PS, so is in PHCpack , the convergence (or divergence) of a path x(s) =
(x1(s), . . . , xn(s)) when s → 0 is determined by

1. If w j < 0 for certain j ∈ {1, . . . , n}, then
ω j

m
< 0, and the path component

x j (s) diverges. Hence the path x(s) diverges when s → 0.

2. If w j ≥ 0 ∀j = 1, . . . , n, then
ω j

m
≥ 0 ∀j and all path components x j (s)

converge. Hence the path x(s) converges when s → 0.

Newly inserted in our HOM4PS-2.0 is the observation that when 0 <
ω j

m
< 1 for

certain j then lim
s→0

∣∣∣∣
dx j (s)

ds

∣∣∣∣ = ∞ which implies the divergence of the component

123

124 T. L. Lee et al.

x j (s), hence the divergence of the path x(s) when s → 0. We thus split the second
item above as follows:

2.1 If w j = 0 ∀j = 1, . . . , n, , then
ω j

m
= 0 ∀j and all path components x j (s)

converge. Hence the path x(s) converges when s → 0.

2.2 If 0 <
ω j

m
< 1 for certain j ∈ {1, . . . , n}, then the path component x j diverges

and hence the path x(s) diverges when s → 0.

2.3 If
ω j

m
≥ 1 ∀j = 1, . . . , n, then all path components x j (s) converge and

hence the path x(s) converges when s → 0.

Our numerical results show that this splitting provides a much accurate judgement in
many situations.

6 Numerical results

In this section, we compare the performance of our HOM4PS-2.0 in finding all isolated
solutions with those of the existing packages HOM4PS, PHCpack [34] , PHoM [11],
and the newly available package Bertini [1]. We will focus on those size-expandable
benchmark systems listed in Table A. All the computations were carried out on a Dell
PC with a Pentium 4 single processor CPU of 2.2 GHz, 1 GB of memory. Results
presented are mainly restricted to those systems that can be solved within 12 h of
CPU time. The package HOM4PS-2.0 is written in FORTRAN 90. The binary code
of which as well as its Matlab interface are available at http://www.math.msu.edu/~li/
Software.htm.

For some of the systems listed in Table A, such as katsura-n and reimer-n, the
mixed volume of each system is the same as its total degree (or the Bézout number).
Obviously, those systems should be solved directly by following the total degree
number of solution paths of the classical linear homotopies H(x, t) = (1− t) Q(x)+
t P(x) = 0 where Q(x) = (q1(x), . . . , qn(x)) with

q1 = a1xd1
1 − b1, d1 = degree of p1(x),

...

qn = an xdn
n − bn, dn = degree of pn(x)

and randomly chosen (a1, . . . , an, b1, . . . , bn) ∈ C
2n [22]. In this way, with no

polyhedral homotopy method involved requires no possibly costly mixed cell compu-
tations. Moreover, homotopies being straightly linear in the homotopy parameter t
may avoid the s = ln t transformation for the parameter used in the linear-polyhedral
homotopy combination. This can also reduce a considerable amount of CPU time for
large systems. We also implemented the algorithm of the classical linear homotopies
for solving polynomial systems given above as an option in HOM4PS-2.0, just as in
PHCpack.

Of course, with different generically chosen numbers used in both the classical and
polyhedral homotopy methods, the running time varies. Therefore we take the median

123

http://www.math.msu.edu/~li/Software.htm
http://www.math.msu.edu/~li/Software.htm

HOM4PS-2.0: a software package for solving polynomial systems 125

of five experiments as the listed running time. In fact, the maximum deviations rarely
exceed 20% of the time listed in the tables.

Table A The polynomial systems

eco-n [27] Total degree = 2 · 3n−2

(x1 + x1x2 + · · · + xn−2xn−1)xn − 1 = 0

(x2 + x1x3 + · · · + xn−3xn−1)xn − 2 = 0

.

.

.

xn−1xn − (n − 1) = 0

x1 + x2 + · · · + xn−1 + 1 = 0

noon-n [30] Total degree = 3n

x1(x2
2 + x2

3 + · · · + x2
n − 1.1) + 1 = 0

x2(x2
1 + x2

3 + · · · + x2
n − 1.1) + 1 = 0

.

.

