Applications of zero forcing number to the minimum rank problem

Advisor: Professor Gerard Jennhwa Chang, Ph.D.
Student: Chin-Hung Lin

Department of Mathematics, National Taiwan University

5/25 2011
Abstract

- Introduction and some related properties
- Exhaustive zero forcing number and sieving process
- Summary and a counterexample to a problem on edge spread
Relation between Matrices and Graphs

\[G : \text{real symmetric matrices} \rightarrow \text{graphs.} \]

\[
\begin{pmatrix}
-3 & 3 & 0 \\
3 & -5 & 2 \\
0 & 2 & -2
\end{pmatrix}
\]

\[G \left(\begin{pmatrix}
-3 & 3 & 0 \\
3 & -5 & 2 \\
0 & 2 & -2
\end{pmatrix} \right) \]
$G : \text{real symmetric matrices} \rightarrow \text{graphs}.$

$$
\begin{pmatrix}
-3 & 3 & 0 \\
3 & -5 & 2 \\
0 & 2 & -2
\end{pmatrix}
\xrightarrow{G}
$$

$S(G) = \{A \in M_{n \times n}(\mathbb{R}): A = A^t, G(A) = G\}.$
The **minimum rank** of a graph G is

$$mr(G) = \min \{ \text{rank}(A): A \in S(G) \}.$$
The minimum rank of a graph G is

$$\text{mr}(G) = \min\{\text{rank}(A) : A \in S(G)\}.$$

The maximum nullity of a graph G is

$$M(G) = \max\{\text{null}(A) : A \in S(G)\}.$$
The **minimum rank** of a graph G is

$$\text{mr}(G) = \min \{ \text{rank}(A): A \in S(G) \}.$$

The **maximum nullity** of a graph G is

$$M(G) = \max \{ \text{null}(A): A \in S(G) \}.$$

$$\text{mr}(G) + M(G) = |V(G)|.$$
The minimum rank of a graph G is

$$\text{mr}(G) = \min\{\text{rank}(A): A \in S(G)\}.$$

The maximum nullity of a graph G is

$$M(G) = \max\{\text{null}(A): A \in S(G)\}.$$

$$\text{mr}(G) + M(G) = |V(G)|.$$

The minimum rank problem of a graph G is to determine the number $\text{mr}(G)$ or $M(G)$.

Applications of z. f. number to the minimum rank problem
The **zero forcing process** on a graph G is the color-changing process using the following rules.
The zero forcing process on a graph G is the color-changing process using the following rules.

- Each vertex of G is either black or white initially.

A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F, each vertex of G could be forced into black.

The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.

The path cover number $P(G)$ of a graph G is the minimum number of vertex disjoint induced paths of G that cover $V(G)$.
The **zero forcing process** on a graph G is the color-changing process using the following rules.

- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.
The zero forcing process on a graph G is the color-changing process using the following rules.

- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.

A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.
The zero forcing process on a graph G is the color-changing process using the following rules.

- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.

A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.

The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.
The zero forcing process on a graph G is the color-changing process using the following rules.
- Each vertex of G is either black or white initially.
- If x is black and y is the only white neighbor of x, then change the color of y to black.

A set $F \subseteq V(G)$ is called a zero forcing set if with the initial condition F each vertex of G could be forced into black.

The zero forcing number $Z(G)$ of a graph G is the minimum size of a zero forcing set.

The path cover number $P(G)$ of a graph G is the minimum number of vertex disjoint induced paths of G that cover $V(G)$.
Example for Three Parameters

\[
\begin{pmatrix}
? & * & * & * \\
* & ? & 0 & 0 \\
* & 0 & ? & 0 \\
* & 0 & 0 & ?
\end{pmatrix}
\]

\[G\]

\[\text{rank} \geq 2.
\]

\[Z(G) = 2.\]

\[P(G) = 2.\]
Example for Three Parameters

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

\[G\]

- rank \(\geq 2\).
- 2 is achievable.
Example for Three Parameters

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

- \(\text{rank} \geq 2. \)
- 2 is achievable.
- \(\text{mr}(K_{1,3}) = 2 \) and \(\text{M}(K_{1,3}) = 4 - 2 = 2. \)
Example for Three Parameters

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

\(G \)

- rank \(\geq 2 \).
- 2 is achievable.
- \(\text{mr}(K_{1,3}) = 2 \) and \(M(K_{1,3}) = 4 - 2 = 2 \).
- \(Z(G) = 2 \).
Example for Three Parameters

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\(G\)

- \(\text{rank} \geq 2\).
- \(2\) is achievable.
- \(\text{mr}(K_{1,3}) = 2\) and \(M(K_{1,3}) = 4 - 2 = 2\).
- \(Z(G) = 2\).
- \(P(G) = 2\).
For all graph G, $M(G) \leq Z(G)$. [1]
Basic Properties

- For all graph G, $M(G) \leq Z(G)$.[1]
- For all graph G, $P(G) \leq Z(G)$.[2]

Basic Properties

- For all graph G, $M(G) \leq Z(G).$[1]
- For all graph G, $P(G) \leq Z(G).$[2]
- For outerplanar graph G, $M(G) \leq P(G) \leq Z(G).$[12]
Basic Properties

For all graph G, $M(G) \leq Z(G)$. [1]

For all graph G, $P(G) \leq Z(G)$. [2]

For outerplanar graph G, $M(G) \leq P(G) \leq Z(G)$. [12]

$M(G)$ and $P(G)$ are not comparable in general.
A chronological list record the order of forces.

- **Chronological list**

 1 \rightarrow 2 \rightarrow 4 \rightarrow 3

 5 \rightarrow 6 \rightarrow 8 \rightarrow 10

 7 \rightarrow 8 \rightarrow 10 \rightarrow 9

 6 \rightarrow 4

- **Maximal chains**

 1 \rightarrow 2

 5 \rightarrow 6 \rightarrow 4 \rightarrow 3

 7 \rightarrow 8 \rightarrow 10 \rightarrow 9
Terminologies for $Z(G)$

- A chronological list record the order of forces.
- A chain of a chronological list is a sequence of consecutive forcing list.
A chronological list record the order of forces.
A chain of a chronological list is a sequence of consecutive forcing list.
The set of maximal chains forms a path cover.
Terminologies for $Z(G)$

- A **chronological list** records the order of forces.
- A **chain** of a chronological list is a sequence of consecutive forcing list.
- The set of maximal chains forms a path cover.
- The inverse chronological list gives another zero forcing set called **reversal**.

![Diagram](image)
The vertex-sum of G_1 and G_2 at the vertex v is the graph $G_1 \oplus_v G_2$ obtained by identifying the vertex v.
The **vertex-sum** of G_1 and G_2 at the vertex v is the graph $G_1 \oplus_v G_2$ obtained by identifying the vertex v.

If $G = G_1 \oplus_v G_2$, then

$$M(G) = \max \{ M(G_1) + M(G_2) - 1, M(G_1 - v) + M(G_2 - v) - 1 \}.$$

\[4\]
A vertex \(v \) is **doubly terminal** if \(v \) is a one-vertex path in some optimal path cover.
A vertex \(v \) is **doubly terminal** if \(v \) is a one-vertex path in some optimal path cover.

A vertex \(v \) is **simply terminal** if \(v \) is an endpoint of a path in some optimal path cover and \(v \) is not doubly terminal.
A vertex v is **doubly terminal** if v is a one-vertex path in some optimal path cover.

A vertex v is **simply terminal** if v is an endpoint of a path in some optimal path cover and v is not doubly terminal.

The **path spread** of G on v is

$$p_v(G) = P(G) - P(G - v).$$
A vertex v is **doubly terminal** if v is a one-vertex path in some optimal path cover.

A vertex v is **simply terminal** if v is an endpoint of a path in some optimal path cover and v is not doubly terminal.

