線性代數（一）	MATH 103／GEAI 1215：Linear Algebra I	
期末考	January 10， 2022	Final Exam

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：	Jephian Lin 林晉宏
Contents：	cover page，
	$\mathbf{6}$ pages of questions，
	score page at the end
To be answered：	on the test paper
Duration：	$\mathbf{1 1 0}$ minutes
Total points：	$\mathbf{2 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [1pt] Find subsets $A, B \subseteq\{1,3,5,7,9\}$ and a function $f: A \rightarrow B$ such that f is injective but not surjective.
2. [1pt] Find subsets $A, B \subseteq\{1,3,5,7,9\}$ and a function $f: A \rightarrow B$ such that f is surjective but not injective.
3. $[1 \mathrm{pt}]$ Let $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ be the set of all nonnegative integers and \mathbb{Z} the set of all integers. Find a bijection from \mathbb{N}_{0} to \mathbb{Z}.
4. [1pt] Find a surjective linear function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $f(1,-1,1)=$ $(0,0)$.
5. [1pt] Find an injective linear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $f(1,0)=$ $(1,-1,1)$.
6. Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and $\beta=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a basis of \mathbb{R}^{3}. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear function such that

$$
f\left(\mathbf{u}_{1}\right)=\left[\begin{array}{l}
1 \\
4
\end{array}\right], f\left(\mathbf{u}_{2}\right)=\left[\begin{array}{l}
2 \\
5
\end{array}\right], \text { and } f\left(\mathbf{u}_{3}\right)=\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Find $f\left(\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)$.
(b) $[1 \mathrm{pt}]$ Find $f\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$.
(c) $[3 \mathrm{pt}]$ Find a matrix A such that $f(\mathbf{u})=A \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{3}$.
7. Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $\alpha=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a basis of \mathbb{R}^{3} and $\beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a basis of \mathbb{R}^{2}. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear function such that

$$
\begin{aligned}
& f\left(\mathbf{u}_{1}\right)=\mathbf{v}_{2} \\
& f\left(\mathbf{u}_{2}\right)=\mathbf{v}_{1} \\
& f\left(\mathbf{u}_{3}\right)=\mathbf{v}_{2}
\end{aligned}
$$

Recall that \mathcal{E}_{n} is the standard basis of \mathbb{R}^{n}.
(a) $[1 \mathrm{pt}]$ Find the matrix representation $[f]_{\alpha}^{\beta}$.
(b) $[2 \mathrm{pt}]$ Find the change of basis matrices $[\mathrm{id}]_{\alpha}^{\mathcal{E}_{3}}$ and $[\mathrm{id}]_{\mathcal{E}_{3}}^{\alpha}$.
(c) $[2 \mathrm{pt}]$ Find a matrix A such that $f(\mathbf{u})=A \mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{3}$.

8．［5pt］數學作文：請寫一篇短文來向没修過線性代數的朋友介紹什麼是線性函數（linear function）。
請寫下線性函數的定義，並説明它和矩陣之間的關係。請以自己的方式，盡量白話的敘述，或是比喻來説明這個爲什麼要這樣定義？還有爲什麼要考慮這樣的概念？請給一些能幇助他人理解的例子（正面的，反面的），並提出一些這個概念的相關性質；有必要的話可以加上一些圖來輔助説明。格式没有限制，篇輻大約半面到一面。
（If Chinese is not your native language，you may use English or the language that you prefer．）
9. [extra 5 pt] Let $\beta=\left\{\mathbf{u}_{0}, \ldots, \mathbf{u}_{k}\right\}$ be a set of nonzero vectors in \mathbb{R}^{n}. Suppose $\lambda_{0}, \ldots, \lambda_{k}$ are distinct real numbers and A is an $n \times n$ matrix such that $A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$ for $i=0, \ldots, k$. Show that β is linearly independent.
10. [extra 2pt] Let $p=1+2 x+x^{2}$ and $q=-4+2 x+3 x^{2}-2 x^{3}$ be polynomials. It is known that

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -4 & 0 \\
2 & 1 & 0 & 2 & -4 \\
1 & 2 & 1 & 3 & 2 \\
0 & 1 & 2 & -2 & 3 \\
0 & 0 & 1 & 0 & -2
\end{array}\right]^{-1}=\left[\begin{array}{ccccc}
37 & -40 & 44 & -48 & 52 \\
-52 & 57 & -62 & 68 & -74 \\
20 & -22 & 24 & -26 & 29 \\
9 & -10 & 11 & -12 & 13 \\
10 & -11 & 12 & -13 & 14
\end{array}\right] .
$$

Find polynomials $a \in \mathcal{P}_{2}$ and $b \in \mathcal{P}_{1}$ such that $a p+b q=1$, where \mathcal{P}_{d} is the set of all polynomials of degree at most d.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	$20(+7)$	

