姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： 20 points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [5pt] Let

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

(a) [3pt] Find a permutation P such that $A=P B P^{\top}$.
(b) [2pt] Find the inertia $\left(n_{+}, n_{-}, n_{0}\right)$ of A.
2. Let G be the graph below and A its adjacency matrix.

(a) $[1 \mathrm{pt}]$ Find $\operatorname{tr}\left(A^{2}\right)$.
(b) $[1 \mathrm{pt}]$ Find $\operatorname{tr}\left(A^{3}\right)$.
(c) $[2 \mathrm{pt}]$ Draw all elementary subgraphs of G.
(d) $[1 \mathrm{pt}]$ Find $\operatorname{det}(A)$.
3. [5pt] Let G be the graph below.

Let A be the adjacency matrix of G. Find $\operatorname{det}(A-x I)$, the characteristic polynomial of A.
4. [5pt] Let G be the graph below.

Find the number of spanning trees on G.
5. [extra 5pt] Let P_{n+1} be the path on $n+1$ vertices such that 1 is one of its endpoints. Let A be the adjacency matrix of P_{n+1}. Find the 1,1 -entry of $A^{2 n}$.
6. [extra 2 pt$]$ Let G be the graph below.

Consider G as an electronic circuit such that each edge is a wire of resistance 1Ω. Find the effective resistance from 1 to 4 .

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	$20(+7)$	

