\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & 2 & -12 \\
2 & 5 & 3 & -28 \\
12 & 29 & 19 & -164
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & -4 \\
0 & 1 & -1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{l}
4 \\
4 \\
0 \\
1
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=9$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 5 & -4 & -19 \\
-1 & -4 & 4 & 16 \\
-5 & -21 & 20 & 83
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to A to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & -4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=5$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 4 & -8 & 3 \\
2 & 9 & -19 & 6 \\
13 & 56 & -116 & 39
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{c}
-4 \\
3 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=0$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -3 & -4 & -10 \\
-4 & 13 & 17 & 42 \\
16 & -53 & -69 & -170
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to A to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -1 & -4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
4 \\
-2 \\
0 \\
1
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=3$ ．

Indicating your answer by underlining it or circling it Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 5 \\
3 & -3 & 0 & 16 \\
1 & -1 & 0 & 7
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} ．
By setting $x_{2}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=2$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -4 & 2 & -1 \\
-5 & 20 & -10 & 6 \\
10 & -40 & 20 & -13
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -4 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=9$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -3 & -5 & -24 \\
-4 & 12 & 21 & 101 \\
19 & -57 & -99 & -476
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to A to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -3 & 0 & 1 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-5 \\
1
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=5$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -5 & 15 & 11 \\
-4 & 21 & -63 & -46 \\
5 & -27 & 81 & 59
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to A to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{l}
0 \\
3 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 4 & -3 & 3 \\
-3 & -12 & 10 & -10 \\
20 & 80 & -65 & 65
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 4 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=2$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -5 & 1 & 2 \\
4 & -20 & 4 & 9 \\
-13 & 65 & -13 & -28
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -5 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=0$ ．

Indicating your answer by underlining it or circling it．

