# 線性代數（一）MATH 103A／GEAI 1215A：Linear Algebra I 

$\qquad$
學號 Student ID \＃： $\qquad$

| Lecturer： | Jephian Lin 林晉宏 |
| ---: | :--- |
| Contents： | cover page， |
|  | $\mathbf{6}$ pages of questions， |
|  | score page at the end |
| To be answered： | on the test paper |
| Duration： | $\mathbf{1 1 0}$ minutes |
| Total points： | $\mathbf{2 0}$ points +7 extra points |

## Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. [1pt] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the projection onto span $\left(\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}\right)$. Is $f$ a bijection? Provide your reasons.
2. [1pt] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the counterclockwise rotation by $60^{\circ}$. Is $f$ a bijection? Provide your reasons.
3. [1pt] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
x+y \\
x+y
\end{array}\right] .
$$

Find range $(f)$.
4. [1pt] Let $\mathcal{P}_{d}$ be the vector space of polynomials of degree at most $d$. Let $f: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the function defined by $p \mapsto x \cdot p-p^{\prime}$, where $p^{\prime}$ is the derivative of the polylnomial $p$. Is $f$ a linear function? Provide your reasons.
5. [1pt] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $x \mapsto x^{3}$. Is $f$ a linear function? Provide your reasons.
6. Let

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]
$$

Let $\alpha=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ and $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be bases of

$$
V=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x+y+z=0\right\}
$$

(a) $[1 \mathrm{pt}]$ Find the vector $\mathbf{u}$ such that $[\mathbf{u}]_{\beta}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) $[1 \mathrm{pt}]$ Find $[\mathbf{v}]_{\alpha}$.
(c) $[1 \mathrm{pt}]$ Find $[\mathbf{v}]_{\beta}$.
(d) $[2 \mathrm{pt}]$ Find the change of basis matrix $[\mathrm{id}]_{\alpha}^{\beta}$ from $\alpha$ to $\beta$.
7. Let $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a function defined by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1}-5 x_{2}-3 x_{3}-2 x_{4}+9 x_{5} \\
x_{4}-4 x_{5} \\
5 x_{1}-25 x_{2}-15 x_{3}-13 x_{4}+57 x_{5}
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find a matrix $A$ such that $f(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{5}$.
(b) $[3 \mathrm{pt}]$ Find a basis of $\operatorname{ker}(f)$.
8. [5pt] Mathematical essay: Write a few paragraphs to introduce isomorphism.
Your score will be based on the following criteria.

- The definition is clear.
- Some sentences are added to explain the definition.
- Examples or pictures are included to help understanding.
- The sentences are complete.

9. [extra 5pt] Let

$$
\alpha=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { and } \beta=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

be bases of $\mathbb{R}^{3}$. Given that

$$
[f]_{\beta}^{\beta}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

find $[f]_{\alpha}^{\alpha}$.
10. [extra 2pt] Let

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}
$$

be the vector space of all $2 \times 2$ matrices. Let

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then $\beta=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ is a basis of $V$. Define a function $f: V \rightarrow V$ by

$$
X \mapsto\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] X
$$

Find the matrix representation $[f]_{\beta}^{\beta}$ of the function $f$ with respect to the bases $\beta$ and $\beta$.

| Page | Points | Score |
| :---: | :---: | :---: |
| 1 | 5 |  |
| 2 | 5 |  |
| 3 | 5 |  |
| 4 | 5 |  |
| 5 | 5 |  |
| 6 | 2 |  |
| Total | $20(+7)$ |  |