.

xn(x2
1 + x2

2 + · · · + x2
n−1 − 1.1) + 1 = 0

cyclic-n [4] Total degree = n !
x1 + x2 + · · · + xn = 0

x1x2 + x2x3 + · · · + xn−1xn + xn x1 = 0

x1x2x3 + x2x3x4 + · · · + xn−1xn x1 + xn x1x2 = 0

.

.

.

x1x2 · · · xn − 1 = 0

katsura-n [5] Total degree = 2n

2xn+1 + 2xn + · · · + 2x2 + 2x1 − 1 = 0

2x2
n+1 + 2x2

n + · · · + 2x2
2 + x2

1 − x1 = 0

2xn xn+1 + 2xn−1xn + · · · + 2x2x3 + 2x1x2 − x2 = 0

2xn−1xn+1 + 2xn−2xn + · · · + 2x1x3 + x2
2 − x3 = 0

.

.

.

2x2xn+1 + 2x1xn + 2x2xn−1 + · · · + 2xn/2x(n+2)/2 − xn = 0(if n is even)

2x2xn+1 + 2x1xn + 2x2xn−1 + · · · + x2
(n+1)/2 − xn = 0(if n is odd)

reimer-n [33] Total degree = (n + 1) !

2x2
1 − 2x2

2 + · · · + (−1)n+12x2
n − 1 = 0

2x3
1 − 2x3

2 + · · · + (−1)n+12x3
n − 1 = 0

.

.

.

2xn+1
1 − 2xn+1

2 + · · · + (−1)n+12xn+1
n − 1 = 0

123

126 T. L. Lee et al.

6.1 The performance of HOM4PS-2.0 in dealing with curve jumping
and diverging paths

Listed in Table 1 is the performance of HOM4PS-2.0 on solving all those benchmark
systems in Table A. From the 4th column in the table, one can see that the occurrences of
curve jumping have been mostly diminished for HOM4PS-2.0. In fact, curve jumping
never appears for systems in each system category with sizes smaller than those listed
in the table. On the other hand, we only need to retrace 10 paths (among 1,594,297
paths) for noon-13, 4 paths (among 1,048,576 paths) for katsura-20 and 14 paths
(among 3,628,800) for reimer-9 due to curve jumping. Moreover, when retracing was
necessary, no homotopy paths need to be retraced more than once, while, as reported
in [11], multiple retracings were required very often for the software package PHoM
[11] to deal with curve jumping.

As shown in the table, when solving reimer-n systems, most homotopy paths diver-
ged. For example, the mixed volume, or the total number of paths we must follow, of
the reimer-8 system is 362,880, but the number of its isolated solutions is just 14,400.
While it is normally costly in tracing diverging paths, HOM4PS-2.0 is capable of
determining those divergent homotopy paths very efficiently with the end game crite-
ria discussed in Sect. 5.3.

Table 1 The performance of HOM4PS-2.0

System CPU time Mixed volume # of curve jumpings # of solutions obtained

eco-17 22 m 23 s 32,768 – 32,768

eco-18 1 h 51 m 30 s 65,536 – 65,536

noon-10 1 m 27 s 59,029 – 59,029

noon-11 5 m 32 s 177,125 2 177,125

noon-12 27 m 29 s 531,417 2 531,417

noon-13 3 h 7 m 10 s 1,594,297 10 1,594,297

katsura-15 7 m 03 s 32,768 2 32,768

katsura-16 16 m 25 s 65,536 – 65,536

katsura-17 40 m 48 s 131,072 – 131,072

katsura-18 1 h 35 m 47 s 262,144 – 262,144

katsura-19 3 h 50 m 48 s 524,288 4 524,288

katsura-20 8 h 58 m 00 s 1,048,576 4 1,048,576

cyclic-9 44 s 11,016 – 6,642

cyclic-10 2 m 47 s 35,940 – 34,940

cyclic-11 19 m 40 s 184,756 – 184,756

cyclic-12 1 h 36 m 40 s 500,352 – 367,488

reimer-7 1 m 58 s 40,320 – 2,880

reimer-8 30 m 43 s 362,880 – 14,400

reimer-9 7 h 52 m 40 s 3,628,800 14 86,400

123

HOM4PS-2.0: a software package for solving polynomial systems 127

Table 2 Comparison of the classical linear homotopy and the polyhedral homotopy in HOM4PS-2.0

