2021F Math585 Midterm1

5 questions, 20 total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [5pt] Let

$$
A=\left[\begin{array}{llllllll}
0 & x & 0 & 0 & 0 & 0 & 0 & 1 \\
x & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Find x such that the 1,5 -entry of A^{4} is 0 .
2. [5pt] Let G be the Petersen graph and A its adjacency matrix as shown below.

G
$\left[\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right]$

A

Let S_{k} be the sum of all $k \times k$ principal minors of A. Find S_{5} and explain your reasons.
3. [5pt] Let J_{n} and I_{n} be the $n \times n$ all-ones matrix and the identity matrix of order n, respectively. Let $D_{n}=J_{n}-I_{n}$. Find the inertia of D_{n} and explain your reasons.

One more problem on the back.
4. [5pt] Let A be a 7×7 real symmetric matrix. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{7}\right\}$ be an orthonormal eigenbasis of \mathcal{A} such that $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for $\mathfrak{i}=1, \ldots, 7$ and $\lambda_{1} \leqslant \cdots \leqslant \lambda_{7}$. Consider the space $W=\operatorname{span}\left\{v_{2}, v_{4}, v_{6}\right\}$. Show that

$$
\lambda_{2}=\min _{\substack{\mathbf{x} \in W \\ \mathbf{x} \neq \mathbf{0}}} \frac{\mathbf{x}^{\top} \mathrm{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} .
$$

