2021F Math585 Midterm 2

5 questions, 20(+5) total points

Note: Use other papers to answer the problems. Remember to write down your **name** and your **student ID #**.

1. [5pt] Let G be the graph below and A its adjacency matrix. Find rank(A) and det(A).

2. [5pt] Let G be a graph and A its adjacency matrix. Suppose the characteristic polynomial of A is

$$(-x)^5 - 4(-x)^3 + 2(-x).$$

Find G.

3. [5pt] Let G be a graph and A its adjacency matrix. Suppose G is a graph containing an induced subgraph that is isomorphic to K_k . Prove that A has at least k - 1 eigenvalues that are at most -1.

Two more problems on the back.

4. [5pt] Let G be the graphs below and A its adjacency matrix.

Find the eigenvalues of A.

5. [extra 5pt] Let

$$\mathbf{A} = \begin{bmatrix} \mathbf{O} & \mathbf{B} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & \mathbf{C} \\ \mathbf{D} & \mathbf{O} & \mathbf{O} \end{bmatrix},$$

where O is the 3 × 3 zero matrix and B, C, D are some fixed 3 × 3 matrices. Let $\omega = e^{i\frac{2\pi}{3}}$. Show that if λ is an eigenvalue of A, then $\omega\lambda$ is also an eigenvalue of A.