\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 5 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. Let \mathbf{x}, \mathbf{y}, and \mathbf{z} be vectors in \mathbb{R}^{3}. Let

$$
\begin{gathered}
A=\left[\begin{array}{lll}
- & \mathbf{x} & - \\
- & \mathbf{y} & - \\
- & \mathbf{z} & -
\end{array}\right], B=\left[\begin{array}{ccc}
- & \mathbf{y} & - \\
- & \mathbf{x} & - \\
- & \mathbf{z} & -
\end{array}\right], C=\left[\begin{array}{ccc}
- & 2 \mathbf{x} & - \\
- & 3 \mathbf{y} & - \\
- & 4 \mathbf{z} & -
\end{array}\right] \\
D=\left[\begin{array}{ccc}
- & \mathbf{x} & - \\
- & 3 \mathbf{x}+\mathbf{y} & - \\
- & 4 \mathbf{x}+\mathbf{z} & -
\end{array}\right], E=\left[\begin{array}{ccc}
- & \mathbf{x}+2 \mathbf{y} & - \\
- & \mathbf{y}+2 \mathbf{z} & - \\
- & \mathbf{z}+2 \mathbf{x} & -
\end{array}\right], F=\left[\begin{array}{ccc}
- & \mathbf{x}+\mathbf{z} & - \\
- & \mathbf{y} & - \\
- & \mathbf{x}+\mathbf{z} & -
\end{array}\right] .
\end{gathered}
$$

Let $\operatorname{det}(A)=\Delta$.
(a) $[1 \mathrm{pt}]$ Find $\operatorname{det}(B)$. Provide your reasons.
(b) $[1 \mathrm{pt}]$ Find $\operatorname{det}(C)$. Provide your reasons.
(c) [1pt] Find $\operatorname{det}(D)$. Provide your reasons.
(d) $[1 \mathrm{pt}]$ Find $\operatorname{det}(E)$. Provide your reasons.
(e) $[1 \mathrm{pt}]$ Find $\operatorname{det}(F)$. Provide your reasons.
2. Let

$$
A=\left[\begin{array}{llll}
a & b & c & d \\
1 & 2 & 1 & 0 \\
1 & 0 & 2 & 1 \\
2 & 2 & 1 & 1
\end{array}\right]
$$

(a) $[4 \mathrm{pt}]$ Find $\operatorname{det}(A)$ in terms of variables a, b, c, and d.
(b) [1pt] Find some nonzero values of a, b, c and d such that $\operatorname{det}(A)$ is zero.
3. [5pt] Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & 12 \\
12 & -9 & 28
\end{array}\right] .
$$

Write A as a product of elementary matrices.
4. [5pt] Mathematical essay: Write a few paragraphs to introduce permutation expansion.
Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

5. [extra 2pt] Let

$$
A=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

be a 10×10 matrix. Find $\operatorname{det}(A)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

