離散數學（二）MATH 207：Discrete Mathematics II
第二次期中考
May 11， 2021
Midterm 2

姓名 Name： \qquad

學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林留宏
Contents：cover page， 5 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. Let Γ be the directed graph as shown below. The number on each edge is its weight (distance).

(a) $[1 \mathrm{pt}]$ What is the distance from 0 to 10 ?
(b) $[1 \mathrm{pt}]$ What is the distance from 0 to 11 ?
(c) $[1 \mathrm{pt}]$ What is the distance from 0 to 12 ?
(d) $[1 \mathrm{pt}]$ What is the distance from 0 to 13 ?
(e) $[1 \mathrm{pt}]$ What is the distance from 0 to 14 ?
2. [5pt] Let Γ be the directed graph below, where S and T are the source and the sink, respectively. The number on each edge is its capacity.

Find a flow function f with the maximum value and a cut (A, B) with the minimum capacity.
[Note: Use the graph at the bottom to answer your flow on each edge and your A and B.]

$A=$
$B=$
3. [5pt] Let G be the bipartite graph below. Find a maximum matching and a minimum vertex cover of G.

4. [5pt] Let (Γ, S, T, c) be a network on the directed graph Γ, where S, T, and c are the source, the sink, and the capacity function, respectively. Let f be a flow on this network and (A, B) a cut. Show that

$$
\sum_{\substack{(u, v) \in E(\Gamma) \\ u \in A \\ v \in B}} f(u, v)-\sum_{\substack{(u, v) \in E(\Gamma) \\ u \in B \\ v \in A}} f(u, v)=\sum_{\substack{v \in V(\Gamma) \\(S, v) \in E(\Gamma)}} f(S, v)-\sum_{\substack{u \in V(\Gamma) \\(u, S) \in E(\Gamma)}} f(u, S) .
$$

5. [extra 2 pt$]$ Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{5}$ be the columns of

$$
\left[\begin{array}{lllll}
1 & 4 & 5 & 2 & 3 \\
1 & 2 & 1 & 2 & 1 \\
1 & 2 & 2 & 2 & 1
\end{array}\right] .
$$

Let $\mathbf{e}_{1}=(1,0,0)^{\top}$. Find a subset $S \subseteq\{1,2,3,4,5\}$ such that $\left\{\mathbf{v}_{i}\right\}_{i \in S}$ is a basis and

$$
\sum_{i \in S}\left\langle\mathbf{e}_{1}, \mathbf{v}_{i}\right\rangle
$$

is minimized. Here $\langle\mathbf{x}, \mathbf{y}\rangle$ is the standard inner product in \mathbb{R}^{3}.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

