國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY					
離散數學(二)	MATH 207: Discrete Mathematics II					
期末考	June 22, 2021	Final Exam				
姓名 Name :		_				
學號 Student ID # :		_				
	Lecturer:	Jephian Lin 林台宏				
	Contents:	cover page,				
		6 pages of questions,				
		score page at the end				
	To be answered:	on the test paper				
	Duration:	110 minutes				

Do not open this packet until instructed to do so.

Total points: **20 points** + 7 extra points

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Let

	A =	[0] 1 0 0 0 0 0	1 0 1 0 0 0	0 1 0 1 0 0	0 0 1 0 1 1	0 0 1 0 0	$ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} $	and $B =$	$\begin{bmatrix} 0\\1\\0\\0\\0\\0\\0 \end{bmatrix}$	1 0 1 1 0 0	0 1 0 0 0 0	0 1 0 0 1 0	0 0 1 0 1	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} $	•
--	-----	-----------------	----------------------------	----------------------------	----------------------------	-----------------------	---	-----------	---	----------------------------	----------------------------	----------------------------	-----------------------	---	---

(a) [3pt] Find a permutation P such that $A = PBP^{\top}$.

(b) [2pt] Find the inertia (n_+, n_-, n_0) of A.

2. Let G be the graph below and A its adjacency matrix.

- (a) [1pt] Find $tr(A^2)$.
- (b) [1pt] Find $tr(A^3)$.
- (c) [2pt] Draw all elementary subgraphs of G.

(d) [1pt] Find det(A).

3. [5pt] Let G be the graph below.

Let A be the adjacency matrix of G. Find $\det(A - xI)$, the characteristic polynomial of A.

4. [5pt] Let G be the graph below.

Find the number of spanning trees on G.

5. [extra 5pt] Let P_{n+1} be the path on n+1 vertices such that 1 is one of its endpoints. Let A be the adjacency matrix of P_{n+1} . Find the 1, 1-entry of A^{2n} .

6. [extra 2pt] Let G be the graph below.

Consider G as an electronic circuit such that each edge is a wire of resistance 1Ω . Find the effective resistance from 1 to 4.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	20 (+7)	