線性代數（二）
期末考

姓名 Name： \qquad
學號 Student ID \＃： \qquad June 6， 2022

Final Exam
MATH 104 ／GEAI 1209：Linear Algebra II

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. Let A be a 3×4 matrix. Suppose $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ and $\beta=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are orthogonal bases of \mathbb{R}^{4} and \mathbb{R}^{3}, respectively, such that

$$
\left[f_{A}\right]_{\alpha}^{\beta}=\left[\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where $f_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is defined by $f_{A}(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{4}$. Answer the following questions in terms of elements in α or in β.
(a) $[1 \mathrm{pt}]$ Find $f\left(10 \mathbf{v}_{1}+20 \mathbf{v}_{2}+30 \mathbf{v}_{3}\right)$.
(b) $[1 \mathrm{pt}]$ Find a vector \mathbf{v} such that $f(\mathbf{v})=20 \mathbf{u}_{1}+60 \mathbf{u}_{2}$.
(c) $[1 \mathrm{pt}]$ Find an element in $\operatorname{ker}(A)$.
(d) $[1 \mathrm{pt}]$ Find an element in $\operatorname{Col}(A)$.
(e) $[1 \mathrm{pt}]$ Find $\operatorname{spec}\left(A^{\top} A\right)$.
2. Let

$$
A=\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
-1 & 2 & 2 & 2 \\
-1 & 2 & 1 & 3 \\
-1 & 2 & 3 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Find an invertible matrix Q such that $Q^{\top} A Q=B$.
(b) [2pt] Find the inertia $\left(n_{+}(A), n_{-}(A), n_{0}(A)\right)$ of A.
3. $[2 \mathrm{pt}]$ Let

$$
M=\left[\begin{array}{ccc}
1 & 100 & 200 \\
0 & 0 & 1 \\
0 & -10 & 7
\end{array}\right]
$$

Find an orthogonal matrix U such that $U^{\top} M U$ is an upper triangular matrix.
4. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right]
$$

(a) $[3 \mathrm{pt}]$ Find an orthogonal matrix Q and a diagonal matrix D such that $Q^{\top} A Q=D$.
(b) $[2 \mathrm{pt}]$ Find q distinct values μ_{1}, \ldots, μ_{q} and q projection matrices P_{1}, \ldots, P_{q} such that

- $A=\sum_{j=1}^{q} \mu_{j} P_{j}$,
- $P_{j}^{2}=P_{j}$ for any j,
- $P_{i} P_{j}=O$ for any $i \neq j$, and
- $\sum_{j=1}^{q} P_{j}=I$.

5．［5pt］數學作文：請寫一篇短文來向没修過線性代數的朋友介紹什麼是主成份分析（principal component analysis）。請説明主成份的直觀意義，並描述主成份分析的功能；有必要的話可以加上一些圖來輔助説明。請解釋主成份分析的步驟，以及每一步其用意爲何。格式没有限制，篇輻大約半面到一面。
（If Chinese is not your native language，you may use English or the language that you prefer．）
6. [extra 5pt] Let $x, y, z \in \mathbb{R}$ such that $x^{2}+y^{2}+z^{2}=1$. Find the maximum value of $2 x y+2 y z$.
Hint: Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

7. [extra 2pt] Let

$$
A=\left[\begin{array}{ccccccc}
4 & 0 & 0 & -1 & -1 & -1 & -1 \\
0 & 4 & 0 & -1 & -1 & -1 & -1 \\
0 & 0 & 4 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 3 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 3 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 3 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 3
\end{array}\right]
$$

Find $\operatorname{spec}(A)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	$20(+7)$	

