\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
12
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
5 \\
29
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
3 \\
19
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-12 \\
-28 \\
-164
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-21
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
4 \\
20
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-19 \\
16 \\
83
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
13
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
9 \\
56
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-8 \\
-19 \\
-116
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
3 \\
6 \\
39
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
16
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
13 \\
-53
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
17 \\
-69
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-10 \\
42 \\
-170
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
-1 \\
-3 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
5 \\
16 \\
7
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
10
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
20 \\
-40
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
-10 \\
20
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-1 \\
6 \\
-13
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
19
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
12 \\
-57
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
21 \\
-99
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-24 \\
101 \\
-476
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-4 \\
5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
21 \\
-27
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
15 \\
-63 \\
81
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
11 \\
-46 \\
59
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
20
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
-12 \\
80
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
10 \\
-65
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
3 \\
-10 \\
65
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it．
\qquad學號 Student ID \＃： \qquad
Quiz 2
MATH 103：Linear Algebra I

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
4 \\
-13
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
-20 \\
65
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
4 \\
-13
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
9 \\
-28
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

