2023F Math585 Midterm 2

5 questions, $20(+5)$ total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [5pt] Let C_{n} be the cycle on n vertices and A_{n} its adjacency matrix. For $n \geqslant 0$, find the 1,1 -entry of $\left(A_{n+1}\right)^{n}$.
2. [5pt] Let G be the graphs below and A its adjacency matrix. Find $\operatorname{rank}(A), \operatorname{det}(A)$, and the inertia of A.

3. [5pt] Let

$$
A=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Find $\operatorname{spec}(A)$.

Two more problems on the back.
4. [5pt] Let G be the graphs below and A its adjacency matrix.

Find the characteristic polynomial $\operatorname{det}(A-x I)$ of A.
5. [extra 5pt] Let

$$
A=\left[\begin{array}{cc}
\mathrm{O}_{\mathfrak{m} \times \mathfrak{m}} & \mathrm{B} \\
\mathrm{C} & \mathrm{O}_{\mathrm{n} \times \mathfrak{n}}
\end{array}\right]
$$

where O is the zero matrix of the designated order. For $\mathbf{x} \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$. Show that $\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y}\end{array}\right]$ is an eigenvector of A with respect to λ if and only if $\left[\begin{array}{c}\mathbf{x} \\ -\mathbf{y}\end{array}\right]$ is an eigenvector of A with respect to $-\lambda$.

