國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY
線性代數(一)	MATH 103A / GEAI 1215A: Linear Algebra I

第一次期中考

October 3, 2022

Midterm 1

姓名 Name :_____

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏 Contents: cover page, **5 pages** of questions, score page at the end To be answered: on the test paper Duration: **110 minutes** Total points: **20 points** + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by **underlining it or circling it**. If multiple answers are shown then no marks will be awarded.
- Please answer the problems in English.

1. Let

$$\mathbf{u} = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 5\\-1\\-3\\1 \end{bmatrix}.$$

(a) [1pt] Find the length of **u**.

(b) [1pt] Let θ be the angle between the vectors **u** and **v**. Find $\cos \theta$.

- (c) [1pt] Find a vector in $\operatorname{span}(\{\mathbf{u},\mathbf{v}\}).$ Provide your reasons.
- (d) [1pt] Find a vector **NOT** in span($\{u, v\}$). Provide your reasons.

(e) [1pt] Find a nonzero vector that is orthogonal to both ${\bf u}$ and ${\bf v}.$

2. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

(a) [2pt] Draw the vector **b** and the subspace $\operatorname{Col}(A)$ in \mathbb{R}^2 . Mark at least one vector in $\operatorname{Col}(A)$ in your drawing. Does $A\mathbf{x} = \mathbf{b}$ have a solution for \mathbf{x} ?

(b) [1pt] Draw the subspace ker(A) and its normal vector in \mathbb{R}^3 .

(c) [2pt] Find \mathbf{h}_1 and \mathbf{h}_2 such that $\ker(A) = \operatorname{span}(\{\mathbf{h}_1, \mathbf{h}_2\})$.

3. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 7 \\ 2 & 4 & 7 & 15 \\ -1 & -2 & -2 & -6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -7 \\ -17 \\ 4 \end{bmatrix}.$$

(a) [2pt] Find the reduced echelon form of the augmented matrix $[A \mid \mathbf{b}]$.

(b) [3pt] Find \mathbf{p} , \mathbf{h}_1 , and \mathbf{h}_2 such that the set of general solutions of $A\mathbf{x} = \mathbf{b}$ is

```
\{\mathbf{p}+c_1\mathbf{h}_1+c_2\mathbf{h}_2:c_1,c_2\in\mathbb{R}\}.
```

- 4. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of a *subspace* as clear as possible.
 - (a) [3pt] Define what is a subspace and use a few sentences to explain the definition.

(b) [2pt] Provide an example of a subspace and an example of a set that is not a subspace. Provide your reasons.

5. [extra 2pt] Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 3 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ t \end{bmatrix}.$$

Find t such that the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	