The **path spread** of G on v is

$$p_v(G) = P(G) - P(G - v).$$

If $G = G_1 \oplus_v G_2$, then

$$p_v(G) = \begin{cases}
-1, & \text{if } v \text{ is simply terminal of } G_1 \text{ and } G_2; \\
\min\{p_v(G_1), p_v(G_2)\}, & \text{otherwise.}[5]
\end{cases}$$
Reduction Formula for $Z(G)$

- A vertex v is **doubly terminal** if v is a one-vertex maximal chain in some optimal chronological list.
A vertex \(v \) is **doubly terminal** if \(v \) is a one-vertex maximal chain in some optimal chronological list.

A vertex \(v \) is **simply terminal** if \(v \) is an endpoint of a maximal chain in some optimal chronological list and \(v \) is not doubly terminal.
A vertex v is **doubly terminal** if v is a one-vertex maximal chain in some optimal chronological list.

A vertex v is **simply terminal** if v is an endpoint of a maximal chain in some optimal chronological list and v is not doubly terminal.

The **zero spread** of G on v is

$$z_v(G) = Z(G) - Z(G - v).$$
A vertex v is **doubly terminal** if v is a one-vertex maximal chain in some optimal chronological list.

A vertex v is **simply terminal** if v is an endpoint of a maximal chain in some optimal chronological list and v is not doubly terminal.

The zero spread of G on v is

$$z_v(G) = Z(G) - Z(G - v).$$

If $G = G_1 \oplus_v G_2$, then

$$z_v(G) = \begin{cases} -1 & \text{if v is simply terminal of G_1 and G_2;} \\ \min\{z_v(G_1), z_v(G_2)\} & \text{otherwise.} \end{cases}$$
Sketch of Proof

\[-1 \leq z_v(G) \leq 1. \]
\[v \text{ is doubly terminal} \iff z_v = 0. \]
\[v \text{ is simply terminal} \implies z_v = 0. \]
Sketch of Proof

\[
-1 \leq z_v(G) \leq 1.
\]

\[
\begin{align*}
\text{\textbullet} & \quad v \text{ is doubly terminal } \iff z_v = 0. \\
\text{\textbullet} & \quad v \text{ is simply terminal } \implies z_v = 0.
\end{align*}
\]

If \(v \) is simply terminal for \(G_1 \) and \(G_2 \), then \(z_v(G) = -1 \),

\[z_v(G_1) = z_v(G_2) = 0. \]
Sketch of Proof

\[
\begin{align*}
-1 & \leq z_v(G) \leq 1. \\
v \text{ is doubly terminal } & \iff z_v = 0. \\
v \text{ is simply terminal } & \implies z_v = 0.
\end{align*}
\]

If \(v \) is simply terminal for \(G_1 \) and \(G_2 \), then \(z_v(G) = -1 \), \(z_v(G_1) = z_v(G_2) = 0 \).
Sketch of Proof

If $G = G_1 \oplus_v G_2$, then

\[Z(G) \leq Z(G_1) + Z(G_2 - v), \quad Z(G) \leq Z(G_1 - v) + Z(G_2), \]

\[Z(G) \geq Z(G_1) + Z(G_2) - 1. \]
Sketch of Proof

- If $G = G_1 \oplus_v G_2$, then

 $$Z(G) \leq Z(G_1) + Z(G_2 - v), \quad Z(G) \leq Z(G_1 - v) + Z(G_2),$$

 $$Z(G) \geq Z(G_1) + Z(G_2) - 1.$$

- If $G = G_1 \oplus_v G_2$, then

 $$z_v(G) \leq \min\{z_v(G_1), z_v(G_2)\},$$

 $$z_v(G) \geq z_v(G_1) + z_v(G_2) - 1.$$
Sketch of Proof

- If \(G = G_1 \oplus_v G_2 \), then

 \[
 Z(G) \leq Z(G_1) + Z(G_2 - v), \quad Z(G) \leq Z(G_1 - v) + Z(G_2),
 \]

 \[
 Z(G) \geq Z(G_1) + Z(G_2) - 1.
 \]

- If \(G = G_1 \oplus_v G_2 \), then

 \[
 z_v(G) \leq \min\{z_v(G_1), z_v(G_2)\},
 \]

 \[
 z_v(G) \geq z_v(G_1) + z_v(G_2) - 1.
 \]

- \(z_v(G) = -1, \ z_v(G_1) = z_v(G_2) = 0 \) is the only possibility. This implies \(v \) is simply terminal for \(G_1 \) and \(G_2 \).
Comparison of Reduction Formulae

Denote \(m_v(G) = M(G) - M(G - v) \), \(p_v(G) = P(G) - P(G - v) \), and \(z_v(G) = Z(G) - Z(G - v) \).
Denote $m_v(G) = M(G) - M(G - v)$, $p_v(G) = P(G) - P(G - v)$, and $z_v(G) = Z(G) - Z(G - v)$.

$-1 \leq m_v, p_v, r_v \leq 1$.

Hard to apply on induction.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Comparison of Reduction Formulae

- Denote $m_v(G) = M(G) - M(G - v)$, $p_v(G) = P(G) - P(G - v)$, and $z_v(G) = Z(G) - Z(G - v)$.
- $-1 \leq m_v, p_v, r_v \leq 1$.
- If $G = G_1 \oplus_v G_2$, they have similar behavior.

<table>
<thead>
<tr>
<th>$m_v(G_1 \setminus G_2)$</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$p_v, z_v(G_1 \setminus G_2)$</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1\0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Denote $m_v(G) = M(G) - M(G - v)$,
$p_v(G) = P(G) - P(G - v)$, and $z_v(G) = Z(G) - Z(G - v)$.

$-1 \leq m_v, p_v, r_v \leq 1.$

If $G = G_1 \oplus_v G_2$, they have similar behavior.

$$
\begin{array}{cccc}
 m_v(G_1 \backslash G_2) & -1 & 0 & 1 \\
 -1 & -1 & -1 & -1 \\
 0 & -1 & -1 & 0 \\
 1 & -1 & 0 & 1 \\
\end{array}
$$

$$
\begin{array}{cccc}
 p_v, z_v(G_1 \backslash G_2) & -1 & 0 & 1 \\
 -1 & -1 & -1 & -1 \\
 0 & -1 & -1 & 0 \\
 1 & -1 & 0 & 1 \\
\end{array}
$$

Hard to apply on induction.
Recall that $P(G) \leq Z(G)$.
Recall that $P(G) \leq Z(G)$.

A graph G satisfies the PZ condition iff $P(G) = Z(G)$.
The PZ condition

- Recall that $P(G) \leq Z(G)$.
- A graph G satisfies the PZ condition iff $P(G) = Z(G)$.
- PZ condition is not hereditary.

\begin{center}
\begin{tikzpicture}
\node (1) at (1,2) [label=left:1] {};
\node (2) at (2,1) [label=left:2] {};
\node (3) at (3,1) [label=left:3] {};
\node (4) at (4,2) [label=left:4] {};
\node (5) at (3,0) [label=left:5] {};
\node (6) at (4,0) [label=left:6] {};
\draw (1) -- (2) -- (3) -- (4) -- (1);
\draw (5) -- (6) -- (4) -- (2) -- (5);
\end{tikzpicture}
\end{center}
The PZ condition

- Recall that \(P(G) \leq Z(G) \).
- A graph \(G \) satisfies the **PZ condition** iff \(P(G) = Z(G) \).
- PZ condition is not hereditary.
- PZ condition does not preserve under vertex-sum operation.

\[
G_1 \oplus_v G_2
\]

\[
G_1 ~ G_2 ~ G_1 \oplus_v G_2
\]
A graph G satisfies the **strong PZ condition** iff each path cover is the set of maximal chain for some zero forcing process.
The Strong PZ condition

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Strong PZ condition \Rightarrow PZ condition.
The Strong PZ condition

- A graph G satisfies the **strong PZ condition** iff each path cover is the set of maximal chain for some zero forcing process.
- Strong PZ condition \Rightarrow PZ condition.
- Strong PZ condition is hereditary.
The Strong PZ condition

- A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.
- Strong PZ condition \Rightarrow PZ condition.
- Strong PZ condition is hereditary.
A graph G satisfies the strong PZ condition iff each path cover is the set of maximal chain for some zero forcing process.

