\qquad
\qquad
Quiz 1

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $4!/ 2=12$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $12 \times p^{2}(1-p)^{4}$ since there are 2 edges and 4 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=12\binom{n}{4} p^{2}(1-p)^{4}
$$

with $a=12, b=4, c=2$ ，and $d=4$ ．
Check code $=(a+b+c+d) \bmod 10=2$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad
Quiz 1
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 6 automorphisms on H ，so there are $4!/ 6=4$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $4 \times p^{3}(1-p)^{3}$ since there are 3 edges and 3 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=4\binom{n}{4} p^{3}(1-p)^{3}
$$

with $a=4, b=4, c=3$ ，and $d=3$ ．
Check code $=(a+b+c+d) \bmod 10=4$ ．
\qquad
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $4!/ 2=12$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $12 \times p^{2}(1-p)^{4}$ since there are 2 edges and 4 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=12\binom{n}{4} p^{2}(1-p)^{4}
$$

with $a=12, b=4, c=2$ ，and $d=4$ ．
Check code $=(a+b+c+d) \bmod 10=2$.
\qquad
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $4!/ 2=12$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $12 \times p^{3}(1-p)^{3}$ since there are 3 edges and 3 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=12\binom{n}{4} p^{3}(1-p)^{3}
$$

with $a=12, b=4, c=3$ ，and $d=3$ ．
Check code $=(a+b+c+d) \bmod 10=2$.
\qquad
Quiz 1學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $5!/ 2=60$ ways to draw an unlabeled H on 5 labeled vertices．

There are $\binom{n}{5}$ ways to pick 5 vertices．On this set of vertices，the probability of getting an H is $60 \times p^{4}(1-p)^{6}$ since there are 4 edges and 6 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=60\binom{n}{5} p^{4}(1-p)^{6}
$$

with $a=60, b=5, c=4$ ，and $d=6$ ．
Check code $=(a+b+c+d) \bmod 10=5$. Compute the check code and fill it into the box on the right．
\qquad
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 4 automorphisms on H ，so there are $4!/ 4=6$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $6 \times p^{1}(1-p)^{5}$ since there are 1 edges and 5 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=6\binom{n}{4} p^{1}(1-p)^{5}
$$

with $a=6, b=4, c=1$ ，and $d=5$ ．
Check code $=(a+b+c+d) \bmod 10=6$.
\qquad
Quiz 1學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 4 automorphisms on H ，so there are $5!/ 4=30$ ways to draw an unlabeled H on 5 labeled vertices．

There are $\binom{n}{5}$ ways to pick 5 vertices．On this set of vertices，the probability of getting an H is $30 \times p^{8}(1-p)^{2}$ since there are 8 edges and 2 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=30\binom{n}{5} p^{8}(1-p)^{2}
$$

with $a=30, b=5, c=8$ ，and $d=2$ ．
Check code $=(a+b+c+d) \bmod 10=5$.
\qquad
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 8 automorphisms on H ，so there are $4!/ 8=3$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $3 \times p^{2}(1-p)^{4}$ since there are 2 edges and 4 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=3\binom{n}{4} p^{2}(1-p)^{4}
$$

with $a=3, b=4, c=2$ ，and $d=4$ ．
Check code $=(a+b+c+d) \bmod 10=3$.
\qquad
Quiz 1學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $5!/ 2=60$ ways to draw an unlabeled H on 5 labeled vertices．

There are $\binom{n}{5}$ ways to pick 5 vertices．On this set of vertices，the probability of getting an H is $60 \times p^{6}(1-p)^{4}$ since there are 6 edges and 4 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=60\binom{n}{5} p^{6}(1-p)^{4}
$$

with $a=60, b=5, c=6$ ，and $d=4$ ．
Check code $=(a+b+c+d) \bmod 10=5$.
\qquad
Quiz 1
\qquad

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

There are 2 automorphisms on H ，so there are $4!/ 2=12$ ways to draw an unlabeled H on 4 labeled vertices．

There are $\binom{n}{4}$ ways to pick 4 vertices．On this set of vertices，the probability of getting an H is $12 \times p^{4}(1-p)^{2}$ since there are 4 edges and 2 nonedges in H ．

Therefore，

$$
\mathbb{E}(X)=12\binom{n}{4} p^{4}(1-p)^{2}
$$

with $a=12, b=4, c=4$ ，and $d=2$ ．
Check code $=(a+b+c+d) \bmod 10=2$.

