姓名 Name :	學號 Student ID # : _		
Quiz 2	MATH 10	04: Linea	r Algebra II

$$A = \begin{bmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & -1 \\ 3 & -4 & 0 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

姓名 Name :	學號 Student ID # : _	
Quiz 2	MATH 104	: Linear Algebra II

$$A = \begin{bmatrix} -2 & -2 & -2 \\ 0 & -1 & 0 \\ 0 & 2 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 2 & 4 & -1 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**. check code

姓名 Name :	學號 Student ID # :	
Quiz 2	MATH 104	: Linear Algebra II

$$A = \begin{bmatrix} -1 & 2 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ -2 & -1 & 3 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

 姓名 Name :
 學號 Student ID # :

 Quiz 2
 MATH 104: Linear Algebra II

Let

$$A = \begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & -1 \\ -2 & -2 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & -2 \\ 0 & 2 & -3 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

姓名 Name :	學號 Student ID # :	
Quiz 2	MATH 104	: Linear Algebra II

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & -2 & 1 \\ -1 & -2 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & -2 & 3 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

姓名 Name :	學號 Student ID # : _	
Quiz 2	MATH 104	: Linear Algebra II

$$A = \begin{bmatrix} 2 & -2 & 1 \\ 0 & -2 & -2 \\ -1 & 2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & -2 \\ 1 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

 姓名 Name :
 學號 Student ID # :

 Quiz 2
 MATH 104: Linear Algebra II

Let

$$A = \begin{bmatrix} 0 & -1 & 1 \\ -2 & -2 & 2 \\ -2 & 0 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

姓名 Name :	學號 Student ID # : _	
Quiz 2	MATH 104	: Linear Algebra II

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & -1 & -2 \\ -2 & -1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & -1 \\ 2 & 3 & -2 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.

 姓名 Name :
 學號 Student ID # :

 Quiz 2
 MATH 104: Linear Algebra II

Let

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & -1 \\ -2 & 0 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -6 & 5 \end{bmatrix}.$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**. check code

姓名 Name : _	學號 Student ID # : _		
Quiz 2	MATH 10	04: Linear Algebra	Π

$$A = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & -2 \\ -1 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 & -2 \\ 1 & 0 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

Suppose $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**. Compute the **check code** and fill it into the **box on the right**.