Strong PZ condition \Rightarrow PZ condition.

Strong PZ condition is hereditary.

Strong PZ condition preserves under vertex-sum operation.
A graph G satisfies the **strong PZ condition** iff each path cover is the set of maximal chain for some zero forcing process.

Strong PZ condition \Rightarrow PZ condition.

Strong PZ condition is hereditary.

Strong PZ condition preserves under vertex-sum operation.
A cactus is a graph whose blocks are all K_2 or C_n.
A **cactus** is a graph whose blocks are all K_2 or C_n.

A cactus G satisfies the strong PZ condition. Hence we have $P(G) = Z(G)$.
Let G_k be the k 5-sun sequence. Then

$$P(G_k) = Z(G_k) = 2k + 1 \text{ and } M(G_k) = k + 1.$$
Large $Z(G) - M(G)$

- Let G_k be the k 5-sun sequence. Then $P(G_k) = Z(G_k) = 2k + 1$ and $M(G_k) = k + 1$.
- Actually, for all $1 \leq p \leq q \leq 2p - 1$, there is a graph G such that $M(G) = p$ and $Z(G) = q$.

![Graphs](image.png)
Let G_k be the k 5-sun sequence. Then $P(G_k) = Z(G_k) = 2k + 1$ and $M(G_k) = k + 1$.

Actually, for all $1 \leq p \leq q \leq 2p - 1$, there is a graph G such that $M(G) = p$ and $Z(G) = q$.

Q: Will the inequality $Z(G) \leq 2M(G) - 1$ holds for all G?
A sign set is \{0, *, u\}. A real number \(r \) matches 0 if \(r = 0 \), * if \(r \neq 0 \), while \(u \) if \(r \) matches 0 or *.
A sign set is \(\{0, *, u\} \). A real number \(r \) matches 0 if \(r = 0 \), * if \(r \neq 0 \), while \(u \) if \(r \) matches 0 or *.

A pattern matrix \(Q \) is a matrix over \(S \).
A sign set is \(\{0, *, u\} \). A real number \(r \) matches 0 if \(r = 0 \), \(* \) if \(r \neq 0 \), while \(u \) if \(r \) matches 0 or \(* \).

A pattern matrix \(Q \) is a matrix over \(S \).

The minimum rank of a pattern \(Q \) is

\[
\text{mr}(Q) = \min\{\text{rank}A : A \cong Q\}.
\]
Example for Minimum Rank of A Pattern

The pattern

\[Q = \begin{pmatrix} * & 0 & 0 \\ u & * & u \end{pmatrix} \]

must have rank at least 2.
The pattern

\[Q = \begin{pmatrix} * & 0 & 0 \\ u & * & u \end{pmatrix} \]

must have rank at least 2.

The rank 2 is achievable. Hence \(\text{mr}(Q) = 2 \).
Define addition “+” and scalar multiplication “×” on S.

\[+: S \times S \rightarrow S \]

\[\begin{array}{c|ccc}
+ & 0 & * & u \\
\hline
0 & 0 & * & u \\
* & * & u & u \\
u & u & u & u \\
\end{array} \]

\[\times: \{0, *\} \times S \rightarrow S \]

\[\begin{array}{c|ccc}
\times & 0 & * & u \\
\hline
0 & 0 & 0 & 0 \\
* & 0 & * & u \\
\end{array} \]
A sign vector is a tuple with entries on S.

A set of sign vectors $\{v_1, v_2, \ldots, v_n\}$ is independent iff $c_1v_1 + c_2v_2 + \cdots + c_nv_n \sim 0$ implies $c_1 = c_2 = \cdots = c_n = 0$.

The rank of a pattern is the maximum number of independent row sign vectors.
Independence

- A **sign vector** is a tuple with entries on S.
- We say a sign vector $v \sim 0$ iff v contains no \ast.
A sign vector is a tuple with entries on S.

We say a sign vector $v \sim 0$ iff v contains no \ast.

A set of sign vectors $\{v_1, v_2, \ldots, v_n\}$ is independent iff

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n \sim 0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

The rank of a pattern is the maximum number of independent row sign vectors.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Independence

- A **sign vector** is a tuple with entries on S.
- We say a sign vector $v \sim 0$ iff v contains no \ast.
- A set of sign vectors $\{v_1, v_2, \ldots, v_n\}$ is **independent** iff

 \[c_1 v_1 + c_2 v_2 + \cdots + c_n v_n \sim 0 \]

 implies $c_1 = c_2 = \cdots = c_n = 0$.
- The **rank** of a pattern is the maximum number of independent row sign vectors.
Independence in different senses

Lemma

Suppose $V = \{v_1, v_2, \ldots, v_n\}$ is a set of sign vectors, and $W = \{w_1, w_2, \ldots, w_n\}$ is a set of sign vectors such that w_i is obtained from v_i by replacing entries u by 0 or \ast. If V is linearly independent, then so is W.

Suppose $R = \{r_1, r_2, \ldots, r_n\}$ is a set of real vectors such that each entry in each vector matches the corresponding entry in elements of W. If W is linearly independent, then R is linearly independent as real vectors.
Independence in different senses

Lemma

Suppose $V = \{v_1, v_2, \ldots, v_n\}$ is a set of sign vectors, and $W = \{w_1, w_2, \ldots, w_n\}$ is a set of sign vectors such that w_i is obtained from v_i by replacing entries u by 0 or \ast. If V is linearly independent, then so is W.

Suppose $R = \{r_1, r_2, \ldots, r_n\}$ is a set of real vectors such that each entry in each vector matches the corresponding entry in elements of W. If W is linearly independent, then R is linearly independent as real vectors.

Theorem

If Q is a pattern matrix and U is the set of all pattern matrices obtained from Q by replacing u by 0 or \ast, then

$$\text{rank}(Q) \leq \min_{Q' \in U} \{\text{rank}(Q')\} \leq \text{mr}(Q).$$
Let G be a graph and B is a subset of $E(G)$ called the set of **banned edge** or **banned set**.
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.
The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.

Zero forcing set banned by B F can force $V(G)$ banned by B.

Zero forcing number banned by B $Z(G, B)$: minimum size of F.

Zero forcing number banned by B with support W $Z(W, B)$: minimum size of $F \supseteq W$.

When W and B is empty, $Z(W, B) = Z(G)$.
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.
- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.

Zero forcing set banned by B F: F can force $V(G)$ banned by B.

Zero forcing number banned by B $Z(G, B)$: minimum size of F.

Zero forcing number banned by B with support W $Z(W, B)$: minimum size of $F \supseteq W$.

When W and B is empty, $Z(G, B) = Z(G)$.
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.

Zero forcing set banned by B F: F can force $V(G)$ banned by B.

Zero forcing number banned by B $Z(G, B)$: minimum size of F.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.

Zero forcing set banned by B F: F can force $V(G)$ banned by B.

Zero forcing number banned by B $Z(G, B)$: minimum size of F.

Zero forcing number banned by B with support W $Z_W(G, B)$: minimum size of $F \supseteq W$.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Let G be a graph and B is a subset of $E(G)$ called the set of banned edge or banned set.

The zero forcing process on G banned by B is the coloring process by following rules.

- Each vertex of G is either black or white initially.
- If x is a black vertex and y is the only white neighbor of x and $xy \notin B$, then change the color of y to black.

Zero forcing set banned by B F: F can force $V(G)$ banned by B.

Zero forcing number banned by B $Z(G,B)$: minimum size of F.

Zero forcing number banned by B with support W $Z_W(G,B)$: minimum size of $F \supseteq W$.

When W and B is empty, $Z_W(G,B) = Z(G)$.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Q is a given $m \times n$ pattern. $G = (X \cup Y, E)$ is the related bipartite defined by

$$X = \{a_1, a_2, \ldots, a_m\}, \ Y = \{b_1, b_2, \ldots, b_n\}, \ E = \{a_i b_j : Q_{ij} \neq 0\}.$$
- Q is a given $m \times n$ pattern. $G = (X \cup Y, E)$ is the related bipartite defined by

 $X = \{a_1, a_2, \ldots, a_m\}$, $Y = \{b_1, b_2, \ldots, b_n\}$, $E = \{a_i b_j : Q_{ij} \neq 0\}$.

