\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
-1 & 0 & 0 \\
1 & 1 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & -3 & 1 \\
-2 & -3 & 2
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-8 \\
-1 \\
3
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-13 \\
-2 \\
5
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
0 \\
-3
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
34 \\
-21 \\
4
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
57 \\
-35 \\
7
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-18 \\
11 \\
-3
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
34 & 57 & -18 \\
-21 & -35 & 11 \\
4 & 7 & -3
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=6$ ．
\qquad學號 Student ID \＃：
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
2 & 2 & -2 \\
-2 & 2 & 1 \\
1 & -1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-1 & 1 & 2 \\
-1 & 2 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-6 \\
11 \\
-1
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
20 \\
-3 \\
9
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-12 \\
2 \\
-5
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-40 \\
5 \\
-17
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
20 & -12 & -40 \\
-3 & 2 & 5 \\
9 & -5 & -17
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=9$ ．
\qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
1 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 2 \\
1 & 0 & -3
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{l}
-2 \\
-1 \\
-3
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
8 \\
7
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-12 \\
5 \\
-3
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
16 \\
-9 \\
6
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
67 \\
-32 \\
20
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-12 & 16 & 67 \\
5 & -9 & -32 \\
-3 & 6 & 20
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=8$ ．
\qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
-2 & -2 & 0 \\
2 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-2 & 1 & 0 \\
-5 & 2 & 2
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
8 \\
2 \\
-7
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
-2 \\
4
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
5 \\
12 \\
-3
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-6 \\
-10 \\
-5
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
5 & 0 & -6 \\
12 & -2 & -10 \\
-3 & 4 & -5
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=5$ ． Compute the check code and fill it into the box on the right．
check code
5
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 2 \\
-2 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & -1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
3 \\
-4
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-6 \\
1 \\
-2
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-15 \\
4 \\
-4
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
11 \\
1 \\
6
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-6 & -15 & 11 \\
1 & 4 & 1 \\
-2 & -4 & 6
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=6$ ．
\qquad

Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \text { and } A \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
-2 \\
-1
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-1 \\
-3 \\
1
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-3 & 1 & -1 \\
-2 & 0 & -3 \\
1 & 0 & 1
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=4$ ．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & 0 & -1 \\
-2 & 0 & -2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -2 & -2 \\
2 & -3 & -4 \\
-4 & 7 & 9
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-9 \\
2 \\
6
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
15 \\
-3 \\
-10
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
19 \\
-5 \\
-14
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
11 \\
20 \\
-10
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-17 \\
-33 \\
17
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-29 \\
-43 \\
19
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
11 & -17 & -29 \\
20 & -33 & -43 \\
-10 & 17 & 19
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=5$ ．

5
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
1 & -2 & -1 \\
2 & -1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
-4 & -1 & 3
\end{array}\right]
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
11 \\
1 \\
-4
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
-1 \\
-2
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
-10 \\
1 \\
5
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
11 \\
17 \\
19
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right], \text { and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-10 \\
-7 \\
-14
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
11 & 4 & -10 \\
17 & 1 & -7 \\
19 & 5 & -14
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad

Let

$$
A=\left[\begin{array}{ccc}
0 & -1 & -2 \\
2 & -2 & 0 \\
2 & -2 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
1 & -4 & -2
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
2 \\
2
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
7 \\
-6 \\
-6
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{c}
3 \\
-4 \\
-4
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right.$ ）＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-6 \\
-6 \\
8
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
20 \\
19 \\
-25
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
10 \\
11 \\
-15
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-6 & 20 & 10 \\
-6 & 19 & 11 \\
8 & -25 & -15
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=6$ ．
check code
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 104 ／GEAI 1209：Linear Algebra II

Let

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 2 & 2 \\
1 & -2 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 3 & -2 \\
0 & 1 & 3
\end{array}\right] .
$$

Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a homomorphism defined by $f(\mathbf{v})=A \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$ and \mathcal{B} is a basis of \mathbb{R}^{3} composed of the columns of B ．Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ ．

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10$

Solution．

Let \mathbf{v}_{j} be the j－th column of B ．Then $f\left(\mathbf{v}_{j}\right)$＇s can be computed as

$$
A \mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
-5 \\
5
\end{array}\right], A \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
9 \\
-7
\end{array}\right] \text {, and } A \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right]
$$

and $\operatorname{Rep}_{\mathcal{B}}\left(f\left(\mathbf{v}_{j}\right)\right)$＇s are

$$
\operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{1}\right)=\left[\begin{array}{c}
-45 \\
-25 \\
10
\end{array}\right], \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{2}\right)=\left[\begin{array}{c}
73 \\
41 \\
-16
\end{array}\right] \text {, and } \operatorname{Rep}_{\mathcal{B}}\left(A \mathbf{v}_{3}\right)=\left[\begin{array}{c}
-24 \\
-12 \\
6
\end{array}\right] .
$$

Thus，

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{ccc}
-45 & 73 & -24 \\
-25 & 41 & -12 \\
10 & -16 & 6
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)\right) \bmod 10=8$ ．

