國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數 (一)	MATH 103 / GEAI 1215: Linear Algebra I		
期末考	January 10, 2022 Final Exam		
姓名 Name :_		_	
學號 Student ID $\#$: _		_	
	-		
	Lecturer:	Jephian Lin 林晉宏	
	Contents:	cover page,	
		6 pages of questions,	
		score page at the end	
	To be answered:	on the test paper	
	Duration:	110 minutes	

Do not open this packet until instructed to do so.

Total points: **20 points** + 7 extra points

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [1pt] Find subsets $A, B \subseteq \{1, 3, 5, 7, 9\}$ and a function $f : A \to B$ such that f is injective but not surjective.

2. [1pt] Find subsets $A, B \subseteq \{1, 3, 5, 7, 9\}$ and a function $f : A \to B$ such that f is surjective but not injective.

3. [1pt] Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ be the set of all nonnegative integers and \mathbb{Z} the set of all integers. Find a bijection from \mathbb{N}_0 to \mathbb{Z} .

4. [1pt] Find a surjective linear function $f : \mathbb{R}^3 \to \mathbb{R}^2$ such that f(1, -1, 1) = (0, 0).

5. [1pt] Find an injective linear function $f : \mathbb{R}^2 \to \mathbb{R}^3$ such that f(1,0) = (1,-1,1).

6. Let

$$\mathbf{u}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix},$$

and $\beta = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ be a basis of \mathbb{R}^3 . Suppose $f : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear function such that

$$f(\mathbf{u}_1) = \begin{bmatrix} 1\\4 \end{bmatrix}, \ f(\mathbf{u}_2) = \begin{bmatrix} 2\\5 \end{bmatrix}, \text{ and } f(\mathbf{u}_3) = \begin{bmatrix} 3\\6 \end{bmatrix}.$$
(a) [1pt] Find $f\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix} \right).$

(b) [1pt] Find
$$f\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right)$$
.

(c) [3pt] Find a matrix A such that $f(\mathbf{u}) = A\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^3$.

7. Let

$$\mathbf{u}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{v}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$$

Let $\alpha = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ be a basis of \mathbb{R}^3 and $\beta = {\mathbf{v}_1, \mathbf{v}_2}$ a basis of \mathbb{R}^2 . Suppose $f : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear function such that

$$f(\mathbf{u}_1) = \mathbf{v}_2,$$

$$f(\mathbf{u}_2) = \mathbf{v}_1,$$

$$f(\mathbf{u}_3) = \mathbf{v}_2.$$

Recall that \mathcal{E}_n is the standard basis of \mathbb{R}^n .

(a) [1pt] Find the matrix representation $[f]^{\beta}_{\alpha}$.

(b) [2pt] Find the change of basis matrices $[id]^{\mathcal{E}_3}_{\alpha}$ and $[id]^{\alpha}_{\mathcal{E}_3}$.

(c) [2pt] Find a matrix A such that $f(\mathbf{u}) = A\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^3$.

8. [5pt] 數學作文:請寫一篇短文來向沒修過線性代數的朋友介紹什麼是 線性函數 (linear function)。

請寫下線性函數的定義,並說明它和矩陣之間的關係。請以自己的 方式、盡量白話的敘述、或是比喻來說明這個爲什麼要這樣定義?還 有爲什麼要考慮這樣的概念?請給一些能幫助他人理解的例子(正面 的、反面的),並提出一些這個概念的相關性質;有必要的話可以加 上一些圖來輔助說明。格式沒有限制,篇輻大約半面到一面。

(If Chinese is not your native language, you may use English or the language that you prefer.)

9. [extra 5pt] Let $\beta = {\mathbf{u}_0, \dots, \mathbf{u}_k}$ be a set of nonzero vectors in \mathbb{R}^n . Suppose $\lambda_0, \dots, \lambda_k$ are distinct real numbers and A is an $n \times n$ matrix such that $A\mathbf{u}_i = \lambda_i \mathbf{u}_i$ for $i = 0, \dots, k$. Show that β is linearly independent.

•

10. [extra 2pt] Let $p = 1+2x+x^2$ and $q = -4+2x+3x^2-2x^3$ be polynomials. It is known that

Γ1	0	0	-4	0		3 7	-40	44	-48	52]
2	1	0	2	-4		-52	57	-62	68	-74
1	2	1	3	2	=	20	-22	24	-26	29
0	1	2	-2	3		9	-10	11	-12	13
0	0	1	0	-2		L 10	-11	12	-13	14

Find polynomials $a \in \mathcal{P}_2$ and $b \in \mathcal{P}_1$ such that ap + bq = 1, where \mathcal{P}_d is the set of all polynomials of degree at most d.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	20 (+7)	