- $B = \{a_i b_j : Q_{ij} = u\}$.

\[
\begin{pmatrix}
* & 0 & 0 \\
u & * & u
\end{pmatrix}
\]
Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, if $G = (X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$\text{rank}(Q) + Z_Y(G, B) = m + n.$$
Theorem

For a given $m \times n$ pattern matrix Q, if $G = (X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$\text{rank}(Q) + Z_Y(G, B) = m + n.$$

- Each initial white vertex represent a sign vector.
Theorem

For a given $m \times n$ pattern matrix Q, If $G = (X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$\text{rank}(Q) + Z_Y(G, B) = m + n.$$

- Each initial white vertex represent a sign vector.
- The set of initial white vertices is independent iff it will be forced.
Main Theorem

Theorem

For a given \(m \times n \) pattern matrix \(Q \), if \(G = (X \cup Y, E) \) is the graph and \(B \) is the set of banned edges defined above, then

\[
\text{rank}(Q) + Z_Y(G, B) = m + n.
\]

- Each initial white vertex represent a sign vector.
- The set of initial white vertices is independent iff it will be forced.
Main Theorem

Theorem

For a given $m \times n$ pattern matrix Q, if $G = (X \cup Y, E)$ is the graph and B is the set of banned edges defined above, then

$$\text{rank}(Q) + Z_Y(G, B) = m + n.$$

- Each initial white vertex represents a sign vector.
- The set of initial white vertices is independent iff it will be forced.

\[
\begin{pmatrix}
 u & 0 \\
 * & * \\
 0 & u
\end{pmatrix}
\]

\[
\begin{pmatrix}
 u \\
 * \\
 0
\end{pmatrix} +
\begin{pmatrix}
 * \\
 u \\
 *
\end{pmatrix} +
\begin{pmatrix}
 0 \\
 * \\
 u
\end{pmatrix} =
\begin{pmatrix}
 u \\
 u \\
 u
\end{pmatrix} \sim 0
\]
Recall that $\text{rank}(Q) \leq \min_{Q' \in U}\{\text{rank}(Q')\} \leq \text{mr}(Q)$. The middle term is called the **exhaustive rank** of Q.

For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u. Let $I \subseteq [n]$ and Q_I be the pattern replace those u in ii-entry by \ast if $i \in I$ and 0 if $i \notin I$. Then $U = \{Q_I : I \subseteq [n]\}$. Define \tilde{G}_I to be the bipartite given by Q_I. The inequality become $M(G) \leq \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n \leq Z_Y(\tilde{G}_{[n]}, B) - n$.

The second term is called the **exhaustive zero forcing number** of G. Denote it by $\tilde{Z}(G)$. The third term could be proven to equal $Z(G)$. Hence $M(G) \leq \tilde{Z}(G) \leq Z(G)$.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Recall that $\text{rank}(Q) \leq \min_{Q' \in U} \{\text{rank}(Q')\} \leq \text{mr}(Q)$. The middle term is called the \textit{exhaustive rank} of Q.

For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.

The inequality becomes $M(G) \leq \max_{I \subseteq [n]} Z Y (\tilde{G}_I) - n \leq Z Y (\tilde{G}_{[n]}, B) - n$.

The second term is called the \textit{exhaustive zero forcing number} of G. Denote it by $\tilde{Z}(G)$. The third term could be proven to equal $Z(G)$. Hence $M(G) \leq \tilde{Z}(G) \leq Z(G)$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Recall that $\text{rank}(Q) \leq \min_{Q' \in U} \{ \text{rank}(Q') \} \leq \text{mr}(Q)$. The middle term is called the exhaustive rank of Q.

For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.

Let $I \subseteq [n]$ and Q_I be the pattern replace those u in ii-entry by \ast if $i \in I$ and 0 if $i \notin I$. Then $U = \{ Q_I : I \subseteq [n] \}$. Define \tilde{G}_I to be the bipartite given by Q_I. The inequality becomes

$$M(G) \leq \max_{I \subseteq [n]} Z_{\tilde{Y}}(\tilde{G}_I) - n \leq Z_{\tilde{Y}}(\tilde{G}_{[n]}, B) - n.$$
The Exhaustive Zero Forcing Number

- Recall that $\text{rank}(Q) \leq \min_{Q' \in U} \{\text{rank}(Q')\} \leq \text{mr}(Q)$. The middle term is called the **exhaustive rank** of Q.
- For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.
- Let $I \subseteq [n]$ and Q_I be the pattern replace those u in ii-entry by \ast if $i \in I$ and 0 if $i \notin I$. Then $U = \{Q_I : I \subseteq [n]\}$. Define \tilde{G}_I to be the bipartite given by Q_I.
- The inequality become

$$M(G) \leq \max_{I \subseteq [n]} Z_{\gamma}(\tilde{G}_I) - n \leq Z_{\gamma}(\tilde{G}_{[n]}, B) - n.$$
Recall that \(\text{rank}(Q) \leq \min_{Q' \in U} \{\text{rank}(Q')\} \leq \text{mr}(Q) \). The middle term is called the exhaustive rank of \(Q \).

For a given graph \(G \), there is a corresponding pattern \(Q \) whose diagonal entries are all \(u \).

Let \(I \subseteq [n] \) and \(Q_I \) be the pattern replace those \(u \) in \(ii \)-entry by \(\ast \) if \(i \in I \) and 0 if \(i \notin I \). Then \(U = \{ Q_I : I \subseteq [n] \} \). Define \(\tilde{G}_I \) to be the bipartite given by \(Q_I \).

The inequality become

\[
M(G) \leq \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n \leq Z_Y(\tilde{G}_{[n]}, B) - n.
\]

The second term is called the exhaustive zero forcing number of \(G \). Denote it by \(\tilde{Z}(G) \). The third term could be proven to equal \(Z(G) \).
Recall that $\text{rank}(Q) \leq \min_{Q' \in U} \{\text{rank}(Q')\} \leq \text{mr}(Q)$. The middle term is called the \textit{exhaustive rank} of Q.

For a given graph G, there is a corresponding pattern Q whose diagonal entries are all u.

Let $I \subseteq [n]$ and Q_I be the pattern replace those u in ii-entry by $*$ if $i \in I$ and 0 if $i \notin I$. Then $U = \{Q_I : I \subseteq [n]\}$. Define \tilde{G}_I to be the bipartite given by Q_I.

The inequality become

$$M(G) \leq \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n \leq Z_Y(\tilde{G}_{[n]}, B) - n.$$

The second term is called the \textit{exhaustive zero forcing number} of G. Denote it by $\tilde{Z}(G)$. The third term could be proven to equal $Z(G)$.

