姓名 Name:	學號 Student ID #:
Ouiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 12 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 29 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 3 \\ 19 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} -12 \\ -28 \\ -164 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code	

姓名 Name :	學號 Student ID #:
Quiz 2	MATH 103: Linear Algebra I

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -21 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -4 \\ 4 \\ 20 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} -19 \\ 16 \\ 83 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

	cneck	coae
Γ		
ı		

姓名 Name :	學號 Student ID #:
Quiz 2	MATH 103: Linear Algebra I

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\13 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 4\\9\\56 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -8\\-19\\-116 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 3\\6\\39 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code

姓名 Name :	_ 學號 Student ID # :
Quiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \\ 16 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 13 \\ -53 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -4 \\ 17 \\ -69 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} -10 \\ 42 \\ -170 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code

姓名 Name :	學號 Student ID #:
Quiz 2	MATH 103: Linear Algebra I

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 5 \\ 16 \\ 7 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

	check	code
Γ		
ı		
ı		

姓名 Name :	_ 學號 Student ID # :
Quiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -5 \\ 10 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 20 \\ -40 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -10 \\ 20 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} -1 \\ 6 \\ -13 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Ouiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \\ 19 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 12 \\ -57 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -5 \\ 21 \\ -99 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} -24 \\ 101 \\ -476 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

	ch	eck	code
Γ			
ı			
ı			
ı			

姓名 Name :	學號 Student ID #:
Quiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -5 \\ 21 \\ -27 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 15 \\ -63 \\ 81 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 11 \\ -46 \\ 59 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Ouiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 20 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 4 \\ -12 \\ 80 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -3 \\ 10 \\ -65 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 3 \\ -10 \\ 65 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

check	code

姓名 Name :	學號 Student ID #:
Quiz 2	MATH 103: Linear Algebra I

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 4 \\ -13 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -5 \\ -20 \\ 65 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 4 \\ -13 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 2 \\ 9 \\ -28 \end{bmatrix}.$$

Find the vector \mathbf{v}_k with the smallest k such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\}$ is linearly independent but $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent.

Check code = (sum of all entries of \mathbf{v}_k) mod 10

Solution.

Indicating your answer by **underlining it** or **circling it**.

Compute the **check code** and fill it into the **box on the right**.

check code