System Total degree CPU time # of solutions obtained

Linear Polyhedral

noon-10 59,029 + 20 1 m 27 s 5 m 12 s 59,029

noon-11 177,125 + 22 5 m 32 s 23 m 27 s 177,125

noon-12 531,417 + 24 27 m 29 s 1 h 28 m 00 s 531,417

noon-13 1,594,297 + 26 3 h 7 m 10 s 7 h 02 m 10 s 1,594,297

katsura-15 32,768 7 m 03 s 1 h 50 m 26 s 32,768

katsura-16 65,536 16 m 25 s – 65,536

katsura-17 131,072 40 m 48 s – 131,072

katsura-18 262,144 1 h 35 m 47 s – 262,144

katsura-19 524,288 3 h 50 m 48 s – 524,288

katsura-20 1,048,576 8 h 58 m 00 s – 1,048,576

reimer-7 40,320 1 m 58 s 2 m 49 s 2,880

reimer-8 362,880 30 m 43 s 36 m 43 s 14,400

reimer-9 3,628,800 7 h 52 m 40 s 8 h 47 m 42 s 86,400

The results displayed in Table 1 are the results that all the polynomial systems
were solved by the polyhedral homotopy method. As mentioned before, katsura-n and
reimer-n systems may be solved more efficiently by the classical linear homotopies
because the mixed volume of each system agrees with its total degree. As a compari-
son, we list in Table 2 the results of solving those systems by both the classical linear
homotopy option and the polyhedral homotopy option in HOM4PS-2.0. While the
proof is not available at this moment, by the observation on a collective numerical
data from intensive experiments on noon-n systems, the total degree of each noon-n
system and its mixed volume satisfy: total degree = 3n = mixed volume + 2 n. So,
when n becomes large, the difference between them becomes very slim relatively.
Therefore we also include them in the table. Apparently, as it shows, if the closeness
of the mixed volume and the total degree of the system can be revealed beforehand,
sometimes the classical linear homotopy can handle much bigger systems.

For reimer-n systems, the CPU time for finding mixed cells is very minimal (less
than 1 second most of the times). While tracing the same number of curves, the
differences in the CPU times of the classical linear homotopy and the polyhedral
homotopy in the table indicate that nonlinear homotopies can be costly for large
systems.

6.2 HOM4PS-2.0 vs. HOM4PS

Table 3 lists the numerical results that compare HOM4PS-2.0 with HOM4PS. Since
the classical linear homotopy method was not implemented in HOM4PS, the table
only displays the results that used the polyhedral homotopy method on all the
systems.