Hence $M(G) \leq \tilde{Z}(G) \leq Z(G)$.
For $G = P_3$, the pattern is

$$Q = \begin{pmatrix} u & * & 0 \\ * & u & * \\ 0 & * & u \end{pmatrix}.$$
• For $G = P_3$, the pattern is

$$Q = \begin{pmatrix} u & * & 0 \\ * & u & * \\ 0 & * & u \end{pmatrix}.$$

• For $I = \{1, 3\} \subseteq [3]$, the pattern is

$$Q = \begin{pmatrix} * & * & 0 \\ * & 0 & * \\ 0 & * & * \end{pmatrix}.$$
• For $G = P_3$, the pattern is

$$Q = \begin{pmatrix} u & * & 0 \\ * & u & * \\ 0 & * & u \end{pmatrix}.$$

• For $I = \{1, 3\} \subseteq [3]$, the pattern is

$$Q = \begin{pmatrix} * & * & 0 \\ * & 0 & * \\ 0 & * & * \end{pmatrix}.$$

• $1 = M(P_3) \leq \tilde{Z}(P_3) \leq Z(P_3) = 1$. Hence $\tilde{Z}(G) = 1$.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
Bipartites related to P_3

Applications of z. f. number to the minimum rank problem
Theorem

If G is the bipartite given by a pattern Q, then

$$Z_Y(G, B) = Z_X(G, B).$$

- **Row rank**: maximum number of rows; **Column rank**: maximum number of columns.
Theorem

If G is the bipartite given by a pattern Q, then

$$Z_Y(G, B) = Z_X(G, B).$$

- **Row rank**: maximum number of rows; **Column rank**: maximum number of columns.
- **Row rank** = **Column rank**!
The *n*-sun is a graph obtained by adding *n* leaves to each vertices of C_n.
The *n*-sun

- The *n*-sun is a graph obtained by adding *n* leaves to each vertex of C_n.
- In [4], it was shown $M(H_3) = Z(H_3) = 2$ and $M(H_n) = \lfloor \frac{n}{2} \rfloor$, $Z(H_n) = \lceil \frac{n}{2} \rceil$ for $n \geq 4$.
The n-sun is a graph obtained by adding n leaves to each vertices of C_n.

In [4], it was shown $M(H_3) = Z(H_3) = 2$ and $M(H_n) = \left\lfloor \frac{n}{2} \right\rfloor$, $Z(H_n) = \left\lfloor \frac{n}{2} \right\rfloor$ for $n \geq 4$.

But $M(G) = \tilde{Z}(H_n)$ for all $n \geq 3$!
The n-sun is a graph obtained by adding n leaves to each vertices of C_n.

In [4], it was shown $M(H_3) = Z(H_3) = 2$ and $M(H_n) = \lceil \frac{n}{2} \rceil$, $Z(H_n) = \lceil \frac{n}{2} \rceil$ for $n \geq 4$.

But $M(G) = \tilde{Z}(H_n)$ for all $n \geq 3$!

The computation could either by discussion on the patterns of those leaves or by the sieving process given below.
The n-sun

- The n-sun is a graph obtained by adding n leaves to each vertices of C_n.
- In [4], it was shown $M(H_3) = Z(H_3) = 2$ and $M(H_n) = \left\lceil \frac{n}{2} \right\rceil$, $Z(H_n) = \left\lfloor \frac{n}{2} \right\rfloor$ for $n \geq 4$.
- But $M(G) = \tilde{Z}(H_n)$ for all $n \geq 3$!
- The computation could either by discussion on the patterns of those leaves or by the sieving process given below.
- The parameter $\tilde{Z}(G)$ is still not sharp for some cactus.
Example for Sieving Process

If $Z(\overline{H_{5l}}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

$$\tilde{Z}(G) = 12 - 10 = 2.$$
If \(Z(\overline{H_5}) - 10 = 3 \) for some \(I \), then \(1 \in I \) and \(2 \notin I \), a contradiction.

\[\tilde{Z}(G) = 12 - 10 = 2. \]
Example for Sieving Process

- If $Z(\widetilde{H_{5,l}}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

$$\tilde{Z}(G) = 12 - 10 = 2.$$
Example for Sieving Process

If $Z(\tilde{\mathcal{H}_{5l}}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

$$
\tilde{Z}(G) = 12 - 10 = 2.
$$
Example for Sieving Process

- If $Z(\widehat{H}_{5I}) - 10 = 3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.

$$\tilde{Z}(G) = 12 - 10 = 2.$$
Example for Sieving Process

If $Z(\widetilde{H}_5 I) - 10 = 3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.

$\widetilde{Z}(G) = 12 - 10 = 2$.

[Diagram of graphs showing vertices labeled 1 to 5 with arrows indicating direction]
Example for Sieving Process

- If $Z(\widehat{H_{5I}}) - 10 = 3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.

\[\tilde{Z}(G) = 12 - 10 = 2. \]
Example for Sieving Process

If \(Z(\tilde{H}_{5I}) - 10 = 3 \) for some \(I \), then \(1 \in I \) and \(2 \notin I \), a contradiction.

\[
\tilde{Z}(G) = 12 - 10 = 2.
\]
Example for Sieving Process

- If $\tilde{Z}(\tilde{\mathcal{H}}_{5,l}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

\[
\tilde{Z}(G) = 12 - 10 = 2.
\]
Example for Sieving Process

- If $Z(\widehat{H_{5,l}}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

- $\tilde{Z}(G) = 12 - 10 = 2$.
Example for Sieving Process

If $Z(\widetilde{H}_{5I}) - 10 = 3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.

$$\widetilde{Z}(G) = 12 - 10 = 2.$$
Example for Sieving Process

If $Z(\overline{H}_{5I}) - 10 = 3$ for some I, then $1 \in I$ and $2 \notin I$, a contradiction.

$\tilde{Z}(G) = 12 - 10 = 2.$
If $\tilde{Z}(H_{5,l}) - 10 = 3$ for some l, then $1 \in l$ and $2 \notin l$, a contradiction.

$\tilde{Z}(G) = 12 - 10 = 2$.
Edge vs Nonedge

- Edge: **Increase** number of neighbor; **Increase** possible route for passing.

- Nonedge: **Decrease** number of neighbor; **Decrease** possible route for passing.

The BAD guy Banned

Edge: **Increase** number of neighbor; **Decrease** possible route for passing.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Edge vs Nonedge

- **Edge**: *Increase* number of neighbor; *Increase* possible route for passing.
- **Nonedge**: *Decrease* number of neighbor; *Decrease* possible route for passing.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Edge vs Nonedge

- **Edge**: *Increase* number of neighbor; *Increase* possible route for passing.
- **Nonedge**: *Decrease* number of neighbor; *Decrease* possible route for passing.
- The BAD guy Banned Edge: *Increase* number of neighbor; *Decrease* possible route for passing.
Rewrite

\[\tilde{Z}(G) = \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n = \max \{ k : k = Z_Y(\tilde{G}_I) - n \text{ for some } I \}. \]
Rewrite

\[\tilde{Z}(G) = \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n = \max\{ k : k = Z_Y(\tilde{G}_I) - n \text{ for some } I \} . \]

Let \(\mathcal{I}_k(G) = \{ I \subseteq [n] : Z_Y(\tilde{G}_I) - n \geq k \} \).
Rewrite

\[\tilde{Z}(G) = \max_{l \subseteq [n]} Z_Y(\tilde{G}_l) - n = \max \{ k : k = Z_Y(\tilde{G}_l) - n \text{ for some } l \} . \]

Let \(\mathcal{I}_k(G) = \{ l \subseteq [n] : Z_Y(\tilde{G}_l) - n \geq k \} \).

\[\tilde{Z}(G) = \max \{ k : \mathcal{I}_k \neq \emptyset \} . \]
Rewrite

\[\tilde{Z}(G) = \max_{I \subseteq [n]} Z_Y(\tilde{G}_I) - n = \max \{ k : k = Z_Y(\tilde{G}_I) - n \text{ for some } I \} . \]

Let \(\mathcal{I}_k(G) = \{ I \subseteq [n] : Z_Y(\tilde{G}_I) - n \geq k \} . \)

\[\tilde{Z}(G) = \max \{ k : \mathcal{I}_k \neq \emptyset \} . \]

Each \(F \supseteq Y \) with size \(n + k - 1 \) is a sieve for \(\mathcal{I}_k(G) \) to delete impossible index sets.
Nonzero-vertex and Zero-vertex

- If \(i \in l \) for all \(l \in \mathcal{I}_k(G) \), then \(i \) is called a nonzero-vertex.
If \(i \in l \) for all \(l \in \mathcal{I}_k(G) \), then \(i \) is called a **nonzero-vertex**.

If \(i \notin l \) for all \(l \in \mathcal{I}_k(G) \), then \(i \) is called a **zero-vertex**.
If \(i \in I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a \textbf{nonzero-vertex}.

If \(i \notin I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a \textbf{zero-vertex}.

