\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & -2 & 1 \\
1 & 1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -2 & 1 \\
1 & -1 & -1 \\
3 & -4 & 0
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-2 & -2 & -2 \\
0 & -1 & 0 \\
0 & 2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 3 & 0 \\
2 & 4 & -1
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 2 \\
-1 & 0 & 2 \\
1 & 2 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 2 \\
-2 & -1 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
1 & 1 & -1 \\
-2 & -2 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -1 & -2 \\
0 & 2 & -3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
2 & -2 & 1 \\
-1 & -2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & -2 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & -2 & 1 \\
0 & -2 & -2 \\
-1 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & -2 \\
0 & 1 & 1
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-2 & -2 & 2 \\
-2 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -3 & 0 \\
-1 & -1 & 0
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & -1 & -2 \\
-2 & -1 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & -1 \\
2 & 3 & -2
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
-2 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 5 & -4 \\
-2 & -6 & 5
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 104：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & -2 \\
-1 & 1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & -2 \\
1 & 0 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