123

128 T. L. Lee et al.

Table 3 Comparison of HOM4PS and HOM4PS-2.0

System Mixed HOM4PS HOM4PS-2.0 Speed-up
volume ratio

Finding Tracking Finding Tracking
paths pathsstarting starting

systems systems

eco-15 8,192 3 m 53 s 29 m 32 s 48 s 97 s 13.8

eco-16 16,384 12 m 54 s 2 h 42 m 18 s 2 m 36 s 3 m 59 s 26.6

eco-17 32,768 56 m 02 s – 11 m 48 s 10 m 35 s –

eco-18 65,536 3 h 27 m 18 s – 42 m 59 s 1 h 08 m 31 s –

noon-9 19,665 0.5 s 21 m 40 s 0.1 s 1 m 15 s 17.3

noon-10 59,029 2.0 s 3 h 20 m 43 s 0.2 s 5 m 12 s 38.6

noon-11 177,125 9.7 s – 0.5 s 23 m 26 s –

noon-12 531,417 38.3 s – 1.3 s 1 h 27 m 59 s –

noon-13 1,594,297 113.1 s – 3.1 s 7 h 02 m 07 s –

katsura-12 4,096 40 m 30 s 3 m 24 s 59 s 43 s 25.8

katsura-13 8,192 3 h 29 m 44 s 11 m 10 s 3 m 11 s 1 m 45 s 44.8

katsura-14 16,384 – – 20 m 46 s 4 m 29 s –

katsura-15 32,768 – – 1 h 39 m 18 s 11 m 08 s –

cyclic-9 11,016 1.9 s 8 m 35 s 0.3 s 43.7 s 11.8

cyclic-10 35,940 17.0 s 57 m 27 s 2.5 s 2 m 44 s 20.9

cyclic-11 184,756 2 m 24 s – 20 s 19 m 20 s –

cyclic-12 500,352 19 m 28 s – 2 m 25 s 1 h 34 m 15 s –

reimer-7 40,320 0.1 s 7 m 46 s 0.02 s 2 m 49 s 2.8

reimer-8 362,880 0.1 s 1 h 44 m 18 s 0.02 s 36 m 43 s 2.8

reimer-9 3,628,800 0.1 s – 0.02 s 8 h 47 m 42 s –

As it shows, HOM4PS-2.0 is considerably faster than HOM4PS, and the speed-
up ratio increases as the mixed volume of the polynomial system becomes big-
ger. Recall that for a specific system HOM4PS-2.0 only needs to trace the mixed
volume number of homotopy paths, while twice of this amount of paths need to
be traced in HOM4PS. Moreover, HOM4PS-2.0 is much powerful in dealing with
larger systems. For instance, originally HOM4PS can not solve noon-13 system
within 12 h of CPU time, whereas HOM4PS-2.0 followed over 1.5 million curves
in 7 h.

6.3 HOM4PS-2.0 vs. PHCpack, PHoM and Bertini

Listed in Table 4 is the comparison of the performance of HOM4PS-2.0 and PHCpack
[34]. The option of solving polynomial systems by the classical linear homotopies is
also available in PHCpack. Therefore the comparisons listed in Table 4 on noon-n,
katsura-n and reimer-n systems whose mixed volume and total degree of each system
are the same (or almost the same for noon-n systems) are the results by using the

123

HOM4PS-2.0: a software package for solving polynomial systems 129

Table 4 Comparison of HOM4PS-2.0 and PHCpack

System Total degree CPU time Speed-up ratio # of solutions obtained

PHCpack HOM4PS-2.0

eco-14 1,062,882 1 h 26 m 04 s 52.9 s 97.6 4,096

eco-15 3,188,646 3 h 55 m 23 s 2 m 25 s 97.4 8,192

eco-17 28,697,814 – 22 m 23 s – 32,768

eco-18 86,093, 442 – 1 h 51 m 30 s – 65,536

noon-9 19,683 33 m 28 s 22.2 s 90.5 19,665

noon-10 59,049 2 h 33 m 27 s 1 m 27 s 105.8 59,029

noon-11 177,147 – 5 m 32 s – 177,125

noon-13 1,594,323 – 3 h 7 m 10 s – 1,594,297

katsura-14 16,384 2 h 49 m 00 s 2 m 52 s 59.0 16,384

katsura-15 32,768 8 h 22 m 45 s 7 m 03 s 71.3 32,768

katsura-16 65,536 – 16 m 25 s – 65,536

katsura-20 1,048,576 – 8 h 58 m 00 s – 1,048,576

cyclic-9 362,880 3 h 50 m 48 s 44 s 314.7 6,642

cyclic-10 3,628,800 11 h 00 m 23 s 2 m 47 s 237.2 34,940

cyclic-11 39,916,800 – 19 m 40 s – 184,756

cyclic-12 479,001,600 – 1 h 36 m 40 s – 374,330

reimer-6 5,040 15 m 08 s 9.6 s 94.5 576

reimer-7 40,320 3 h 45 m 43 s 1 m 58 s 114.7 2,880

reimer-8 362,880 – 30 m 43 s – 14,400

reimer-9 3,628,800 – 7 h 52 m 40 s – 86,400

classical linear homotopy option in each package. The powerful code MixedVol-2.0
[16] for computing mixed cells plays no role here because no mixed cells are needed.
For eco-n and cyclic-n systems, there is a considerable difference, sometimes huge,
between the mixed volume and the total degree of the system. So, we must employ the
polyhedral homotopy for solving these systems. When the PHCpack was tested in this
regard, we used its fastest option, as indicated in the package, which utilizes MixedVol
[10] for mixed cell computations. As it stands, HOM4PS-2.0 leads PHCpack in speed
substantially.