Each leaf in \(H_5 \) is a zero-vertex and nonzero-vertex in \(\mathcal{I}_3(H_5) \) simultaneously. Hence \(\mathcal{I}_3(H_5) = \emptyset \).
Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_k(G)$, then i is called a nonzero-vertex.
- If $i \notin I$ for all $I \in \mathcal{I}_k(G)$, then i is called a zero-vertex.
- Each leaf in H_5 is a zero-vertex and nonzero-vertex in $\mathcal{I}_3(H_5)$ simultaneously. Hence $\mathcal{I}_3(H_5) = \emptyset$.
- For $G = K_n$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_1(G)$.

Applications of z. f. number to the minimum rank problem
Nonzero-vertex and Zero-vertex

- If \(i \in I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a **nonzero-vertex**.
- If \(i \notin I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a **zero-vertex**.
- Each leaf in \(H_5 \) is a zero-vertex and nonzero-vertex in \(\mathcal{I}_3(H_5) \) simultaneously. Hence \(\mathcal{I}_3(H_5) = \emptyset \).
- For \(G = K_n \), each vertex is a nonzero-vertex in \(\mathcal{I}_{n-1}(G) \) for \(n \geq 2 \) while a zero-vertex in \(\mathcal{I}_1(G) \).
- For \(G = K_{1,t} \), \(t \geq 2 \), each leaf is a zero-vertex in \(\mathcal{I}_{t-1}(G) \).
Nonzero-vertex and Zero-vertex

If \(i \in I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a nonzero-vertex.

If \(i \notin I \) for all \(I \in \mathcal{I}_k(G) \), then \(i \) is called a zero-vertex.

Each leaf in \(H_5 \) is a zero-vertex and nonzero-vertex in \(\mathcal{I}_3(H_5) \) simultaneously. Hence \(\mathcal{I}_3(H_5) = \emptyset \).

For \(G = K_n \), each vertex is a nonzero-vertex in \(\mathcal{I}_{n-1}(G) \) for \(n \geq 2 \) while a zero-vertex in \(\mathcal{I}_1(G) \).

For \(G = K_{1,t}, t \geq 2 \), each leaf is a zero-vertex in \(\mathcal{I}_{t-1}(G) \).

For multi-partite \(G \) with more than one part and more than two vertices in each parts, each vertex is a zero-vertex in \(\mathcal{I}_{n-2}(G), n = |V(G)| \).
Nonzero-vertex and Zero-vertex

- If $i \in I$ for all $I \in \mathcal{I}_k(G)$, then i is called a **nonzero-vertex**.
- If $i \notin I$ for all $I \in \mathcal{I}_k(G)$, then i is called a **zero-vertex**.

Each leaf in H_5 is a zero-vertex and nonzero-vertex in $\mathcal{I}_3(H_5)$ simultaneously. Hence $\mathcal{I}_3(H_5) = \emptyset$.

For $G = K_n$, each vertex is a nonzero-vertex in $\mathcal{I}_{n-1}(G)$ for $n \geq 2$ while a zero-vertex in $\mathcal{I}_1(G)$.

For $G = K_{1,t}$, $t \geq 2$, each leaf is a zero-vertex in $\mathcal{I}_{t-1}(G)$.

For multi-partite G with more than one part and more than two vertices in each parts, each vertex is a zero-vertex in $\mathcal{I}_{n-2}(G)$, $n = |V(G)|$.

We know $Z(G_k) = 2k + 1$ and $M(G_k) = k + 1$. By sieving process, $\tilde{Z}(G_k) = k + 1!$ Here G_k is the k 5-sun sequence.
Example for Stronger Upper Bound 1

- $M(G) \leq Z(G) = 7$. Each vertex is a zero-vertex in \mathcal{I}_7.

![Graph Image]
Example for Stronger Upper Bound 1

- $M(G) \leq Z(G) = 7$. Each vertex is a zero-vertex in \mathcal{I}_7.
- If $A \in S(G)$ has nullity 7, we may assume

$$A = \begin{pmatrix} O & J & J \\ J & O & B^t \\ J & B & O \end{pmatrix}.$$

The matrix A has the same nullity 7. It is impossible when $char \neq 2$.

- $M(G) \leq 6$. And actually $M(G) = 6$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Example for Stronger Upper Bound 1

- $M(G) \leq Z(G) = 7$. Each vertex is a zero-vertex in I_7.
- If $A \in S(G)$ has nullity 7, we may assume

 $$A = \begin{pmatrix} O & J & J \\ J & O & B^t \\ J & B & O \end{pmatrix}.$$

- The matrix

 $$\begin{pmatrix} O & J & O \\ J & O & B^t \\ O & B & -B - B^t \end{pmatrix}$$

 has the same nullity 7.
Example for Stronger Upper Bound 1

- \(M(G) \leq Z(G) = 7 \). Each vertex is a zero-vertex in \(I_7 \).
- If \(A \in S(G) \) has nullity 7, we may assume
 \[
 A = \begin{pmatrix}
 O & J & J \\
 J & O & B^t \\
 J & B & O
 \end{pmatrix}.
 \]

- The matrix
 \[
 \begin{pmatrix}
 O & J & O \\
 J & O & B^t \\
 O & B & -B - B^t
 \end{pmatrix}
 \]
 has the same nullity 7.
- \(-B - B^t = O\). It is impossible when \text{char} \neq 2.
Example for Stronger Upper Bound 1

- $M(G) \leq Z(G) = 7$. Each vertex is a zero-vertex in I_7.
- If $A \in S(G)$ has nullity 7, we may assume
 \[
 A = \begin{pmatrix}
 O & J & J \\
 J & O & B^t \\
 J & B & O
 \end{pmatrix}.
 \]
- The matrix
 \[
 \begin{pmatrix}
 O & J & O \\
 J & O & B^t \\
 O & B & -B - B^t
 \end{pmatrix}
 \]
 has the same nullity 7.
- $-B - B^t = O$. It is impossible when char $\neq 2$.
- $M(G) \leq 6$. And actually $M(G) = 6$.

![Graph diagram]
Theorem

For a graph G, suppose i is a nonzero-vertex in $\mathcal{I}_k(G)$. And $\eta_i(G)$ denote the set of those graphs obtained from G by the following rules:

- The vertex i should be deleted;
- For any neighbors x and y of i, the pair xy should be an edge if $xy \notin E(G)$ and could be an edge or a non-edge if $xy \in E(G)$.

If the nullity k is achievable by some matrix in $S(G)$, then

$$k \leq \max\{M(H) : H \in \eta_i(G)\}.$$
If k is achievable by $A \in \mathcal{S}(G)$, assume

$$A = \begin{pmatrix} 1 & a^t & 0 \\ a & \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{21} & \tilde{A}_{22} \end{pmatrix}.$$

The nullity of A should be less than the maximum nullity of each possible matrix P.

Chin-Hung Lin

Applications of z. f. number to the minimum rank problem
If k is achievable by $A \in \mathcal{S}(G)$, assume

$$A = \begin{pmatrix} 1 & a^t & 0 \\ a & \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{21} & \hat{A}_{22} \end{pmatrix}.$$

The matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \hat{B}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{21} & \hat{A}_{22} \end{pmatrix}$$

has the same nullity, where $\hat{B}_{11} = \hat{A} - aa^t$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Sketch of Proof

- If k is achievable by $A \in \mathcal{S}(G)$, assume

\[
A = \begin{pmatrix}
1 & a^t & 0 \\
0 & \widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{pmatrix}.
\]

- The matrix

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \widehat{B}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{21} & \widehat{A}_{22}
\end{pmatrix}
\]

has the same nullity, where $\widehat{B}_{11} = \widehat{A} - aa^t$.

- The nullity of A should be less than the maximum nullity of each possible matrix P.

For a graph G, suppose i is a zero-vertex in $\mathcal{I}_k(G)$ and j is a neighbor of i. Let

$$N_1 = \{v: iv \in E(G), v \neq j\}, \quad N_2 = \{v: jv \in E(G), iv \notin E(G), v \neq i\}.$$

And $\eta_{i \rightarrow j}(G)$ denote the set of those graphs obtained from G by the following rules:

- The vertex i and j should be deleted;
- For $x \in N_1$ and $y \in N_2$, the pair xy should be an edge if $xy \notin E(G)$ and could be an edge or a non-edge if $xy \in E(G)$;
- For x and y in N_1, the pair xy could be an edge or a non-edge.

