# 線性代數（一）MATH 103A／GEAI 1215A：Linear Algebra I 

$\qquad$
學號 Student ID \＃： $\qquad$

| Lecturer： | Jephian Lin 林厽宏 |
| ---: | :--- |
| Contents： | cover page， |
|  | 5 pages of questions， |
|  | score page at the end |
| To be answered： | on the test paper |
| Duration： | $\mathbf{1 1 0}$ minutes |
| Total points： | $\mathbf{2 0}$ points +2 extra points |

## Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. $[1 \mathrm{pt}]$ Find a $3 \times 4$ matrix $A$ with $\operatorname{rank}(A)=1$ such that every entry of $A$ is nonzero. Provide your reasons.
2. [1pt] Find a $3 \times 4$ matrix $A$ with $\operatorname{null}(A)=1$ such that every entry of $A$ is nonzero. Provide your reasons.
3. [1pt] Find a polynomial of degree at most 2 that is in $\operatorname{span}\left\{1-x, 1-x^{2}\right\}$.
4. [1pt] Find a polynomial of degree at most 2 that is NOT in $\operatorname{span}\{1-$ $\left.x, 1-x^{2}\right\}$.
5. [1pt] Write $p(x)=1+x+x^{2}$ as a linear combination of $\left\{1,1-x,(1-x)^{2}\right\}$.
6. Let

$$
A=\left[\begin{array}{cccc}
1 & -3 & -2 & 1 \\
2 & -6 & -4 & 3 \\
-5 & 15 & 10 & -10
\end{array}\right] \text { and } R=\left[\begin{array}{cccc}
1 & -3 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

such that $R$ is the reduced echelon form of $A$.
(a) $[1 \mathrm{pt}]$ Find a basis of $\operatorname{Row}(A)$.
(b) $[1 \mathrm{pt}]$ Find a basis of $\operatorname{Col}(A)$.
(c) $[2 \mathrm{pt}]$ Find a basis of $\operatorname{ker}(A)$.
(d) $[1 \mathrm{pt}]$ Find a basis of $\operatorname{ker}\left(A^{\top}\right)$.
7. Let $V$ be a subspace with a basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. Let $\alpha=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ be a subset in $V$. Suppose it is known that $\mathbf{a}_{1}=\mathbf{b}_{1}+2 \mathbf{b}_{3}$ and $\mathbf{a}_{2}=\mathbf{b}_{1}+3 \mathbf{b}_{3}$. (a) $[1 \mathrm{pt}]$ Write $\mathbf{b}_{1}$ as a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.
(b) [2pt] Show that $\left\{\mathbf{a}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is linearly independent. (This is an important step in the proof of the basis exchange lemma, so please do not use the lemma to prove this statement.)
(c) [2pt] Find a basis $S$ of $V$ such that $\alpha \subseteq S \subseteq \alpha \cup \beta$. (It is okay to use the basis exchange lemma here if needed.)
8. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a basis as clear as possible.
(a) [3pt] Suppose $V$ is a subspace. Define what is a basis of $V$ and use a few sentences to explain the definition.
(b) $[2 \mathrm{pt}]$ Let $V=\mathbb{R}^{3}$. Provide an example of a basis of $V$ and an example of a subset of $V$ that is not a basis. Provide your reasons.
9. [extra 2pt] Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Find a basis of $\operatorname{Col}(A) \cap \operatorname{Col}(B)$.

| Page | Points | Score |
| :---: | :---: | :---: |
| 1 | 5 |  |
| 2 | 5 |  |
| 3 | 5 |  |
| 4 | 5 |  |
| 5 | 2 |  |
| Total | $20(+2)$ |  |