Table 5 compares the performance of HOM4PS-2.0 and PHoM [11]. Since the
classical linear homotopy for solving polynomial systems is not available in PHoM,
so all the results listed in Table 5 use the polyhedral homotopy method on all the
systems.

The package Bertini [1] utilizes the m-homogeneous structure of the polyno-
mial system to determine the starting system in the linear homotopy for finding
all isolated solutions of the system. However, Bertini does not provide the optimal
m-homogeneous structure of the system automatically. Therefore, in Table 6, we only
compare the performance of HOM4PS-2.0 and Bertini in solving the systems by the
classical linear homotopy, which is a special case of the m-homogeneous homotopy

123

130 T. L. Lee et al.

Table 5 Comparison of HOM4PS-2.0 and PHoM

System Total degree CPU time Speed-up ratio # of solutions obtained

PHoM HOM4PS-2.0

eco-13 354,294 2 h 39 m 31 s 19 s 503.7 2,048

eco-14 1,062,882 9 h 57 m 15 s 52.9 s 677.4 4,096

eco-15 3,188,646 – 2 m 25 s – 8,192

eco-18 86,093,442 – 1 h 51 m 30 s – 65,536

noon-8 6,661 54 m 18 s 19 s 171.5 6,645

noon-9 19,683 5 h 01 m 06 s 1 m 15 s 240.9 19,665

noon-10 59,049 – 5 m 12 s – 59,029

noon-13 1,594,323 – 7 h 02 m 10 s – 1,594,297

katsura-11 2,048 1 h 21 m 13 s 28 s 174.0 2,048

katsura-12 4,096 4 h 00 m 09 s 1 m 42 s 141.3 4,096

katsura-13 8,192 – 4 m 56 s – 8,192

katsura-15 32,768 – 1 h 50 m 26 s – 32,768

cyclic-7 5,040 5 m 33 s 1.4 s 237.9 924

cyclic-8 40,320 32 m 32 s 6.8 s 287.0 2,048

cyclic-9 362,880 – 44 s – 6,642

cyclic-12 479,001,600 – 1 h 36 m 40 s – 374,330

reimer-6 5,040 1 h 14 m 50 s 12.1 s 371.0 576

reimer-7 40,320 – 2 m 49 s – 2,880

reimer-9 3,628,800 – 8 h 47 m 42 s – 86,400

with m = 1. Note that Bertini provides multi-precision options [2]. In our comparison,
the MPTYPE option in Bertini is set to be 0, namely, the double precision.

Remark The “# of solutions obtained” column in all the above tables actually indi-
cates the number of homotopy paths that converged. It includes both regular solutions
(isolated nonsingular solutions) and singular solutions (multiple isolated solutions and
solutions lie in solution component of positive dimensions). For instance, we obtai-
ned 2,048 solutions for cyclic-8; among them, 1,152 are regular solutions and the
rest 896 solutions lie in positive dimensional solution components. We reached 6,642
solutions for cyclic-9; among them, 5,994 solutions are regular and the rest consists
of 162 singular isolated solutions, each one of them has multiplicity 4. More detailed
information can be found in [7,17–19] as well as Jan Verschelde’s web site: http://
www.math.uic.edu/~jan.

Table 7 provides the maximum sizes of the systems whose isolated zeros can totally
be attained by PHCpack, PHoM, Bertini, and HOM4PS-2.0 within 12 h of CPU time.
The total degree of the system is given in the parenthesis. As it shows, HOM4PS-2.0
can deal with larger size systems in this regard.

