線性代數（一）
第二次期中考
第二次期中考
姓名 Name ：
學號 Student ID \＃： \qquad
第二次期中考
姓名 Name ：
學號 Student ID \＃： \qquad December 6， 2021

Midterm 2 MATH 103 ／GEAI 1215：Linear Algebra I

Abstract

\square

1. Let

$$
A=\left[\begin{array}{ccccc}
1 & 3 & -5 & -5 & 9 \\
-5 & -15 & 26 & 25 & -47 \\
20 & 60 & -105 & -100 & 190 \\
-24 & -72 & 125 & 120 & -226
\end{array}\right] \text { and } R=\left[\begin{array}{ccccc}
1 & 3 & 0 & -5 & -1 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

It is known that R is the reduced echelon form of A.
(a) $[1 \mathrm{pt}]$ Find a basis for $\operatorname{Row}(A)$.
(b) $[1 \mathrm{pt}]$ Find a basis for $\operatorname{Col}(A)$.
(c) $[1 \mathrm{pt}]$ Find a basis for $\operatorname{ker}(A)$.
(d) $[1 \mathrm{pt}]$ Find the rank of A.
(e) $[1 \mathrm{pt}]$ Find the nullity of A.
2. Let

$$
V=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{1}+3 x_{2}+3 x_{3}+3 x_{4}=0\right\} \text { and } \mathbf{a}=\left[\begin{array}{c}
-6 \\
0 \\
1 \\
1
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find a basis of V.
(b) [1pt] Find a basis of V that contains a.
(c) $[2 \mathrm{pt}]$ Let

$$
U=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{1}+x_{2}+x_{3}+x_{4}=0\right\}
$$

Find a basis of $U \cap V$.

3．Let $\mathcal{M}_{2,2}$ be the vector space of all 2×2 matrices over \mathbb{R} ．Let

$$
A_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], A_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \text { and } A_{4}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

（a）［1pt］Find a basis of $\mathcal{M}_{2,2}$ ．
（b）$[1 \mathrm{pt}]$ Find a matrix $A \in \operatorname{span}\left(\left\{A_{1}, A_{2}, A_{3}\right\}\right)$ such that A is nowhere zero（每一項都不是零）。
（c）$[1 \mathrm{pt}]$ Find a matrix $A \notin \operatorname{span}\left(\left\{A_{1}, A_{2}, A_{3}\right\}\right)$ such that A is nowhere zero（每一項都不是零）。
（d）［2pt］Is $\beta=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ linearly independent？Explain your reasons．

4．［5pt］數學作文：請寫一篇短文來向没修過線性代數的朋友介紹什麼是線性獨立（linearly independent）。
請寫下線性獨立的定義，並以自己的方式，盡量白話的敘述，或是比喻來説明這個爲什麼要這樣定義？還有秛什麼要考慮這樣的概念？請給一些能幫助他人理解的例子（正面的，反面的），並提出一些這個概念的相關性質；有必要的話可以加上一些圖來輔助説明。格式没有限制，篇輻大約半面到一面。
（If Chinese is not your native language，you may use English or the language that you prefer．）
5. [extra 2 pt] Consider the vector space \mathcal{P}_{2} of all polynomials with degree at most 2 and with real coefficients. Recall that if $p=c_{0}+c_{1} x+c_{2} x^{2}$, then we define

$$
\operatorname{ptov}(p)=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right] .
$$

Let p^{\prime} and $p^{\prime \prime}$ be the first and the second derivative of p, respectively. Find a matrix D such that

$$
\operatorname{ptov}\left(p+p^{\prime}+p^{\prime \prime}\right)=D \operatorname{ptov}(p)
$$

for any $p \in \mathcal{P}_{2}$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

