$\qquad$學號 Student ID \＃： $\qquad$
MATH 104：Linear Algebra II
Quiz 3

Let

$$
A=\left[\begin{array}{ccc}
-11 & 5 & -16 \\
0 & -4 & 0 \\
8 & -7 & 13
\end{array}\right] .
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}+2 x^{2}-23 x-60
$$

and the eigenvalues are

$$
\{5,-3,-4\} .
$$

Therefore，$S=12$ ．
Check code $=S \bmod 10=2$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-3 & -1 & 0 \\
2 & -6 & 0 \\
-1 & 1 & -4
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}+13 x^{2}+56 x+80
$$

and the eigenvalues are

$$
\{-5,-4,-4\} .
$$

Therefore，$S=13$ ．
Check code $=S \bmod 10=3$.
$\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
30 & 4 & 56 \\
30 & 7 & 63 \\
-16 & -2 & -30
\end{array}\right] .
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-7 x^{2}+2 x+40
$$

and the eigenvalues are

$$
\{5,4,-2\} .
$$

Therefore，$S=11$ ．
Check code $=S \bmod 10=1$.
$\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-10 & -6 & 6 \\
18 & 11 & -12 \\
10 & 7 & -8
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}+7 x^{2}+14 x+8
$$

and the eigenvalues are

$$
\{-1,-2,-4\} .
$$

Therefore，$S=7$ ．
Check code $=S \bmod 10=7$.

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-9 & -8 & 6 \\
22 & 21 & -18 \\
8 & 8 & -7
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-5 x^{2}-x+5
$$

and the eigenvalues are

$$
\{5,1,-1\} .
$$

Therefore，$S=7$ ．
Check code $=S \bmod 10=7$.

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-39 & 70 & 98 \\
-20 & 36 & 47 \\
-2 & 4 & 7
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-4 x^{2}-17 x+60
$$

and the eigenvalues are

$$
\{5,3,-4\} .
$$

Therefore，$S=12$ ．
Check code $=S \bmod 10=2$.

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
MATH 104：Linear Algebra II
Quiz 3

Let

$$
A=\left[\begin{array}{ccc}
5 & -36 & 66 \\
4 & -31 & 58 \\
2 & -14 & 26
\end{array}\right] .
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-7 x+6
$$

and the eigenvalues are

$$
\{2,1,-3\} .
$$

Therefore，$S=6$ ．
Check code $=S \bmod 10=6$.

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-29 & 38 & 48 \\
-15 & 20 & 24 \\
-6 & 8 & 10
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-x^{2}-4 x+4
$$

and the eigenvalues are

$$
\{2,1,-2\} .
$$

Therefore，$S=5$ ．
Check code $=S \bmod 10=5$.
$\qquad$學號 Student ID \＃： $\qquad$
Quiz 3
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-9 & 2 & 26 \\
-8 & 5 & 16 \\
-4 & 0 & 13
\end{array}\right] .
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-9 x^{2}+23 x-15
$$

and the eigenvalues are

Therefore，$S=9$ ．
Check code $=S \bmod 10=9$.

姓名 Name： $\qquad$學號 Student ID \＃： $\qquad$
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
25 & 60 & -60 \\
-13 & -31 & 33 \\
-3 & -6 & 8
\end{array}\right]
$$

Suppose the eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

## Solution．

The characteristic polynomial of $A$ is

$$
x^{3}-2 x^{2}-25 x+50
$$

and the eigenvalues are

$$
\{5,2,-5\} .
$$

Therefore，$S=12$ ．
Check code $=S \bmod 10=2$.