If the nullity k is achievable by some matrix in $S(G)$, then

$$k \leq \max\{M(H): H \in \eta_{i \rightarrow j}(G)\}.$$
If k is achievable by $A \in \mathcal{S}(G)$, assume

$$A = \begin{pmatrix} \alpha & a^t & O \\ a & \hat{A}_{11} & \hat{A}_{12} \\ O & \hat{A}_{21} & \hat{A}_{22} \end{pmatrix}.$$

Here α has the form \(\begin{pmatrix} 0 & * \\ * & u \end{pmatrix} \) and α^{-1} has the form \(\begin{pmatrix} u & * \\ * & 0 \end{pmatrix} \).
Sketch of Proof

- If k is achievable by $A \in S(G)$, assume
 \[
 A = \begin{pmatrix}
 \alpha & a^t & 0 \\
 a & \hat{A}_{11} & \hat{A}_{12} \\
 0 & \hat{A}_{21} & \hat{A}_{22}
 \end{pmatrix}.
 \]

 Here α has the form \(\begin{pmatrix} 0 & * \\ * & u \end{pmatrix} \) and α^{-1} has the form \(\begin{pmatrix} u & * \\ * & 0 \end{pmatrix} \).

- The matrix P then the matrix
 \[
 P = \begin{pmatrix}
 \alpha & O & O \\
 O & \hat{B}_{11} & \hat{A}_{12} \\
 O & \hat{A}_{21} & \hat{A}_{22}
 \end{pmatrix}
 \]

 has the same nullity, where $\hat{B}_{11} = \hat{A} - a\alpha^{-1}a^t$.
Sketch of Proof

- If \(k \) is achievable by \(A \in S(G) \), assume

\[
A = \begin{pmatrix}
\alpha & a^t & O \\
0 & \hat{A}_{11} & \hat{A}_{12} \\
O & \hat{A}_{21} & \hat{A}_{22}
\end{pmatrix}.
\]

Here \(\alpha \) has the form \(\begin{pmatrix} 0 & * \\ * & u \end{pmatrix} \) and \(\alpha^{-1} \) has the form \(\begin{pmatrix} u & * \\ * & 0 \end{pmatrix} \).

- The matrix Then the matrix

\[
P = \begin{pmatrix}
\alpha & O & O \\
O & \hat{B}_{11} & \hat{A}_{12} \\
O & \hat{A}_{21} & \hat{A}_{22}
\end{pmatrix}
\]

has the same nullity, where \(\hat{B}_{11} = \hat{A} - a\alpha^{-1}a^t \).

- The nullity of \(A \) should be less than the maximum nullity of each possible matrix \(P \).
Example for Stronger Upper Bound 2

\[\tilde{Z}(G) = Z(G) = P(G) = 3. \]
Example for Stronger Upper Bound 2

- $\tilde{Z}(G) = Z(G) = P(G) = 3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_3.

![Graph with vertices labeled 1 to 15 and edges connecting them.](image-url)
Example for Stronger Upper Bound 2

- $\tilde{Z}(G) = Z(G) = P(G) = 3$.
- The vertex 1 is a nonzero-vertex in I_3.
- $G - 1$ is the only graph in $\eta_1(G)$.

![Graph Image]
\[\tilde{Z}(G) = Z(G) = P(G) = 3. \]

- The vertex 1 is a nonzero-vertex in \(I_3 \).
- \(G - 1 \) is the only graph in \(\eta_1(G) \).
- If 3 is achievable, then \(3 \leq M(G - 1) \leq 2 \), a contradiction.

Hence \(M(G) \leq 2 \).
\[Z(G) = 4 \text{ and } P(G) = 3. \]
Example for Stronger Upper Bound 3

- $Z(G) = 4$ and $P(G) = 3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_4.
Example for Stronger Upper Bound 3

- $Z(G) = 4$ and $P(G) = 3$.
- The vertex 1 is a nonzero-vertex in \mathcal{I}_4.
- Let $e = 23$. Then $G - 1$ and $G - 1 - e$ are the only two graphs in $\eta_1(G)$.
• $Z(G) = 4$ and $P(G) = 3$.
• The vertex 1 is a nonzero-vertex in I_4.
• Let $e = 23$. Then $G - 1$ and $G - 1 - e$ are the only two graphs in $\eta_1(G)$.
• If 4 is achievable, then $4 \leq \max\{M(G - 1), M(G - 1 - e)\} \leq 3$, a contradiction. Hence $M(G) \leq 3$.
\[Z(G) = P(G) = 5. \]
Example for Stronger Upper Bound 4

- $Z(G) = P(G) = 5$.
- The vertex 1 is a zero-vertex.
Example for Stronger Upper Bound 4

- \(Z(G) = P(G) = 5. \)
- The vertex 1 is a zero-vertex.
- \(\eta_{1\rightarrow 2}(G) \) contains only one graph \(H \).
Example for Stronger Upper Bound 4

- $Z(G) = P(G) = 5$.
- The vertex 1 is a zero-vertex.
- $\eta_{1\rightarrow 2}(G)$ contains only one graph H.
- If 5 is achievable, then $5 \leq M(H) \leq 4$, a contradiction. Hence $M(G) \leq 4$.

![Diagram of graphs G and $\eta_{1\rightarrow 2}(G)$]
Example for Stronger Upper Bound 5

- $Z(G) = P(G) = 6$.

The vertex 5 is a nonzero-vertex. List $\eta_1(G)$. $P(G_i) \leq 5$ for $i = 1, 2, 3, 4$. And they are outerplanar. $M(G_5) = 5$ by reduction formula. $M(G_4) \leq 5$ by doing nonzero elimination lemma again on 1. If 6 is achievable, then $6 \leq 5$, a contradiction. Hence $M(G) \leq 5$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Example for Stronger Upper Bound 5

- \(Z(G) = P(G) = 6\).
- The vertex 5 is a nonzero-vertex.
Example for Stronger Upper Bound 5

- $Z(G) = P(G) = 6$.
- The vertex 5 is a nonzero-vertex.
- List $\eta_1(G)$. $P(G_i) \leq 5$ for $i = 1, 2, 3, 4$. And they are outerplanar. $M(G_5) = 5$ by reduction formula. $M(G_4) \leq 5$ by doing nonzero elimination lemma again on 1.
Example for Stronger Upper Bound 5

- $Z(G) = P(G) = 6$.
- The vertex 5 is a nonzero-vertex.
- List $\eta_1(G)$. $P(G_i) \leq 5$ for $i = 1, 2, 3, 4$. And they are outerplanar. $M(G_5) = 5$ by reduction formula. $M(G_4) \leq 5$ by doing nonzero elimination lemma again on 1.
- If 6 is achievable, then $6 \leq 5$, a contradiction. Hence $M(G) \leq 5$.

[Diagrams of graphs]
Corollary

If i is a vertex of a graph G and j is a neighbor of i, then

$$M(G) \leq \max\{M(H) : H \in \eta_i(G) \cup \eta_{i \rightarrow j}(G)\}.$$
A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

The enhanced zero forcing number $\tilde{Z}(G)$ is the maximum of $Z(\tilde{G})$ over all looped graphs \tilde{G} obtained from G by adding loops on vertices of G.

$M(G) \leq \tilde{Z}(G) \leq Z(G)$. [9]

Theorem

$\tilde{Z}(G) = \hat{Z}(G)$ for all graph G.

Applications of z. f. number to the minimum rank problem
A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph \widehat{G} is the coloring process with the following rules:

- Each vertex of \widehat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.

The enhanced zero forcing number $\widehat{Z}(G)$ is the maximum of $Z(\widehat{G})$ over all looped graph \widehat{G} obtained from G by adding loops on vertices of G.

