\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. Let

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -3
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Find an eigenvector of A and write down its corresponding eigenvalue.
(b) $[1 \mathrm{pt}]$ Find a nonzero vector that is not an eigenvector of A.
(c) $[1 \mathrm{pt}]$ Find A^{100}.
(d) $[1 \mathrm{pt}]$ Find the characteristic polynomial of A.
(e) $[1 \mathrm{pt}]$ Find the spectrum of A.
2. Suppose we know that

$$
\left[\begin{array}{ll}
0 & 1 \\
4 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 / 5 & 1 / 5 \\
4 / 5 & -1 / 5
\end{array}\right]
$$

(a) $[3 \mathrm{pt}]$ Find the formula of a_{n} in the recurrence relation

$$
\left\{\begin{aligned}
a_{n+2} & =3 a_{n+1}+4 a_{n} \\
a_{0} & =1, a_{1}=0
\end{aligned}\right.
$$

(b) [2pt] Let x_{1} and x_{2} be functions in t. Solve the system of differential equations. (Remember to add constants at appropriate places.)

$$
\begin{cases}\dot{x}_{1}= & x_{2} \\ \dot{x}_{2}=4 x_{1} & +3 x_{2}\end{cases}
$$

3. [5pt] Let

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Find the characteristic polynomial and the spectrum of A.
4. [5pt] Suppose we know that

$$
\left[\begin{array}{cc}
73 & 36 \\
36 & 52
\end{array}\right]=\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
-4 / 5 & 3 / 5
\end{array}\right]\left[\begin{array}{cc}
25 & 0 \\
0 & 100
\end{array}\right]\left[\begin{array}{cc}
3 / 5 & -4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right] .
$$

Describe the ellipse defined by

$$
73 x^{2}+72 x y+52 y^{2}=1,
$$

including the directions and the length of its axes. Provide reasons to your answers.
5. [extra 2 pt$]$ Let A be the 10×10 matrix

$$
\left[\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right] .
$$

Let

$$
\operatorname{det}(A-x I)=a_{0} x^{10}+a_{1} x^{9}+a_{2} x^{8}+\cdots+a_{10}
$$

be its characteristic polynomial. Find a_{2}.
6. [extra 5pt] Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find an invertible matrix Q and a diagonal matrix D such that $A=$ $Q D Q^{-1}$.
(b) Find an orthogonal matrix Q and a diagonal matrix D such that $A=Q D Q^{\top}$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
6	5	
Total	$20(+7)$	

