COEFFICIENTS OF THE CHARACTERISTIC POLYNOMIAL

Jephian C.-H. Lin National Sun Yat-sen University

Overivew of the characteristic polynomial

The characteristic polynomial of A is defined by $p_A(x) = \det(A - xI)$. Usually, we need to expand every term and rearrange it into a clean form. For example,

 $\det(A - xI) = \det \begin{bmatrix} 1 - x & 2 & 3 \\ 4 & 5 - x & 6 \end{bmatrix}$

An example Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$ We have to go through all subsets α of $[3] = \{1, 2, 3\}$ of a given size.

$$\begin{bmatrix} 7 & 8 & 9-x \end{bmatrix}$$

= $(1-x)(5-x)(9-x) + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8$
 $-3 \cdot (5-x) \cdot 7 - 2 \cdot 4 \cdot (9-x) - (1-x) \cdot 6 \cdot 8$
= $-x^3 + 15x^2 + 18x$.

The following formula helps to find the coefficients directly. The characteristic polynomial of A can be written as

$$p_A(x) = \det(A - xI) = (-x)^n + s_1(-x)^{n-1} + \dots + s_n$$

where

$$s_k = \sum_{\substack{\alpha \subseteq [n] \\ |\alpha| = k}} \det(A[\alpha])$$

So through an subsets a of $[0] = [1, 2, 0]$ of a given size.											
		k = 0	k = 1				k = 3				
	lpha	Ø	{1}	$\{2\}$	{3}	$\{1, 2\}$	$\{1,3\}$	$\{2,3\}$	$\{1, 2, 3\}$	-	
	$A[\alpha]$	[]	[1]	[5]	[9]	$\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 7 & 9 \end{bmatrix}$	$\begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$		
	det	1	1	5	9	-3	-12	-3	0		
		$s_0 = 1$	$s_1 = 15$			S	$s_3 = 0$				

Thus,

 $p_A(x) = (-x)^n + s_1(-x)^{n-1} + \dots + s_n,$ = $-x^3 + 15x^2 + 18x.$

Some theory behind the scene

When we compute the characteristic polynomial, each column of A - xI can be written as the sum of two vectors, one contains constants while the other contains -x and 0's. By expanding det(A - xI) using the distributive law on each column, we got 2^n terms.

$$\det \begin{bmatrix} 1-x & 2 & 3 \\ 4 & 5-x & 6 \\ 7 & 8 & 9-x \end{bmatrix}$$

$$\begin{bmatrix} -x & 0 & 0 \\ 0 & -x & 0 \end{bmatrix} \begin{bmatrix} -x & 0 & 3 \\ 0 & -x & 0 \end{bmatrix} \begin{bmatrix} -x & 2 & 0 \\ 0 & -x & 0 \end{bmatrix}$$

My own example

I wrote some SageMath code to compute the characteristic polynomial using this method. Visit the website below to see more examples.

$= \det$	0 -x	0 +	det 0	-x 6	$+ \det$	0	0 c	$+ \det$	4 - x	0 +	
	0 0	-x		0 9			8 - x		$\begin{bmatrix} 7 & 0 \end{bmatrix}$	-x	
	$\begin{bmatrix} -x \ 2 \ 3 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$]	$\boxed{1} 2$	$\begin{bmatrix} 0 \end{bmatrix}$	[123			
det	$0 \ 5 \ 6$	$+ \det$	4 - x 6	+ det	4 5	0	$+ \det$	4 5 6			
	0 8 9		$\begin{bmatrix} 7 & 0 & 9 \end{bmatrix}$		L78-	-x		789			
=(-x)	$)^{3} + (9 +$	(5+1)(-	$(-x)^2 + ($	-3 - 12	(-2-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-x)	+ 0.				