$M(G) \leq \widehat{Z}(G) \leq Z(G)$. [9]

Theorem

$\tilde{Z}(G) = \hat{Z}(G)$ for all graph G.
A looped graph is a graph that allows loops. A vertex \(x \) is a neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph \(\widehat{G} \) is the coloring process with the following rules:
- Each vertex of \(\widehat{G} \) is either black or white initially.

The enhanced zero forcing number \(\widehat{Z}(G) \) is the maximum of \(Z(\widehat{G}) \) over all looped graph \(\widehat{G} \) obtained from \(G \) by adding loops on vertices of \(G \).

\[M(G) \leq \widehat{Z}(G) \leq Z(G). \]

Theorem

\[\widehat{Z}(G) = Z(G) \] for all graph \(G \).
A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph \hat{G} is the coloring process with the following rules:

- Each vertex of \hat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.

Theorem

$\tilde{Z}(G) = \hat{Z}(G)$ for all graph G.

Applications of z. f. number to the minimum rank problem
A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph \tilde{G} is the coloring process with the following rules:

- Each vertex of \tilde{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.

The enhanced zero forcing number $\tilde{Z}(G)$ is the maximum of $Z(\tilde{G})$ over all looped graph \tilde{G} obtained from G by adding loops on vertices of G.

Theorem

$\tilde{Z}(G) = \tilde{Z}(G)$ for all graph G.
A looped graph is a graph that allows loops. A vertex x is a neighbor of itself if and only if there is a loop on it.

The zero forcing process on a looped graph \hat{G} is the coloring process with the following rules:
- Each vertex of \hat{G} is either black or white initially.
- If y is the only white neighbor of x, then change the color of y to black.

The enhanced zero forcing number $\hat{Z}(G)$ is the maximum of $Z(\hat{G})$ over all looped graph \hat{G} obtained from G by adding loops on vertices of G.

$M(G) \leq \hat{Z}(G) \leq Z(G).$[9]

Theorem

$\tilde{Z}(G) = \hat{Z}(G)$ for all graph G.
A **t-triangle** of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.

Theorem

$$\text{rank}(Q) = \text{tri}(Q) \text{ for all pattern } Q.$$
A \textit{t-triangle} of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.

The \textit{triangular number} of pattern Q, denote by $\text{tri}(Q)$, is the maximum size of triangle in Q.

\textbf{Theorem}

\[\text{rank}(Q) = \text{tri}(Q) \text{ for all pattern } Q. \]
A \textit{t-triangle} of Q is a $t \times t$ subpattern that is permutation similar to a pattern that is upper triangular with all diagonal entries nonzero.

The \textbf{triangular number} of pattern Q, denote by $\text{tri}(Q)$, is the maximum size of triangle in Q.

$\text{mr}(Q) \geq \text{tri}(Q)$.

\textbf{Theorem}

$\text{rank}(Q) = \text{tri}(Q)$ \textit{for all pattern} Q.
The edge spread of zero forcing number on an edge e is
\[z_e(G) = Z(G) - Z(G - e). \]
The edge spread of zero forcing number on an edge e is $z_e(G) = Z(G) - Z(G - e)$.

Theorem 2.21 in [7] says that if $z_e(G) = -1$, then for every optimal zero forcing chain set of G, e is an edge in a chain.
The edge spread of zero forcing number on an edge e is
\[z_e(G) = Z(G) - Z(G - e). \]

Theorem 2.21 in [7] says that if \(z_e(G) = -1 \), then for every optimal zero forcing chain set of G, e is an edge in a chain.

Question 2.22 in [7] ask whether the converse of Theorem 2.21 is true.
The Counterexample

- T is the turtle graph. $G = (X \cup Y, E)$ is construct from T by

 \[X = \{a_1, a_2, \ldots, a_{14}\}, \quad Y = \{b_1, b_2, \ldots, b_{14}\}, \]

 and

 \[E(G) = E_1 \cup E_2, \]

 where

 \[E_1 = \{a_i a_j: i \neq j\} \cup \{b_i b_j: i \neq j\}, \quad E_2 = \{a_i b_j: ij \in E(T) \text{ or } i = j\}. \]
Each optimal zero forcing set of G is of the forms:

- $F_0 = Y \cup \{u, v\}$, where u could be a_3 or a_4 and v could be a_6 or a_7.
- $\{a_3, a_4, p\} \cup (Y - y)$ or $\{a_6, a_7, q\} \cup (Y - y)$, where p could be a_6 or a_7, q could be a_3 or a_4, and y is an arbitrarily vertex in Y.
The Counterexample

- Each optimal zero forcing set of G is of the forms:
 - F_0 or its automorphism types. $F_0 = Y \cup \{u, v\}$, where u could be a_3 or a_4 and v could be a_6 or a_7.

Diagram:

- The edge $e = a_1 b_1$ is used in each optimal zero forcing set.
- $Z(G) = Z(G - e) = 16$ and so $z_e(G) = 0 \neq -1$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
The Counterexample

- Each optimal zero forcing set of G is of the forms:
 - F_0 or its automorphism types. $F_0 = Y \cup \{u, v\}$, where u could be a_3 or a_4 and v could be a_6 or a_7.
 - $\{a_3, a_4, p\} \cup (Y - y)$ or $\{a_6, a_7, q\} \cup (Y - y)$ or its automorphism types, where p could be a_6 or a_7, q could be a_3 or a_4, and y is an arbitrarily vertex in Y.

![Graph with vertices and edges labeled 1 to 14]
Each optimal zero forcing set of G is of the forms:

- F_0 or its automorphism types. $F_0 = Y \cup \{u, v\}$, where u could be a_3 or a_4 and v could be a_6 or a_7.
- $\{a_3, a_4, p\} \cup (Y - y)$ or $\{a_6, a_7, q\} \cup (Y - y)$ or its automorphism types, where p could be a_6 or a_7, q could be a_3 or a_4, and y is an arbitrarily vertex in Y.

The edge $e = a_1b_1$ is used in each optimal zero forcing set. But $Z(G) = Z(G - e) = 16$ and so $z_e(G) = 0 \neq -1$.

Chin-Hung Lin
Applications of z. f. number to the minimum rank problem
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\tilde{Z}(G)$.

Symmetry condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs. Sym and Not Sym is different!

$$mr(Q) = 3$$ if Sym while $$mr(Q) = 2$$ if Not Sym.

The proof in [13] of $M(C_n) = 2$ could be generalized.

$$mr(G) = mrs(Q(G)) = \min\{mrs(Q(I(G)))\}$$. So it is still valuable to consider zero-nonzero symmetric min rank problem.
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\tilde{Z}(G)$.
- “Symmetry” condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.

The proof in [13] of $M(C_n) = 2$ could be generalized.
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\tilde{Z}(G)$.
- “Symmetry” condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $mr(Q) = 3$ if Sym while $mr(Q) = 2$ if Not Sym.

$$Q = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}.$$
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\tilde{Z}(G)$.
- “Symmetry” condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $mr(Q) = 3$ if Sym while $mr(Q) = 2$ if Not Sym.

$$Q = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}. $$

- The proof in [13] of $M(C_n) = 2$ could be generalized.
Further Goals for The Minimum Rank Problem

- Reduction formula on k-separate.
- Reduction Formula for $\tilde{Z}(G)$.
- “Symmetry” condition was seldom used. There must be some parameter between $\tilde{Z}(G)$ and $M(G)$ and it is sharp for cactus graphs.
- Sym and Not Sym is different! $mr(Q) = 3$ if Sym while $mr(Q) = 2$ if Not Sym.

\[
Q = \begin{pmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{pmatrix}.
\]

- The proof in [13] of $M(C_n) = 2$ could be generalized.
- $mr(G) = mrs(Q(G)) = \min\{mrs(Q_I(G))\}$. So it is still valuable to consider zero-nonzero symmetric min rank problem.

C. J. Edholm, L. Hogben, M. Huynh, J. LaGrange, and D. D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and maximum rank of a graph, *Hogben’s Homepage*.

