\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & -4 \\
-4 & -15 & 15 \\
-6 & -22 & 23 \\
-24 & -89 & 90
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-26 \\
98 \\
146 \\
584
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-2 \\
-4 \\
2
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -4 & -4 \\
-3 & 13 & 12 \\
8 & -33 & -31 \\
-29 & 122 & 114
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
8 \\
-29 \\
73 \\
-270
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
4 \\
-5 \\
4
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=3$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 3 \\
0 & 1 & -3 \\
4 & 21 & -2 \\
-14 & -72 & 2
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-10 \\
-11 \\
-93 \\
308
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
4 \\
-5 \\
2
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=1$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -1 & -4 \\
2 & -1 & -7 \\
-11 & 7 & 41 \\
-25 & 16 & 92
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
24 \\
42 \\
-245 \\
-551
\end{array}\right]
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
3 \\
-1 \\
-5
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=7$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 5 \\
-5 & 1 & -22 \\
-23 & 5 & -99 \\
92 & -20 & 397
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
6 \\
-24 \\
-106 \\
426
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-4 \\
0 \\
2
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=8$.
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-5 & -9 & 0 \\
-23 & -42 & 4 \\
-5 & -8 & -5
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-9 \\
45 \\
206 \\
45
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
0 \\
-5 \\
-1
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -3 & 1 \\
-5 & 16 & 0 \\
16 & -52 & -3 \\
67 & -217 & -9
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-16 \\
73 \\
-230 \\
-968
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-5 \\
3 \\
-2
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & 1 & -5 \\
1 & -3 & 11 \\
3 & -11 & 39
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
3 \\
-20 \\
50 \\
178
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 0 \\
-3 & -11 & -1 \\
12 & 43 & 6 \\
41 & 149 & 18
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
18 \\
-46 \\
172 \\
606
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=2$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -4 & -6 \\
-12 & -10 & -15 \\
-53 & -44 & -65
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-2 \\
17 \\
41 \\
184
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-3 \\
-5 \\
3
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=5$ ．

