2021F Math 585 Midterm 2

5 questions, $20(+5)$ total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [5pt] Let G be the graph below and A its adjacency matrix. Find $\operatorname{rank}(A)$ and $\operatorname{det}(A)$.

2. [5pt] Let G be a graph and A its adjacency matrix. Suppose the characteristic polynomial of A is

$$
(-x)^{5}-4(-x)^{3}+2(-x)
$$

Find G.
3. [5pt] Let G be a graph and A its adjacency matrix. Suppose G is a graph containing an induced subgraph that is isomorphic to K_{k}. Prove that A has at least $k-1$ eigenvalues that are at most -1 .

Two more problems on the back.
4. [5pt] Let G be the graphs below and A its adjacency matrix.

Find the eigenvalues of A.
5. [extra 5pt] Let

$$
A=\left[\begin{array}{lll}
\mathrm{O} & \mathrm{~B} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{C} \\
\mathrm{D} & \mathrm{O} & \mathrm{O}
\end{array}\right]
$$

where O is the 3×3 zero matrix and $\mathrm{B}, \mathrm{C}, \mathrm{D}$ are some fixed 3×3 matrices. Let $\omega=e^{i \frac{2 \pi}{3}}$. Show that if λ is an eigenvalue of A, then $\omega \lambda$ is also an eigenvalue of A.