123

http://www.math.uic.edu/~jan
http://www.math.uic.edu/~jan

HOM4PS-2.0: a software package for solving polynomial systems 131

Table 6 Comparison of HOM4PS-2.0 and Bertini

System Total degree CPU time Speed-up ratio # of solutions obtained

Bertini HOM4PS-2.0

eco-11 39,366 37 m 02 s 3 m 26 s 10.8 512

eco-12 118,098 2 h 16 m 25 s 12 m 56 s 10.5 1,024

eco-13 354,294 8 h 07 m 16 s 45 m 22 s 10.7 2,048

eco-14 1,062,882 – 2 h 48 m 42 s – 4,096

noon-10 59,049 15 m 50 s 1 m 27 s 10.9 59,029

noon-11 177,147 1 h 17 m 59 s 5 m 32 s 14.1 177,125

noon-12 531,441 6 h 35 m 23 s 27 m 29 s 14.4 531,417

noon-13 1,594,323 – 3 h 07 m 10 s – 1,594,297

katsura-16 65,536 4 h 04 m 14 s 16 m 25 s 14.9 65,536

katsura-17 131,072 10 h 42 m 57 s 40 m 48 s 15.8 131,072

katsura-18 262,144 – 1 h 35 m 47 s – 262,144

katsura-20 1,048,576 – 8 h 58 m 00 s – 1,048,576

cyclic-7 5,040 4 m 42 s 13 s 21.7 924

cyclic-8 40,320 1 h 11 m 55 s 2 m 43 s 26.5 2,048

cyclic-9 362,880 – 33 m 30 s – 6,642

reimer-6 5,040 8 m 28 s 9.5 s 53.5 576

reimer-7 40,320 1 h 45 m 47 s 1 m 58 s 53.8 2,880

reimer-8 362,880 – 30 m 43 s – 14,400

reimer-9 3,628,800 – 7 h 52 m 40 s – 86,400

Table 7 Maximum sizes of polynomial systems that can be solved by PHCpack, PHoM, Bertini and
HOM4PS-2.0 within 12 h of CPU time

System Maximum size

PHoM PHCpack Bertinia HOM4PS-2.0

eco- 14 (1,062,882) 15 (3,188,646) 13 (354,294) 18 (86,093,442)

noon- 9 (19,683) 10 (59,049) 12 (531,441) 13 (1,594,323)

katsura- 12 (2,048) 15 (32,768) 17 (131,072) 20 (1,048,576)

cyclic- 8 (40,320) 10 (3,628,800) 8 (40,320) 12 (479,001,600)

reimer- 6 (5,040) 7 (40,320) 7 (40,320) 9 (3,628,800)

a When Bertini was executed, we restricted m = 1 in the adoption of m-homogeneous structure

7 Concluding remarks

The polyhedral homotopy continuation method in solving polynomial systems is
implemented in the software package HOM4PS-2.0. It revises its original version,
HOM4PS, with an efficient mixed cell computation algorithm, with sophisticated
path following techniques, and with less homotopy paths needed to be traced. On the

123

132 T. L. Lee et al.

other hand, the classical linear homotopy method for solving polynomial systems is
added for the cases where the polyhedral homotopy can provide no advantage. As
shown, the resulting software package, HOM4PS-2.0, is very efficient and reliable in
approximating all isolated solutions. It also provides a useful tool for investigating the
property of solutions of polynomial equations.

References

1. Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW Bertini: Software for numerical algebraic geo-
metry. Available at http://www.nd.edu/~sommese/bertini

2. Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW (2008) Adaptive multiprecision path tracking.
SIAM J Numer Anal 46(2):722–746

3. Bernshtein DN (1975) The number of roots of a system of equations. Funct Anal Appl 9(3):183–185
4. Björk G, Fröberg R (1991) A faster way to count the solutions of inhomogeneous systems of algebraic

equations. J Symb Comput 12(3):329–336
5. Boege W, Gebauer R, Kredel H (1986) Some examples for solving systems of algebraic equations by

calculating Groebner bases. J Symb Comput 2:83–98
6. Cohn H (1982) An explicit modular equation in two variables and Hilbert’s twelfth problem. Math

Comp 38:227–236
7. Dai T, Kim S, Kojima M (2003) Computing all nonsingular solutions of cyclic-n polynomial using

polyhedral homotopy continuation methods. J Comput Appl Math 152(1–2):83–97
8. Gao T, Li TY (2000) Mixed volume computation via linear programming. Taiwan J Math 4:599–619
9. Gao T, Li TY (2003) Mixed volume computation for semi-mixed systems. Discrete Comput Geom

29(2):257–277
10. Gao T, Li TY, Wu M (2005) Algorithm 846: MixedVol: a software package for mixed volume com-

putation. ACM Trans Math Softw 31(4):555–560
11. Gunji T, Kim S, Kojima M, Takeda A, Fujisawa K, Mizutani T (2004) PHoM—a polyhedral homotopy

continuation method. Computing 73:57–77
12. Huber B, Sturmfels B (1995) A polyhedral method for solving sparse polynomial systems. Math Comp

