COEFFICIENTS OF THE CHARACTERISTIC POLYNOMIAL
 Jephian C.-H. Lin
 National Sun Yat-sen University

Overivew of the characteristic polynomial

The characteristic polynomial of A is defined by $p_{A}(x)=\operatorname{det}(A-x I)$. Usually, we need to expand every term and rearrange it into a clean form. For example,

$$
\begin{aligned}
\operatorname{det}(A-x I)= & \operatorname{det}\left[\begin{array}{ccc}
1-x & 2 & 3 \\
4 & 5-x & 6 \\
7 & 8 & 9-x
\end{array}\right] \\
= & (1-x)(5-x)(9-x)+2 \cdot 6 \cdot 7+3 \cdot 4 \cdot 8 \\
& -3 \cdot(5-x) \cdot 7-2 \cdot 4 \cdot(9-x)-(1-x) \cdot 6 \cdot 8 \\
= & -x^{3}+15 x^{2}+18 x
\end{aligned}
$$

The following formula helps to find the coefficients directly. The characteristic polynomial of A can be written as

$$
p_{A}(x)=\operatorname{det}(A-x I)=(-x)^{n}+s_{1}(-x)^{n-1}+\cdots+s_{n},
$$

where

$$
s_{k}=\sum_{\substack{\alpha \subseteq[n] \\|\alpha|=k}} \operatorname{det}(A[\alpha]) .
$$

Some theory behind the scene

When we compute the characteristic polynomial, each column of $A-x I$ can be written as the sum of two vectors, one contains constants while the other contains $-x$ and 0's. By expanding $\operatorname{det}(A-x I)$ using the distributive law on each column, we got 2^{n} terms.

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
1-x & 2 & 3 \\
4 & 5-x & 6 \\
7 & 8 & 9-x
\end{array}\right] \\
= & \operatorname{det}\left[\begin{array}{ccc}
-x & 0 & 0 \\
0 & -x & 0 \\
0 & 0 & -x
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
-x & 0 & 3 \\
0 & -x & 6 \\
0 & 0 & 9
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
-x & 2 & 0 \\
0 & 5 & 0 \\
0 & 8 & -x
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 & -x & 0 \\
7 & 0 & -x
\end{array}\right]+ \\
& \left.\operatorname{det}\left[\begin{array}{ccc}
-x & 2 & 3 \\
0 & 5 & 6 \\
0 & 8 & 9
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 3 \\
4 & -x & 6 \\
7 & 0 & 9
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
1 & 2 \\
4 & 5 \\
0 \\
7 & 8
\end{array}\right]+x\right]+\operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
= & (-x)^{3}+(9+5+1)(-x)^{2}+(-3-12-3)(-x)+0 .
\end{aligned}
$$

An example

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

We have to go through all subsets α of $[3]=\{1,2,3\}$ of a given size

Thus,

$$
\begin{aligned}
p_{A}(x) & =(-x)^{n}+s_{1}(-x)^{n-1}+\cdots+s_{n} \\
& =-x^{3}+15 x^{2}+18 x
\end{aligned}
$$

My own example

I wrote some SageMath code to compute the characteristic polynomial using this method. Visit the website below to see more examples.

