\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
12
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
5 \\
29
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
3 \\
19
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-12 \\
-28 \\
-164
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & -4 \\
0 & 1 & -1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}2 \\ 3 \\ 19\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=4$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-21
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
4 \\
20
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-19 \\
16 \\
83
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & -4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}-4 \\ 4 \\ 20\end{array}\right]$
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=0$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
13
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
9 \\
56
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-8 \\
-19 \\
-116
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
3 \\
6 \\
39
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}-8 \\ -19 \\ -116\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=7$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
16
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
13 \\
-53
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
17 \\
-69
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-10 \\
42 \\
-170
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -1 & -4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}-4 \\ 17 \\ -69\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
-1 \\
-3 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
5 \\
16 \\
7
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2 －th column．
Therefore，$k=2$ and $\mathbf{v}_{k}=\left[\begin{array}{l}-1 \\ -3 \\ -1\end{array}\right]$
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=5$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
10
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
20 \\
-40
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
-10 \\
20
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-1 \\
6 \\
-13
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -4 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}-4 \\ 20 \\ -40\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
19
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
12 \\
-57
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
21 \\
-99
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-24 \\
101 \\
-476
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -3 & 0 & 1 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}-3 \\ 12 \\ -57\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=2$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

2
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
21 \\
-27
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
15 \\
-63 \\
81
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
11 \\
-46 \\
59
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}15 \\ -63 \\ 81\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=3$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
20
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
-12 \\
80
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
10 \\
-65
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
3 \\
-10 \\
65
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\mathbf{v}_{k}=\left[\begin{array}{c}4 \\ -12 \\ 80\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=2$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
4 \\
-13
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
-20 \\
65
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
4 \\
-13
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
9 \\
-28
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -5 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}-5 \\ -20 \\ 65\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=0$ ．

