\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & -2 & 1 \\
1 & 1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -2 & 1 \\
1 & -1 & -1 \\
3 & -4 & 0
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\operatorname{sum}\right.$ of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-5 \\
1 \\
5
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
8 \\
-2 \\
-7
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
31 \\
22 \\
8
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-45 \\
-32 \\
-11
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
31 & -45 & 4 \\
22 & -32 & 3 \\
8 & -11 & -1
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B} \mathcal{B}}(f)\right) \bmod 10=9$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-2 & -2 & -2 \\
0 & -1 & 0 \\
0 & 2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 3 & 0 \\
2 & 4 & -1
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)^{\prime}$ s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-8 \\
-1 \\
0
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-18 \\
-3 \\
2
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
26 \\
-9 \\
16
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
66 \\
-23 \\
38
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-9 \\
3 \\
-7
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
26 & 66 & -9 \\
-9 & -23 & 3 \\
16 & 38 & -7
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=1$ ．
\qquad
\qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 2 \\
-1 & 0 & 2 \\
1 & 2 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 2 \\
-2 & -1 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-7 \\
-5 \\
3
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
-3 \\
3
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
10 \\
6 \\
-2
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
7 \\
-14 \\
1
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
9 \\
-12 \\
3
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-2 \\
12 \\
2
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
7 & 9 & -2 \\
-14 & -12 & 12 \\
1 & 3 & 2
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=6$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
1 & 1 & -1 \\
-2 & -2 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & -2 \\
0 & 2 & -3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{l}
-6 \\
-1 \\
-6
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
6 \\
1 \\
10
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-7 \\
3 \\
2
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-24 \\
9 \\
8
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
8 \\
-1 \\
-4
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-7 & -24 & 8 \\
3 & 9 & -1 \\
2 & 8 & -4
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
2 & -2 & 1 \\
-1 & -2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & -2 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)^{\prime}$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
-4 \\
0
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
5 \\
-4
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
9 \\
-9 \\
-7
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
8 \\
-12 \\
-8
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{l}
0 \\
5 \\
2
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
9 & 8 & 0 \\
-9 & -12 & 5 \\
-7 & -8 & 2
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=8$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & -2 & -2 \\
-1 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & -2 \\
0 & 1 & 1
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
-4 \\
3
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
11 \\
-3 \\
6
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-3 \\
1 \\
-2
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
6 & 11 & -3 \\
-2 & -3 & 1 \\
3 & 6 & -2
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=7$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-2 & -2 & 2 \\
-2 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -3 & 0 \\
-1 & -1 & 0
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-4
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
0 \\
-6
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
12 \\
-8 \\
-5
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
18 \\
-12 \\
-8
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-4 \\
2 \\
0
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
12 & 18 & -4 \\
-8 & -12 & 2 \\
-5 & -8 & 0
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=5$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & -1 & -2 \\
-2 & -1 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & -1 \\
2 & 3 & -2
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-6 \\
-5
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
-9 \\
-7
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
7 \\
7
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
8 \\
-7 \\
0
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
13 \\
-11 \\
0
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-7 \\
7 \\
0
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
8 & 13 & -7 \\
-7 & -11 & 7 \\
0 & 0 & 0
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=3$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
-2 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 5 & -4 \\
-2 & -6 & 5
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
5 \\
0 \\
-6
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
12 \\
1 \\
-16
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-10 \\
-1 \\
14
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-7 \\
-10 \\
-16
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-18 \\
-23 \\
-38
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
16 \\
19 \\
32
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-7 & -18 & 16 \\
-10 & -23 & 19 \\
-16 & -38 & 32
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B} \mathcal{B}}(f)\right) \bmod 10=5$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & -2 \\
-1 & 1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & -2 \\
1 & 0 & 0 \\
-2 & 0 & 1
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\operatorname{sum}\right.$ of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
7 \\
-2
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
-4 \\
3
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
7 \\
-15 \\
12
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-4 \\
9 \\
-5
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
7 & -1 & -4 \\
-15 & 3 & 9 \\
12 & -1 & -5
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B} \mathcal{B}}(f)\right) \bmod 10=5$ ．

MatRep 10 Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

