2021F Math585 Midterm1

5 questions, 20 total points

Note: Use other papers to answer the problems. Remember to write down your **name** and your **student ID #**.

1. [5pt] Let

$$A = \begin{bmatrix} 0 & x & 0 & 0 & 0 & 0 & 0 & 1 \\ x & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Find x such that the 1,5-entry of A^4 is 0.

2. [5pt] Let G be the Petersen graph and A its adjacency matrix as shown below.

Let S_k be the sum of all $k \times k$ principal minors of A. Find S_5 and explain your reasons.

3. [5pt] Let J_n and I_n be the $n \times n$ all-ones matrix and the identity matrix of order n, respectively. Let $D_n = J_n - I_n$. Find the inertia of D_n and explain your reasons.

One more problem on the back.

4. [5pt] Let A be a 7 × 7 real symmetric matrix. Let { $\mathbf{v}_1, \ldots, \mathbf{v}_7$ } be an orthonormal eigenbasis of A such that $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for $i = 1, \ldots, 7$ and $\lambda_1 \leq \cdots \leq \lambda_7$. Consider the space $W = \text{span}\{v_2, v_4, v_6\}$. Show that

$$\lambda_2 = \min_{\substack{\mathbf{x} \in W\\ \mathbf{x} \neq \mathbf{0}}} \frac{\mathbf{x}^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$