\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 5 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. [1pt] Write down the 3×3 elementary matrix for the row operation $\rho_{1}: \times 2$ and find its determinant.
2. [1pt] Write down the 3×3 elementary matrix for the row operation $\rho_{3}:+4 \rho_{2}$ and find its determinant.
3. [1pt] Write down the 3×3 elementary matrix for the row operation $\rho_{1} \leftrightarrow \rho_{3}$ and find its determinant.
4. [2pt] Find the adjugate of the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

5. [2pt] Find the determinant of

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

6. [3pt] Find the determinant of

$$
L=\left[\begin{array}{lllllll}
2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

7. Let

$$
A_{x}=\left[\begin{array}{ccccc}
-x & 1 & 1 & 1 & 1 \\
1 & -x & 0 & 0 & 0 \\
1 & 0 & -x & 0 & 0 \\
1 & 0 & 0 & -x & 0 \\
1 & 0 & 0 & 0 & -x
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find $\operatorname{det}\left(A_{x}\right)$.
(b) $[3 \mathrm{pt}]$ Find all x such that $\operatorname{det}\left(A_{x}\right)=0$. For each of such x, find a nonzero vector \mathbf{v} in $\operatorname{ker}\left(A_{x}\right)$.
8. [5pt] Let

$$
S=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x^{2}+y^{2} \leq 1\right\}
$$

Let E be a 2×2 elementary matrix. Discuss how E changes the shape of S into $E S=\{E \mathbf{v}: \mathbf{v} \in S\}$ and calculate its area. Make sure you consider each of the three types of elementary matrices and give some concrete examples.
9. [extra 2 pt$]$ Let

$$
A=\left[\begin{array}{ccc}
- & \mathbf{x} & - \\
- & \mathbf{y} & - \\
- & \mathbf{z} & -
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
- & \mathbf{x}+\mathbf{y} & - \\
- & \mathbf{y}+2 \mathbf{z} & - \\
- & \mathbf{z}+3 \mathbf{x} & -
\end{array}\right]
$$

be 3×3 matrices. Suppose $\operatorname{det}(A)=1$. Find $\operatorname{det}(B)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