64:1541–1555
13. Huber B, Verschelde J (1998) Polyhedral end games for polynomial continuation. Numer Algorithms

18(1):91–108
14. Kim S, Kojima M (2004) Numerical stability of path tracing in polyhedral homotopy continuation

methods. Computing 73:329–348
15. Kuo YC, Li TY (2008) Determining dimension of the solution component that contains a computed

zero of a polynomial system. J Math Anal Appl 338(2):840–851
16. Lee TL, Li TY Mixed volume computation. A revisit (submitted)
17. Leykin A, Verschelde J, Zhao A (2006) Newton’s method with deflation for isolated singularities of

polynomial systems. Theor Comput Sci 359(1–3):111–122
18. Leykin A, Verschelde J, Zhao A (2007) Evaluation of Jacobian matrices for Newton’s method with

deflation to approximate isolated singular solutions of polynomial systems. Symb Numer Comput
269–278

19. Leykin A, Verschelde J, Zhao A (2008) Higher-order deflation for polynomial systems with isolated
singular solutions. In: IMA: algorithms in algebraic geometry, vol 146. Springer, Heidelberg, pp 79–97

20. Li TY (1997) Numerical solution of multivariate polynomial systems by homotopy continuation
methods. Acta Numer 6:399–436

21. Li TY (1999) Solving polynomial systems by polyhedral homotopies. Taiwan J Math 3:251–279
22. Li TY (2003) Solving polynomial systems by the homotopy continuation method. Handbook of nume-

rical analysis, vol XI. North-Holland, Amsterdam 209–304
23. Li TY, Li X (2001) Finding mixed cells in the mixed volume computation. Found Comput Mathem

1:161–181
24. Li TY, Sauer T, Yorke JA (1989) The cheaters homotopy: an efficient procedure for solving systems

of polynomial equations. SIAM J Numer Anal 26:1241–1251
25. Li TY, Zeng Z (2005) A rank-revealing method with updating, downdating, and applications. SIAM J

Matrix Anal Appl 26:918–946

123

http://www.nd.edu/~sommese/bertini

HOM4PS-2.0: a software package for solving polynomial systems 133

26. Mizutani T, Takeda A, Kojima M (2007) Dynamic enumeration of all mixed cells. Discrete Comput
Geom 37:351–367

27. Morgan AP (1987) Solving polynomial systems using continuation for engineering and scientific pro-
blems. Prentice-Hall, New Jersey

28. Morgan AP, Sommese AJ (1992) Coefficient-parameter polynomial continuation (Errata: Appl Math
Comput 51:207). Appl Math Comput 29:123–160

29. Morgan AP, Sommese AJ, Wampler CW (1992) A power series method for computing singular solu-
tions to nonlinear analytic systems. Numer Math 63(3):1779–1792

30. Noonburg VW (1989) A neural network modeled by an adaptive Lotka–Volterra system. SIAM J Appl
Math 49:1779–1792

31. Sommese A, Verschelde J, Wampler C (2001) Numerical decomposition of the solution sets of poly-
nomial systems into irreducible components. SIAM J Numer Anal 38(6):2022–2046

32. Sommese A, Wampler C (2005) The numerical solution of polynomial systems arising in engineering
and science. World Scientific Publishing, Hackensack

33. Traverso C The PoSSo test suite at http://www.inria.fr/saga/POL.
34. Verschelde J (1999) Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by

homotopy continuation. ACM Trans Math Softw 25:251–276. Software available at http://www.math.
uic.edu/~jan

123

http://www.inria.fr/saga/POL
http://www.math.uic.edu/~jan
http://www.math.uic.edu/~jan

	HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method
	Abstract
	1 Introduction
	2 Mixed cell computations
	3 Constructing the polyhedral-linear homotopy
	4 On curve jumping
	5 Miscellaneous
	5.1 Evaluating polynomials and derivatives
	5.2 Scaling of the coefficients
	5.3 The end game

	6 Numerical results
	6.1 The performance of HOM4PS-2.0 in dealing with curve jumpingand diverging paths
	6.2 HOM4PS-2.0 vs. HOM4PS
	6.3 HOM4PS-2.0 vs. PHCpack, PHoM and Bertini

	7 Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

