線性代數（一）MATH 103A／GEAI 1215A：Linear Algebra I

第一次期中考
October 3， 2022
Midterm 1

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：	Jephian Lin 林厽宏
Contents：	cover page，
	5 pages of questions，
	score page at the end
To be answered：	on the test paper
Duration：	$\mathbf{1 1 0}$ minutes
Total points：	$\mathbf{2 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. Let

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{c}
5 \\
-1 \\
-3 \\
1
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Find the length of \mathbf{u}.
(b) [1pt] Let θ be the angle between the vectors \mathbf{u} and \mathbf{v}. Find $\cos \theta$.
(c) $[1 \mathrm{pt}]$ Find a vector in $\operatorname{span}(\{\mathbf{u}, \mathbf{v}\})$. Provide your reasons.
(d) $[1 \mathrm{pt}]$ Find a vector NOT in $\operatorname{span}(\{\mathbf{u}, \mathbf{v}\})$. Provide your reasons.
(e) $[1 \mathrm{pt}]$ Find a nonzero vector that is orthogonal to both \mathbf{u} and \mathbf{v}.
2. Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -4 & -6
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] .
$$

(a) $[2 \mathrm{pt}]$ Draw the vector \mathbf{b} and the subspace $\operatorname{Col}(A)$ in \mathbb{R}^{2}. Mark at least one vector in $\operatorname{Col}(A)$ in your drawing. Does $A \mathbf{x}=\mathbf{b}$ have a solution for \mathbf{x} ?
(b) $[1 \mathrm{pt}]$ Draw the subspace $\operatorname{ker}(A)$ and its normal vector in \mathbb{R}^{3}.
(c) $[2 \mathrm{pt}]$ Find \mathbf{h}_{1} and \mathbf{h}_{2} such that $\operatorname{ker}(A)=\operatorname{span}\left(\left\{\mathbf{h}_{1}, \mathbf{h}_{2}\right\}\right)$.
3. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 7 \\
2 & 4 & 7 & 15 \\
-1 & -2 & -2 & -6
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-7 \\
-17 \\
4
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find the reduced echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(b) [3pt] Find $\mathbf{p}, \mathbf{h}_{1}$, and \mathbf{h}_{2} such that the set of general solutions of $A \mathrm{x}=\mathrm{b}$ is

$$
\left\{\mathbf{p}+c_{1} \mathbf{h}_{1}+c_{2} \mathbf{h}_{2}: c_{1}, c_{2} \in \mathbb{R}\right\}
$$

4. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a subspace as clear as possible.
(a) [3pt] Define what is a subspace and use a few sentences to explain the definition.
(b) [2pt] Provide an example of a subspace and an example of a set that is not a subspace. Provide your reasons.
5. [extra 2pt] Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 2 \\
1 & 1 & 3 & 3
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
3 \\
5 \\
t
\end{array}\right] .
$$

Find t such that the equation $A \mathbf{x}=\mathbf{b}$ is consistent.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

