國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

線性代數 (一)

MATH 103A / GEAI 1215A: Linear Algebra I

第二次期中考

November 14, 2022

Midterm 2

姓名 Name : _____

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions, score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- Please answer the problems in English.

1. [1pt] Find a 3×4 matrix A with rank(A) = 2 such that every entry of A is nonzero. Provide your reasons.

2. [1pt] Find a 3×4 matrix A with null(A) = 2 such that every entry of A is nonzero. Provide your reasons.

- 3. [1pt] Find a polynomial of degree at most 2 that is in span $\{1+x, 1+x^2\}$.
- 4. [1pt] Find a polynomial of degree at most 2 that is NOT in span $\{1 + x, 1 + x^2\}$.
- 5. [1pt] Write $p(x) = 1 + x + x^2$ as a linear combination of $\{1, 1 + x, (1+x)^2\}$.

6. Let

$$A = \begin{bmatrix} 1 & -1 & 3 & -13 \\ -1 & 1 & -2 & 9 \\ 0 & 0 & -4 & 16 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

such that R is the reduced echelon form of A.

(a) [1pt] Find a basis of Row(A).

(b) [1pt] Find a basis of Col(A).

(c) [2pt] Find a basis of ker(A).

(d) [1pt] Find a basis of $ker(A^{\top})$.

- 7. Let V be a subspace with a basis $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$. Let $\alpha = \{\mathbf{a}_1, \mathbf{a}_2\}$ be a subset in V. Suppose it is known that $\mathbf{a}_1 = \mathbf{b}_1 + 4\mathbf{b}_3$ and $\mathbf{a}_2 = \mathbf{b}_1 + 5\mathbf{b}_3$.
 - (a) [1pt] Write \mathbf{b}_1 as a linear combination of $\{\mathbf{a}_1, \mathbf{b}_2, \mathbf{b}_3\}$.
 - (b) [2pt] Show that $\{a_1, b_2, b_3\}$ is linearly independent. (This is an important step in the proof of the basis exchange lemma, so please do not use the lemma to prove this statement.)

(c) [2pt] Find a basis S of V such that $\alpha \subseteq S \subseteq \alpha \cup \beta$. (It is okay to use the basis exchange lemma here if needed.)

- 8. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *basis* as clear as possible.
 - (a) [3pt] Suppose V is a subspace. Define what is a basis of V and use a few sentences to explain the definition.

(b) [2pt] Let $V = \mathbb{R}^3$. Provide an example of a basis of V and an example of a subset of V that is not a basis. Provide your reasons.

9. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Find a basis of $Col(A) \cap Col(B)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	