Math585 Homework?

Note: There are several options to finish the homework. You may find a definition in the textbook and provide one example that meets the definition and one example that does not. You may find a theorem in the textbook and provide an example that witness the theorem. You may also find an exercise in the textbook and finish it. To submit the k-th homework, you may give me a paper copy or send me the electronic copy. The deadline is announced on the course website.

1. [Definition of positive definite matrix] A $n \times n$ symmetric matrix M is positive definite if $\mathbf{x}^{\top} M \mathbf{x}$ is positive for any $\mathbf{x} \in \mathbb{R}^{n}$.

Solution. Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Then A is positive definite while B is not. According to the definition, a matrix that is not symmetric is not in the consideration of being positive definite or not.
2. [Cauchy-Binet formula] Let A and B be an $\mathfrak{m} \times \mathfrak{n}$ matrix and an $n \times m$ matrix with $\mathrm{m} \leqslant \mathrm{n}$, respectively. Then

$$
\operatorname{det}(A B)=\sum_{\alpha} \operatorname{det}(A[:, \alpha]) \operatorname{det}(B[\alpha,:]),
$$

where α runs through all m-subsets of $\{1, \ldots, n\}$.
Solution. Let

$$
A=B^{\top}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

Then

$$
A B=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right]
$$

has determinant $\operatorname{det}(A B)=6$. Let's compute it in a different way. Let α be a 2 -subset of $\{1,2,3\}$, so α can be one of $\{1,2\},\{1,3\}$, and $\{2,3\}$. When $\alpha=\{1,2\}$,

$$
\mathrm{A}[:, \alpha]=\mathrm{B}[\alpha,:]^{\top}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

and $\operatorname{det}(A[:, \alpha]) \operatorname{det}(B[\alpha,:])=1$. When $\alpha=\{1,3\}$,

$$
\mathrm{A}[:, \alpha]=\mathrm{B}[\alpha,:]^{\top}=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]
$$

and $\operatorname{det}(A[:, \alpha]) \operatorname{det}(B[\alpha,:])=4$. When $\alpha=\{2,3\}$,

$$
\mathrm{A}[:, \alpha]=\mathrm{B}[\alpha,:]^{\top}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]
$$

and $\operatorname{det}(A[:, \alpha]) \operatorname{det}(B[\alpha,:])=1$. Thus, we get the same answer $\operatorname{det}(A B)=1+4+1=$ 6.
3. [Exercise ?.??] Let G be the graph below. Find the chromatic number $k=\chi(G)$ and give a proper k-coloring of G.

Solution. It is an outer-planar graph that contains a triangle, so $\chi(\mathrm{G})=3$.

