Let

$$
A=\left[\begin{array}{ccc}
-4 & 0 & 0 \\
20 & 2 & -1 \\
-12 & 2 & 5
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}-3 x^{2}-16 x+48
$$

and the eigenvalues are

$$
\{4,3,-4\} .
$$

Therefore，$S=11$ ．
Check code $=S \bmod 10=1$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

Let

$$
A=\left[\begin{array}{ccc}
5 & -10 & -20 \\
0 & 15 & 20 \\
0 & -10 & -15
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}-5 x^{2}-25 x+125
$$

and the eigenvalues are

$$
\{-5,5,5\} .
$$

Therefore，$S=15$ ．
Check code $=S \bmod 10=5$ ．
\qquad學號 Student ID \＃：
Quiz 3
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-11 & -12 & 24 \\
18 & 25 & -54 \\
5 & 8 & -18
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}+4 x^{2}+x-6
$$

and the eigenvalues are

$$
\{1,-2,-3\} .
$$

Therefore，$S=6$ ．
Check code $=S \bmod 10=6$ ．
\qquad

Let

$$
A=\left[\begin{array}{ccc}
5 & -10 & 8 \\
4 & -8 & 4 \\
-3 & 4 & -6
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}+9 x^{2}+26 x+24
$$

and the eigenvalues are

$$
\{-2,-3,-4\} .
$$

Therefore，$S=9$ ．
Check code $=S \bmod 10=9$ ．

姓名 Name： \qquad學號 Student ID \＃：
Quiz 3
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-6 & -9 & -18 \\
4 & 7 & 8 \\
2 & 2 & 7
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}-8 x^{2}+21 x-18
$$

and the eigenvalues are

$$
\{2,3,3\} .
$$

Therefore，$S=8$ ．
Check code $=S \bmod 10=8$ ．

Let

$$
A=\left[\begin{array}{ccc}
6 & 1 & 7 \\
1 & 2 & 1 \\
-1 & -3 & -2
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}-6 x^{2}+5 x+12
$$

and the eigenvalues are

$$
\{4,3,-1\} .
$$

Therefore，$S=8$ ．
Check code $=S \bmod 10=8$ ．

Let

$$
A=\left[\begin{array}{ccc}
-10 & 0 & 12 \\
-16 & -4 & 28 \\
-8 & 0 & 10
\end{array}\right] .
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}+4 x^{2}-4 x-16
$$

and the eigenvalues are

$$
\{2,-2,-4\} .
$$

Therefore，$S=8$ ．
Check code $=S \bmod 10=8$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

Let

$$
A=\left[\begin{array}{ccc}
-16 & 42 & 48 \\
-6 & 17 & 24 \\
-1 & 2 & -3
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}+2 x^{2}-23 x-60
$$

and the eigenvalues are

$$
\{5,-3,-4\} .
$$

Therefore，$S=12$ ．
Check code $=S \bmod 10=2$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

Let

$$
A=\left[\begin{array}{ccc}
-13 & 30 & 24 \\
-6 & 14 & 12 \\
4 & -10 & -8
\end{array}\right] .
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}+7 x^{2}+14 x+8
$$

and the eigenvalues are

$$
\{-1,-2,-4\} .
$$

Therefore，$S=7$ ．
Check code $=S \bmod 10=7$ ．

姓名 Name： \qquad學號 Student ID \＃：
Quiz 3
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-7 & -12 & -12 \\
0 & 1 & 0 \\
4 & 6 & 7
\end{array}\right]
$$

Suppose the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{3}$ ．Find the value of $S=\sum_{i=1}^{3}\left|\lambda_{i}\right|$ ， where $|\cdot|$ is the absolute value．

Check code $=S \bmod 10$

Solution．

The characteristic polynomial of A is

$$
x^{3}-x^{2}-x+1
$$

and the eigenvalues are

$$
\{-1,1,1\} .
$$

Therefore，$S=3$ ．
Check code $=S \bmod 10=3$ ．

