姓名 Name： \qquad Quiz 1

學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃：

MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

\qquad
\qquad

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃：

MATH 207：Discrete Mathematics II

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

姓名 Name： \qquad Quiz 1

學號 Student ID \＃：

MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d}
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

\qquad Quiz 1學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 5 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
MATH 207：Discrete Mathematics II

Let H be the graph on 4 vertices as shown below．

Let X be a random variable whose value is the number of induced subgraphs in the random graph model $G(n, p)$ that is isomorphic to H ．Find a, b, c, d so that

$$
\mathbb{E}(X)=a\binom{n}{b} p^{c}(1-p)^{d} .
$$

Check code $=(a+b+c+d) \bmod 10$

Solution．

