國立中山大學

NATIONAL SUN YAT-SEN UNIVERSITY

離散數學(二)

MATH 207: Discrete Mathematics II

第一次期中考

March 30, 2021

Midterm 1

姓名 Name : _____

學號 Student ID # : _____

Lecturer: Jephian Lin 林晉宏

Contents: cover page,

5 pages of questions, score page at the end

To be answered: on the test paper

Duration: 110 minutes

Total points: 20 points + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your **Name** and **Student ID** # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining
 it or circling it. If multiple answers are shown then no marks will be
 awarded.
- 可用中文或英文作答

1. Suppose there are 1000 balls in a box. Each ball has two numbers, X and Y, on it. The distribution of the numbers are given in the table below.

$X \backslash Y$	1	2	3	subtotal
1	50	50	200	300
2	50		200	300
3	100	100	200	400
subtotal	200	200	600	1000

For example, there are 200 balls whose (X,Y) is (1,3), and there are 200 balls where Y is 1. Draw a ball randomly from the box, where the probability is uniformly distributed on each ball. Let X and Y be the numbers on the ball.

(a) [1pt] Find $\mathbb{E}(Y)$.

(b) [1pt] Find Var(Y).

(c) [1pt] Find P(Y = 1|X = 1).

- (d) [1pt] Are the random variables X and Y independent? Provide your reasons.
- (e) [1pt] Find $\mathbb{E}[(Y-1)^2]$.

2. [2pt] Explain why R(3,4) > 6.

3. [3pt] Suppose X is a random variable such that $X \geq 7$. Show that $\mathbb{E}(X) \geq k \cdot P(X \geq k+7) + 7,$

for all $k \geq 0$.

4. Let

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

be the transition matrix of a Markov chain.

(a) [1pt] Draw the digraph of M.

(b) [1pt] Is M irreducible? Provide your reasons.

(c) [2pt] If M has a unique stationary state, find it; otherwise, find two different stationary states.

(d) [1pt] Does $\lim_{k\to\infty} M^k$ exist? Provide your reasons.

5. [5pt] Let G(n, p) be the Erdős–Rényi random graph, where n is the number of vertices and p is the probability for each edge to occur. Let X be the number of isolated edges on G(n, p). Find $\mathbb{E}(X)$. (You may provide the answer for small n to get some partial credits.)

An isolated edge is an edge that does not share an endpoint with any other edge. The table below provides some examples.

G(n,p)	isolated edges	X
$1 \circ \circ 2$		
$3 \circ \circ 4$	Ø	0
1 0 2		
$3 \circ \circ 4$	12	1
$1 \longrightarrow 2$		
$3 \circ \circ 4$	Ø	0
1 0 2		
$3 \circ \longrightarrow 4$	12, 34	2

6. [extra 2pt] Randomly put the four numbers 1, 2, 3, 4 in a line such that the probability to get each permutation is $\frac{1}{4!}$. A right-to-left maximum is a number that is greater than all numbers to its right. For example, 3412 has only two right-to-left maxima 2 and 4; 4231 has three right-to-left maxima 1, 3, and 4; and all four numbers in 4321 are right-to-left maxima. Let X be the number of right-to-left maxima. Find $\mathbb{E}(X)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	20 (+2)	