線性代數（一）MATH 103A／GEAI 1215A：Linear Algebra I

\qquad
學號 Student ID \＃： \qquad

Lecturer：	Jephian Lin 林晉宏
Contents：	cover page，
	$\mathbf{6}$ pages of questions，
	score page at the end
To be answered：	on the test paper
Duration：	$\mathbf{1 1 0}$ minutes
Total points：	$\mathbf{2 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using a calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－Please answer the problems in English．

1. [1pt] Let $X=\{p, q, r\}$. Pick a set $Y \subseteq\{1,2,3,4,5\}$ and define a function $f: X \rightarrow Y$ such that f is injective but not surjective.
2. [1pt] Let $X=\{p, q, r\}$. Pick a set $Y \subseteq\{1,2,3,4,5\}$ and define a function $f: X \rightarrow Y$ such that f is surjective but not injective.
3. [1pt] Let $X=\{p, q, r\}$. Pick a set $Y \subseteq\{1,2,3,4,5\}$ and define a function $f: X \rightarrow Y$ such that f is bijective.
4. [1pt] Define a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that f is linear.
5. [1pt] Define a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that f is not linear.
6. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. Let

$$
\begin{gathered}
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right], \text { and } \\
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] .
\end{gathered}
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear function such that $f\left(\mathbf{u}_{i}\right)=\mathbf{v}_{i}$ for $i=1,2,3$.
(a) $[1 \mathrm{pt}]$ Find $f\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)$.
(b) $[2 \mathrm{pt}]$ Find $f\left(\mathbf{e}_{2}\right)$ and $f\left(\mathbf{e}_{3}\right)$.
(c) $[1 \mathrm{pt}]$ Find the matrix representation $[f]$ such that $[f] \mathbf{u}=f(\mathbf{u})$ for any $\mathbf{u} \in \mathbb{R}^{3}$.
(d) $[1 \mathrm{pt}]$ Find $\operatorname{rank}(f)$ and $\operatorname{null}(f)$.
7. Let $\alpha=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. Let $\beta=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a basis of \mathbb{R}^{3}, where

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
5
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
2 \\
-3 \\
8
\end{array}\right], \text { and } \mathbf{u}_{3}=\left[\begin{array}{c}
-1 \\
3 \\
-6
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ such that

$$
[\mathbf{v}]_{\beta}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } \mathbf{w}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Find \mathbf{v} and $[\mathbf{w}]_{\beta}$.
(b) $[3 \mathrm{pt}]$ Find the change of basis matrices $[\mathrm{id}]_{\alpha}^{\beta}$ and $[\mathrm{id}]_{\beta}^{\alpha}$.
8. Let V be a vector space and $\beta=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right\}$ a basis of V. Suppose you are talking to people who have never learned linear algebra. Follow the guidelines below and try to explain the concept of the vector representation as clear as possible.
(a) [2pt] Suppose $\mathbf{v} \in V$ is a vector. Define what is the vector representation $[\mathbf{v}]_{\beta}$ with respect to β and use a few sentences to explain the definition.
(b) [1pt] What might happen if β is not a basis?
(c) $[2 \mathrm{pt}]$ Provide an example of $[\mathbf{v}]_{\beta}$ with $V=\mathbb{R}^{2}$ and an example of $[\mathbf{v}]_{\beta}$ with $V=\mathcal{P}_{1}$, the space of all real polynomials of degree at most 1 .
9. [extra 5 pt] Let $\mathcal{M}_{2,3}$ be the space of all 2×3 real matrices. Let

$$
\beta=\left\{E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}\right\}
$$

be the standard basis of $\mathcal{M}_{2,3}$, where

$$
\begin{aligned}
& E_{1,1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], E_{1,2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], E_{1,3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \\
& E_{2,1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], E_{2,2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], E_{2,3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Consider the linear function $f: \mathcal{M}_{2,3} \rightarrow \mathcal{M}_{2,3}$ defined by $f(X)=A X$ with

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Find the matrix representation $[f]_{\beta}^{\beta}$.
10. [extra 2 pt] Let \mathcal{P}_{3} be the space of all real polynomials of degree at most 3. Let

$$
\beta=\left\{f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x)\right\}
$$

be a basis of \mathcal{P}_{3}, where

$$
\begin{aligned}
f_{1}(x) & =\frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}, \\
f_{2}(x) & =\frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}, \\
f_{3}(x) & =\frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}, \\
f_{4}(x) & =\frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} .
\end{aligned}
$$

Let $p(x)=1-2 x+3 x^{2}-4 x^{3}$. Find the vector representation $[p(x)]_{\beta}$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	$(+5)$	
6	$(+2)$	
Total	$20(+7)$	

